• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Small-for-size syndrome in living donor liver transplantation

    2012-07-10 11:28:17

    Kyoto, Japan

    Small-for-size syndrome in living donor liver transplantation

    Shintaro Yagi and Shinji Uemoto

    Kyoto, Japan

    When the graft volume is too small to satisfy the recipient's metabolic demand, the recipient may thus experience small-for-size syndrome (SFSS). Because the occurrence of SFSS is determined by not only the liver graft volume but also a combination of multiple negative factors, the definitions of small-for-size graft (SFSG) and SFSS are different in each institute and at each time. In the clinical setting, surgical inflow modulation and maximizing the graft outflow are keys to overcoming SFSS. Accordingly, relatively smaller-sized grafts can be used with surgical modification and pharmacological manipulation targeting portal circulation and liver graft quality. Therefore, the focus of the SFSG issue is now shifting from how to obtain a larger graft from the living donor to how to manage the use of a smaller graft to save the recipient, considering donor safety to be a priority.

    living donor; liver transplantation; small-for-size syndrome

    Introduction

    In the last 20 years, the indications for living donor liver transplantation (LDLT) have been successfully expanded from pediatric to adult cases. However, the use of grafts smaller than the native liver is unavoidable in cases of LDLT performed on adults. When the graft volume is too small to satisfy the recipient's metabolic demand, the recipient may thus experience small-forsize syndrome (SFSS). SFSS is characterized clinically by a combination of prolonged functional cholestasis, intractable ascites, and delayed functional recovery of both prothrombin time and encephalopathy.[1-3]To avoid small-for-size graft (SFSG), a larger-sized graft, such as the right lobe graft, is used as the standard strategy for adult-to-adult LDLT.[4-7]However, although a right-lobe LDLT can provide an adequate graft size to meet the metabolic demands of most adult recipients, SFSS can be observed not only in SFSG recipients but also in largersized graft recipients.[8-10]Therefore, the occurrence of SFSS is determined by not only the liver graft volume but also a combination of multiple negative factors.

    However, the procurement of a liver graft of greater volume imposes a greater risk on the donor because the remaining portion of the liver in the donor is smaller. Accordingly, the criteria for SFSG in adultto-adult LDLT have been revised recently at several institutes.[2,11]In other words, a relatively smaller-sized graft, such as the left lobe, can be used in adults with surgical manipulations aimed at reducing the portal venous pressure (PVP) and flow (PVF).[11,12]Therefore, the focus of the SFSG issue is now shifting from how to obtain a larger graft from the living donor to how to manage the use of a smaller graft to save the recipient, considering donor safety to be a priority.

    Definition

    Kiuchi et al[1]defined SFSG as a <0.8% graft-to-recipient body weight ratio (GRWR). They reported that the use of SFSG leads to SFSS, including poor bile production, delayed synthetic function, prolonged cholestasis and intractable ascites, with subsequent septic complications and higher mortality. Sugawara et al[13]suggested that a graft volume/standard liver volume ratio (GV/SLV)<40% was associated with decreased survival and the prolonged recovery of liver function. At present, some institutes have established criteria for graft selection with a lower GRWR than before: GRWR>0.8%[14,15]or GRWR>0.6% in combination with PVP control;[11]these criteria show that the definition of SFSG has become lower in LDLT. Although there has been no accepted definition of SFSS until now, several different definitions for SFSS or liver graft dysfunction have been given (Table).[3,16-18]

    Pathophysiology

    Relative shortage of vital liver volume for life maintenance

    The first possibility of the pathogenesis of poor prognosis in SFSG is the relative shortage of hepatic parenchymal cells. Previous clinical analyses[19-21]have suggested that a normal liver can tolerate a partial hepatectomy to 25%-27% of the residual volume.

    Portal hypertension: shear stress

    The characteristic microscopic findings of SFSS, including hepatocyte ballooning and cholestasis, are thought to be due to microcirculatory disturbances.[22]Many experimental and clinical studies[12,23-28]suggest that elevated PVP (shear stress) forms the central pathogenesis of SFSS. A persistent elevation of the PVP in the graft, which is attributable to hyperdynamic splanchnic circulation[29]and limited accommodation ofthe graft, causes sinusoidal endothelial cell injury[25]and the release of deleterious mediators,[30]which ultimately lead to serious graft injury. Shear stress also leads to an imbalance in the expression of intragraft vasoregulatory genes, such as endothelin-1 and nitric oxide.[31]Microcirculatory disorders in SFSG will eventually result in graft dysfunction.[32]

    Table.Proposed definitions of small-for-size syndrome

    Arterial hypoperfusion

    The role of arterial hypoperfusion in SFSS is less well studied as it is secondary to portal hyperperfusion. Low hepatic artery flow is considered to be due to a homeostatic mechanism known as the hepatic arterial buffer response.[33]In states of extreme portal hyperperfusion, such as those observed in SFSG, an exaggerated hepatic arterial buffer response may contribute to ischemic injury, ischemic cholangitis, and cholestasis.

    Intestinal mucosal injury

    We found that the intestinal mucosa was severely damaged with portal hypertension following SFSG liver transplantation in swine.[26]Several experimental studies[34-39]have revealed that portal hypertension in liver cirrhosis can increase bacterial translocation by inducing congestion and edema of the intestine. Accordingly, bacterial translocation could be developed in an SFSG-transplanted recipient due to the elevation of mucosal permeability, which is compatible with the clinical aspect of a higher postoperative infection rate in SFSS.[40]

    Liver regeneration

    After extensive hepatectomy or segmental liver transplantation with an SFSG, liver regeneration is essential for patient survival. Liver regeneration is a highly complex and organized process that has been shown to involve the actions of a number of cytokines and growth factors, such as hepatocyte growth factor (HGF),[41]transforming growth factor-α,[42]epidermal growth factor,[43]hepatocyte growth factor activator (HGFA)[44]and vascular endothelial growth factor (VEGF).[45]Shear stress is well defined as a putative trigger mechanism for liver regeneration.[46-48]During the first week after a partial liver transplantation, the partial liver graft regenerates quickly, up to approximately 80%-100% compared with the standard liver volume.[47]Ninomiya et al[49]showed that SFSGs regenerated faster and were associated with significantly higher peripheral HGF levels one day after LDLT than non-SFSGs. Many studies[50-57]have suggested that the elevation of PVF or shear stress induces liverregeneration and that insufficient PVF induces hepatic atrophy and liver failure. Portal hyperperfusion can promote liver regeneration only if it is limited to a certain extent. Hessheimer et al[58]suggested that the liver graft requires PVF superior to its normal baseline value for liver regeneration and that a calibrated portocaval shunt (PCS) that maintains the PVF at twice its baseline value produces a favorable outcome after swine liver transplantation with a 30% SFSG.

    Clinical factors influencing SFSS

    Quality of the graft

    Factors regulating liver graft compliance would be the potential definition of the graft quality, such as donor age, steatosis, and ischemic injury. Other unknown factors may also precipitate in SFSS.

    Ischemic injury

    Both warm[59]and cold ischemia[60]have been shown to impair regeneration after partial liver transplantation. The difference in the essential liver volume after the operation between an extended hepatectomy and partial liver transplantation may owe much to the existence of this issue.

    Steatosis

    A steatotic liver graft from a deceased donor with a longer cold ischemic time is well known to be associated with poor graft function and survival. Previous studies revealed that steatotic liver grafts are related to the increased susceptibility to ischemia-reperfusion injury,[61,62]including impaired graft microcirculation and PVF, increased hepatocellular damage observed serologically and histologically, increased pro-inflammatory cytokine production, and decreased ATP concentration. However, in an LDLT setting with a shorter cold ischemic time compared with a deceased donor graft, Hayashi et al[63]reported that early graft function after LDLT was similar in mild and moderate steatosis but that severe steatosis was significantly associated with poor graft function and survival. In any case, SFSS is determined by a combination of multiple negative factors, and steatotic liver grafts should be avoided if the graft volume is small.

    Donor age

    Moon et al[64]have shown that an older donor age affects graft prognosis only when combined with an SFSG. Ikegami et al[65]reported that the function and regeneration of the allografts from older donors in LDLT are worse than those of their younger counterparts. Tanemura et al[66]also reported that donor age (≥50 years) was independently correlated with impaired remnant liver regeneration at 6 months in right lobe LDLT.

    Congestion

    The magnitude of the impact of tissue congestion caused by interrupted venous drainage is highly variable among grafts. Severe congestion in the anterior segment has been reported to occur in right lobe grafts without the middle hepatic vein (MHV), which leads to massive ascites and graft dysfunction.[8]

    Perioperative recipient related factors

    Preoperative recipient status

    With respect to the maintenance of the initial graft function, the post-transplant metabolic and synthetic demands in recipients with severely damaged liver function (hyperbilirubinemia, coagulopathy) and a pre-operative deteriorated general condition (renal dysfunction, septic state, etc.) aggravate the metabolic function of the graft.[1,67]Furthermore, the liver grafts may be insufficiently functional for the excessive metabolic and synthetic demands of high-risk recipients, including their reduced metabolic and synthetic capacities. Therefore, a pre-operative deteriorated condition with a high model for end-stage liver disease (MELD) score may impair the function of the graft, leading to graft dysfunction, graft failure and eventually multiple organ failure, especially in SFSG. Yoshizumi et al[68]reported that a larger graft is necessary if the donor age is >50 years and the MELD score is >20. Accordingly, Ikegami et al[69]recommended that high-risk patients should receive a larger, younger graft to minimize the risk of SFSS.

    Portal venous circulation (pressure and flow)

    After LDLT, Ogura et al[12]demonstrated that a PVP<15 mmHg is associated with good patient outcome in a retrospective clinical analysis, i.e., patients with a PVP<15 mmHg demonstrated a better 2-year survival (93.0%) than patients with a portal pressure ≥15 mmHg (66.3%).

    Hessheimer et al[58]reported that the PV-inferior vena cava (IVC) pressure gradient and PVP were significantly higher in SFSG liver transplantation in swine and that the PCS decreased both the PVP and PV-IVC pressure gradients. However, Ogura et al[12]reported in a retrospective clinical study of LDLT that although the PV-IVC pressure gradient was higher in the group with the higher PVP, there were no significant differences in the 1- and 3-year survival rates when they divided and analyzed their study group by low(<9 mmHg) and high (≥9 mmHg) PV-IVC pressure gradients. Further experiments or clinical trials of SFSG are necessary to determine whether the PVP or PV-IVC pressure gradient is more significant for SFSG.

    In clinical research, we found that a high compliance (PVF/PVP) graft in which the PVF can be maintained at a high level despite a low PVP is a good graft for postoperative liver graft function.[69]The optimal portal venous circulation for the liver graft could depend on the graft size and quality.

    Intervention to avoid SFSS

    Graft selection: increasing the graft volume and maximizing the outflow

    After the concept of SFSS had been reported, the graft type shifted from the left side to the right side of the liver to increase the liver graft volume. Dual graft liver transplantation was also proposed when two donors were available in some institutes.[70,71]

    Regarding the usage of a "right-side graft", to avoid the development of a congested area in the anterior segment, some institutes have preferred to use a "with MHV graft". Fan et al[72]chose an extended rightlobe graft with the MHV. In contrast, the additional venous reconstruction of the anterior segment with an interposition vein graft has been adopted by Lee et al.[8]The reconstruction of the segment V and VIII branches using jump grafts has been reported.[73]In our institute, we have performed the venous reconstruction of the anterior segment together with an anterior patch plasty of the hepatic vein using the native portal vein to maximize the liver graft outflow.[74]

    We reported that the compliance per unit of graft weight in left-lobe grafts is higher than in right-lobe grafts without MHV in LDLT.[69]Shimada et al[75]also reported that left-lobe grafts are a feasible option for LDLT because the outflow of the left-lobe graft is considered superior to that of the right-lobe graft and in the case of right-lobe grafts without the MHV, hepatic venous drainage is one of the most critical problems. Accordingly, beginning in December 2007, our institution has actively selected the left-lobe graft for use in LDLT to maximize the graft outflow and minimize the risks to the healthy donor.

    Portal inflow modulation

    Boillot et al[76]first reported a case in which a recipient-transplanted SFSG with a GRWR of 0.61% was successfully treated by the reduction of PVP with a mesocaval shunt. Thereafter, several surgeons have reported the successful treatment of SFSG by surgical manipulations to reduce the PVP and PVF with a splenic arterial ligation,[28]PCS[27,77,78]or splenectomy[12,79-81]in clinical and animal studies.[82,83]

    However, because the diversion of portal inflow can lead to hepatic necrosis or atrophy, an adequate PVF is essential for liver regeneration.[26,52,58]We reported that an SFSG-transplanted swine with a large PCS could not survive more than 5 days after liver transplantation, with its autopsy showing massive hepatic necrosis. A large PCS, which would greatly reduce the PVF and therefore result in graft failure, should be avoided.[26]

    Therefore, in our institution, a splenectomy is performed first to decrease the PVP (<15 mmHg), and all large collaterals are ligated to prevent the steal phenomenon in some situations, which decrease the compliance after LDLT (such as rejection).[81]

    Other interventions

    In experimental research, several pharmacological interventions have been reported to improve the survival after SFSG, including the portal infusion of prostaglandin E1,[84]granulocyte colony-stimulating factor,[85]endothelin A receptor antagonist,[31]redox factor-1,[86]somatostatin,[87]and hyperbaric oxygen treatment[88]to promote liver regeneration or reduce ischemia-reperfusion injury after an SFSG liver transplantation.

    Organ preservation

    Newly developed preservation solutions, such as POLYSOL,[32]activated protein C[89]in preservation solution, and cold preservation using retrograde nitric oxide with oxygen administration, for SFSG liver transplantation[90]were reported to recondition the liver graft viability and promote liver regeneration in rats.

    Conclusion

    SFSG has become an issue again with respect to pursuing donor safety. Because the occurrence of SFSS is determined by not only the liver graft volume but also a combination of multiple negative factors, we should manage all risk factors and make efforts to improve the outcomes associated with SFSG.

    Contributors:YS wrote the main body of the article under the supervision of US. YS is the guarantor.

    Funding:None.

    Ethical approval:Not needed.

    Competing interest:No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    1 Kiuchi T, Kasahara M, Uryuhara K, Inomata Y, Uemoto S, Asonuma K, et al. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation 1999;67:321-327.

    2 Ikegami T, Shimada M, Imura S, Arakawa Y, Nii A, Morine Y, et al. Current concept of small-for-size grafts in living donor liver transplantation. Surg Today 2008;38:971-982.

    3 Dahm F, Georgiev P, Clavien PA. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am J Transplant 2005;5: 2605-2610.

    4 Fan ST, Lo CM, Liu CL, Wang WX, Wong J. Safety and necessity of including the middle hepatic vein in the right lobe graft in adult-to-adult live donor liver transplantation. Ann Surg 2003;238:137-148.

    5 Kasahara M, Takada Y, Fujimoto Y, Ogura Y, Ogawa K, Uryuhara K, et al. Impact of right lobe with middle hepatic vein graft in living-donor liver transplantation. Am J Transplant 2005;5:1339-1346.

    6 Asakuma M, Fujimoto Y, Bourquain H, Uryuhara K, Hayashi M, Tanigawa N, et al. Graft selection algorithm based on congestion volume for adult living donor liver transplantation. Am J Transplant 2007;7:1788-1796.

    7 Yu Y, Lu L, Qian X, Chen N, Yao A, Pu L, et al. Antifibrotic effect of hepatocyte growth factor-expressing mesenchymal stem cells in small-for-size liver transplant rats. Stem Cells Dev 2010;19:903-914.

    8 Lee S, Park K, Hwang S, Lee Y, Choi D, Kim K, et al. Congestion of right liver graft in living donor liver transplantation. Transplantation 2001;71:812-814.

    9 Ito T, Kiuchi T, Yamamoto H, Maetani Y, Oike F, Kaihara S, et al. Efficacy of anterior segment drainage reconstruction in right-lobe liver grafts from living donors. Transplantation 2004;77:865-868.

    10 Shirouzu Y, Ohya Y, Suda H, Asonuma K, Inomata Y. Massive ascites after living donor liver transplantation with a right lobe graft larger than 0.8% of the recipient's body weight. Clin Transplant 2010;24:520-527.

    11 Kaido T, Mori A, Ogura Y, Hata K, Yoshizawa A, Iida T, et al. Lower limit of the graft-to-recipient weight ratio can be safely reduced to 0.6% in adult-to-adult living donor liver transplantation in combination with portal pressure control. Transplant Proc 2011;43:2391-2393.

    12 Ogura Y, Hori T, El Moghazy WM, Yoshizawa A, Oike F, Mori A, et al. Portal pressure <15 mm Hg is a key for successful adult living donor liver transplantation utilizing smaller grafts than before. Liver Transpl 2010;16:718-728.

    13 Sugawara Y, Makuuchi M, Takayama T, Imamura H, Dowaki S, Mizuta K, et al. Small-for-size grafts in living-related liver transplantation. J Am Coll Surg 2001;192:510-513.

    14 Selzner M, Kashfi A, Cattral MS, Selzner N, Greig PD, Lilly L, et al. A graft to body weight ratio less than 0.8 does not exclude adult-to-adult right-lobe living donor liver transplantation. Liver Transpl 2009;15:1776-1782.

    15 Tucker ON, Heaton N. The 'small for size' liver syndrome. Curr Opin Crit Care 2005;11:150-155.

    16 Soejima Y, Taketomi A, Yoshizumi T, Uchiyama H, Harada N, Ijichi H, et al. Feasibility of left lobe living donor liver transplantation between adults: an 8-year, single-center experience of 107 cases. Am J Transplant 2006;6:1004-1011.

    17 Hill MJ, Hughes M, Jie T, Cohen M, Lake J, Payne WD, et al. Graft weight/recipient weight ratio: how well does it predict outcome after partial liver transplants? Liver Transpl 2009; 15:1056-1062.

    18 Ikegami T, Shirabe K, Yoshizumi T, Aishima S, Taketomi YA, Soejima Y, et al. Primary graft dysfunction after living donor liver transplantation is characterized by delayed functional hyperbilirubinemia. Am J Transplant 2012;12:1886-1897.

    19 Ferrero A, Viganò L, Polastri R, Muratore A, Eminefendic H, Regge D, et al. Postoperative liver dysfunction and future remnant liver: where is the limit? Results of a prospective study. World J Surg 2007;31:1643-1651.

    20 Schindl MJ, Redhead DN, Fearon KC, Garden OJ, Wigmore SJ; Edinburgh Liver Surgery and Transplantation Experimental Research Group (eLISTER). The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. Gut 2005;54:289-296.

    21 Vauthey JN, Chaoui A, Do KA, Bilimoria MM, Fenstermacher MJ, Charnsangavej C, et al. Standardized measurement of the future liver remnant prior to extended liver resection: methodology and clinical associations. Surgery 2000;127:512-519.

    22 Demetris AJ, Kelly DM, Eghtesad B, Fontes P, Wallis Marsh J, Tom K, et al. Pathophysiologic observations and histopathologic recognition of the portal hyperperfusion or small-for-size syndrome. Am J Surg Pathol 2006;30:986-993.

    23 Man K, Lo CM, Ng IO, Wong YC, Qin LF, Fan ST, et al. Liver transplantation in rats using small-for-size grafts: a study of hemodynamic and morphological changes. Arch Surg 2001; 136:280-285.

    24 Fondevila C, Hessheimer AJ, Taurá P, Sánchez O, Calatayud D, de Riva N, et al. Portal hyperperfusion: mechanism of injury and stimulus for regeneration in porcine small-forsize transplantation. Liver Transpl 2010;16:364-374.

    25 Asakura T, Ohkohchi N, Orii T, Koyamada N, Tsukamoto S, Sato M, et al. Portal vein pressure is the key for successful liver transplantation of an extremely small graft in the pig model. Transpl Int 2003;16:376-382.

    26 Yagi S, Iida T, Hori T, Taniguchi K, Nagahama M, Isaji S, et al. Effect of portal haemodynamics on liver graft and intestinal mucosa after small-for-size liver transplantation in swine. Eur Surg Res 2012;48:163-170.

    27 Troisi R, Cammu G, Militerno G, De Baerdemaeker L, Decruyenaere J, Hoste E, et al. Modulation of portal graft inflow: a necessity in adult living-donor liver transplantation? Ann Surg 2003;237:429-436.

    28 Ito T, Kiuchi T, Yamamoto H, Oike F, Ogura Y, Fujimoto Y, et al. Changes in portal venous pressure in the early phase after living donor liver transplantation: pathogenesis and clinical implications. Transplantation 2003;75:1313-1317.

    29 Hori T, Yagi S, Iida T, Taniguchi K, Yamagiwa K, Yamamoto C, et al. Stability of cirrhotic systemic hemodynamics ensures sufficient splanchnic blood flow after living-donor liver transplantation in adult recipients with liver cirrhosis. World J Gastroenterol 2007;13:5918-5925.

    30 Liang TB, Man K, Kin-Wah Lee T, Hong-Teng Tsui S, Lo CM, Xu X, et al. Distinct intragraft response pattern in relation to graft size in liver transplantation. Transplantation 2003;75: 673-678.

    31 Palmes D, Minin E, Budny T, Uhlmann D, Armann B,Stratmann U, et al. The endothelin/nitric oxide balance determines small-for-size liver injury after reduced-size rat liver transplantation. Virchows Arch 2005;447:731-741.

    32 Yagi S, Doorschodt BM, Afify M, Klinge U, Kobayashi E, Uemoto S, et al. Improved preservation and microcirculation with POLYSOL after partial liver transplantation in rats. J Surg Res 2011;167:e375-383.

    33 Smyrniotis V, Kostopanagiotou G, Kondi A, Gamaletsos E, Theodoraki K, Kehagias D, et al. Hemodynamic interaction between portal vein and hepatic artery flow in small-for-size split liver transplantation. Transpl Int 2002;15:355-360.

    34 Hashimoto N, Ohyanagi H. Effect of acute portal hypertension on gut mucosa. Hepatogastroenterology 2002;49:1567-1570.

    35 Quigley M. Bacterial translocation in acute and chronic portal hypertension. Hepatology 1994;20:264-266.

    36 Wang XD, Guo WD, Wang Q, Andersson R, Ekblad E, Soltesz V, et al. The association between enteric bacterial overgrowth and gastrointestinal motility after subtotal liver resection or portal vein obstruction in rats. Eur J Surg 1994;160:153-160.

    37 Wang X, Andersson R, Soltesz V, Wang L, Bengmark S. Effect of portal hypertension on bacterial translocation induced by major liver resection in rats. Eur J Surg 1993;159:343-350.

    38 Garcia-Tsao G, Albillos A, Barden GE, West AB. Bacterial translocation in acute and chronic portal hypertension. Hepatology 1993;17:1081-1085.

    39 Yao GX, Shen ZY, Xue XB, Yang Z. Intestinal permeability in rats with CCl4-induced portal hypertension. World J Gastroenterol 2006;12:479-481.

    40 Kiuchi T, Tanaka K, Ito T, Oike F, Ogura Y, Fujimoto Y, et al. Small-for-size graft in living donor liver transplantation: how far should we go? Liver Transpl 2003;9:S29-35.

    41 Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989;342:440-443.

    42 Kan M, Huang JS, Mansson PE, Yasumitsu H, Carr B, McKeehan WL. Heparin-binding growth factor type 1 (acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration. Proc Natl Acad Sci U S A 1989;86:7432-7436.

    43 McGowan JA, Strain AJ, Bucher NL. DNA synthesis in primary cultures of adult rat hepatocytes in a defined medium: effects of epidermal growth factor, insulin, glucagon, and cyclic-AMP. J Cell Physiol 1981;108:353-363.

    44 Miyazawa K, Shimomura T, Kitamura A, Kondo J, Morimoto Y, Kitamura N. Molecular cloning and sequence analysis of the cDNA for a human serine protease reponsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII. J Biol Chem 1993;268:10024-10028.

    45 Mochida S, Ishikawa K, Inao M, Shibuya M, Fujiwara K. Increased expressions of vascular endothelial growth factor and its receptors, flt-1 and KDR/flk-1, in regenerating rat liver. Biochem Biophys Res Commun 1996;226:176-179.

    46 Marubashi S, Sakon M, Nagano H, Gotoh K, Hashimoto K, Kubota M, et al. Effect of portal hemodynamics on liver regeneration studied in a novel portohepatic shunt rat model. Surgery 2004;136:1028-1037.

    47 Yagi S, Iida T, Taniguchi K, Hori T, Hamada T, Fujii K, et al. Impact of portal venous pressure on regeneration and graft damage after living-donor liver transplantation. Liver Transpl 2005;11:68-75.

    48 Oura T, Taniguchi M, Shimamura T, Suzuki T, Yamashita K, Uno M, et al. Does the permanent portacaval shunt for a small-for-size graft in a living donor liver transplantation do more harm than good? Am J Transplant 2008;8:250-252.

    49 Ninomiya M, Harada N, Shiotani S, Hiroshige S, Minagawa R, Soejima Y, et al. Hepatocyte growth factor and transforming growth factor beta1 contribute to regeneration of small-forsize liver graft immediately after transplantation. Transpl Int 2003;16:814-819.

    50 Guest J, Ryan CJ, Benjamin IS, Blumgart LH. Portacaval transposition and subsequent partial hepatectomy in the rat: effects on liver atrophy, hypertrophy and regenerative hyperplasia. Br J Exp Pathol 1977;58:140-146.

    51 Kahn D, Kajani M, Zeng Q, Lai HS, Eagon PK, Makowka L, et al. Effect of partial portal vein ligation on hepatic regeneration. J Invest Surg 1988;1:267-276.

    52 Kawasaki T, Moriyasu F, Kimura T, Someda H, Fukuda Y, Ozawa K. Changes in portal blood flow consequent to partial hepatectomy: Doppler estimation. Radiology 1991;180:373-377.

    53 Kin Y, Nimura Y, Hayakawa N, Kamiya J, Kondo S, Nagino M, et al. Doppler analysis of hepatic blood flow predicts liver dysfunction after major hepatectomy. World J Surg 1994;18: 143-149.

    54 Sato Y, Koyama S, Tsukada K, Hatakeyama K. Acute portal hypertension reflecting shear stress as a trigger of liver regeneration following partial hepatectomy. Surg Today 1997;27:518-526.

    55 Kato Y, Shimazu M, Wakabayashi G, Tanabe M, Morikawa Y, Hoshino K, et al. Significance of portal venous flow in graft regeneration after living related liver transplantation. Transplant Proc 2001;33:1484-1485.

    56 Schoen JM, Wang HH, Minuk GY, Lautt WW. Shear stressinduced nitric oxide release triggers the liver regeneration cascade. Nitric Oxide 2001;5:453-464.

    57 Eguchi S, Yanaga K, Sugiyama N, Okudaira S, Furui J, Kanematsu T. Relationship between portal venous flow and liver regeneration in patients after living donor right-lobe liver transplantation. Liver Transpl 2003;9:547-551.

    58 Hessheimer AJ, Fondevila C, Taurá P, Mu?oz J, Sánchez O, Fuster J, et al. Decompression of the portal bed and twicebaseline portal inflow are necessary for the functional recovery of a "small-for-size" graft. Ann Surg 2011;253:1201-1210.

    59 Selzner M, Camargo CA, Clavien PA. Ischemia impairs liver regeneration after major tissue loss in rodents: protective effects of interleukin-6. Hepatology 1999;30:469-475.

    60 Selzner N, Selzner M, Tian Y, Kadry Z, Clavien PA. Cold ischemia decreases liver regeneration after partial liver transplantation in the rat: A TNF-alpha/IL-6-dependent mechanism. Hepatology 2002;36:812-818.

    61 Minor T, Akbar S, Tolba R, Dombrowski F. Cold preservation of fatty liver grafts: prevention of functional and ultrastructural impairments by venous oxygen persufflation. J Hepatol 2000;32:105-111.

    62 Bahde R, Spiegel HU. Hepatic ischaemia-reperfusion injury from bench to bedside. Br J Surg 2010;97:1461-1475.

    63 Hayashi M, Fujii K, Kiuchi T, Uryuhara K, Kasahara M, Takatsuki M, et al. Effects of fatty infiltration of the graft on the outcome of living-related liver transplantation. Transplant Proc 1999;31:403.

    64 Moon JI, Kwon CH, Joh JW, Jung GO, Choi GS, Park JB, et al. Safety of small-for-size grafts in adult-to-adult living donor liver transplantation using the right lobe. Liver Transpl 2010;16:864-869.

    65 Ikegami T, Nishizaki T, Yanaga K, Shimada M, Kishikawa K, Nomoto K, et al. The impact of donor age on living donor liver transplantation. Transplantation 2000;70:1703-1707.

    66 Tanemura A, Mizuno S, Wada H, Yamada T, Nobori T, Isaji S. Donor age affects liver regeneration during early period in the graft liver and late period in the remnant liver after living donor liver transplantation. World J Surg 2012;36:1102-1111.

    67 Uemoto S, Inomata Y, Sakurai T, Egawa H, Fujita S, Kiuchi T, et al. Living donor liver transplantation for fulminant hepatic failure. Transplantation 2000;70:152-157.

    68 Yoshizumi T, Taketomi A, Soejima Y, Uchiyama H, Ikegami T, Harada N, et al. Impact of donor age and recipient status on left-lobe graft for living donor adult liver transplantation. Transpl Int 2008;21:81-88.

    69 Yagi S, Iida T, Hori T, Taniguchi K, Yamamoto C, Yamagiwa K, et al. Optimal portal venous circulation for liver graft function after living-donor liver transplantation. Transplantation 2006;81:373-378.

    70 Lee S, Hwang S, Park K, Lee Y, Choi D, Ahn C, et al. An adult-to-adult living donor liver transplant using dual left lobe grafts. Surgery 2001;129:647-650.

    71 Kaihara S, Ogura Y, Kasahara M, Oike F, You Y, Tanaka K. A case of adult-to-adult living donor liver transplantation using right and left lateral lobe grafts from 2 donors. Surgery 2002;131:682-684.

    72 Fan ST, Lo CM, Liu CL. Technical refinement in adult-toadult living donor liver transplantation using right lobe graft. Ann Surg 2000;231:126-131.

    73 Sano K, Makuuchi M, Miki K, Maema A, Sugawara Y, Imamura H, et al. Evaluation of hepatic venous congestion: proposed indication criteria for hepatic vein reconstruction. Ann Surg 2002;236:241-247.

    74 Mori A, Kaido T, Ogura Y, Ogawa K, Hata K, Yagi S, et al. Standard hepatic vein reconstruction with patch plasty using the native portal vein in adult living donor liver transplantation. Liver Transpl 2012;18:602-607.

    75 Shimada M, Shiotani S, Ninomiya M, Terashi T, Hiroshige S, Minagawa R, et al. Characteristics of liver grafts in livingdonor adult liver transplantation: comparison between rightand left-lobe grafts. Arch Surg 2002;137:1174-1179.

    76 Boillot O, Delafosse B, Méchet I, Boucaud C, Pouyet M. Small-for-size partial liver graft in an adult recipient; a new transplant technique. Lancet 2002;359:406-407.

    77 Takada Y, Ueda M, Ishikawa Y, Fujimoto Y, Miyauchi H, Ogura Y, et al. End-to-side portocaval shunting for a smallfor-size graft in living donor liver transplantation. Liver Transpl 2004;10:807-810.

    78 Yamada T, Tanaka K, Uryuhara K, Ito K, Takada Y, Uemoto S. Selective hemi-portocaval shunt based on portal vein pressure for small-for-size graft in adult living donor liver transplantation. Am J Transplant 2008;8:847-853.

    79 Shimada M, Ijichi H, Yonemura Y, Harada N, Shiotani S, Ninomiya M, et al. The impact of splenectomy or splenic artery ligation on the outcome of a living donor adult liver transplantation using a left lobe graft. Hepatogastroenterology 2004;51:625-629.

    80 Kuriyama N, Isaji S, Kishiwada M, Ohsawa I, Hamada T, Mizuno S, et al. Dual cytoprotective effects of splenectomy for small-for-size liver transplantation in rats. Liver Transpl 2012;18:1361-1370.

    81 Hori T, Ogura Y, Ogawa K, Kaido T, Segawa H, Okajima H, et al. How transplant surgeons can overcome the inevitable insufficiency of allograft size during adult living-donor liver transplantation: strategy for donor safety with a smaller-size graft and excellent recipient results. Clin Transplant 2012;26: E324-334.

    82 Boillot O, Mechet I, Le Derf Y, Bernard P, Figueiredo P, Berger F, et al. Portomesenteric disconnection for small-forsize grafts in liver transplantation: Preclinical studies in pigs. Liver Transpl 2003;9:S42-46.

    83 Pouyet M, Paquet C. Effect of mesocaval shunt on survival of small-for-size liver grafts. Transplantation 2004;77:952.

    84 Suehiro T, Shimada M, Kishikawa K, Shimura T, Soejima Y, Yoshizumi T, et al. Effect of intraportal infusion to improve small for size graft injury in living donor adult liver transplantation. Transpl Int 2005;18:923-928.

    85 Ji Y, Dahmen U, Madrahimov N, Madrahimova F, Xing W, Dirsch O. G-CSF administration in a small-for-size liver model. J Invest Surg 2009;22:167-177.

    86 Guo L, Haga S, Enosawa S, Naruse K, Harihara Y, Sugawara Y, et al. Improved hepatic regeneration with reduced injury by redox factor-1 in a rat small-sized liver transplant model. Am J Transplant 2004;4:879-887.

    87 Xu X, Man K, Zheng SS, Liang TB, Lee TK, Ng KT, et al. Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. Liver Transpl 2006;12:621-627.

    88 Ijichi H, Taketomi A, Yoshizumi T, Uchiyama H, Yonemura Y, Soejima Y, et al. Hyperbaric oxygen induces vascular endothelial growth factor and reduces liver injury in regenerating rat liver after partial hepatectomy. J Hepatol 2006;45:28-34.

    89 Kuriyama N, Isaji S, Hamada T, Kishiwada M, Ohsawa I, Usui M, et al. The cytoprotective effects of addition of activated protein C into preservation solution on small-for-size grafts in rats. Liver Transpl 2010;16:1-11.

    90 Yagi S, Nagai K, Srinivasan P, Afify M, Uemoto S, Tolba RH. A Novel Organ-Preservation for Small Partial Liver Transplantations in Rats: Venous Systemic Oxygen Persufflation with Nitric Oxide Gas. Am J Transplant. Inpress.

    (Hepatobiliary Pancreat Dis Int 2012;11:570-576)

    October 30, 2012

    Accepted after revision November 20, 2012

    Author Affiliations: Department of Hepatobiliary, Pancreas and Transplant Surgery, Kyoto University Graduate School of Medicine, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan (Yagi S and Uemoto S)

    Shintaro Yagi, MD, PhD, Department of Hepatobiliary, Pancreas and Transplant Surgery, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Kyoto prefecture, Japan (Tel: 81-75-751-4323; Fax: 81-75-751-4348; Email: shintaro@kuhp.kyoto-u. ac.jp)

    ? 2012, Hepatobiliary Pancreat Dis Int. All rights reserved.

    10.1016/S1499-3872(12)60227-6

    国产野战对白在线观看| 亚洲成av片中文字幕在线观看| 香蕉丝袜av| 久9热在线精品视频| 亚洲国产中文字幕在线视频| 9热在线视频观看99| 韩国精品一区二区三区| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 日韩欧美在线二视频| 日韩国内少妇激情av| 男人舔女人的私密视频| 国产精品爽爽va在线观看网站 | 给我免费播放毛片高清在线观看| 最近最新中文字幕大全电影3 | 色哟哟哟哟哟哟| 在线观看免费视频网站a站| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| 国产亚洲精品综合一区在线观看 | 成人特级黄色片久久久久久久| 国产高清激情床上av| 黄频高清免费视频| 欧美另类亚洲清纯唯美| 美女国产高潮福利片在线看| 国产免费av片在线观看野外av| 国产成人精品久久二区二区91| 欧美色欧美亚洲另类二区 | 满18在线观看网站| 国内久久婷婷六月综合欲色啪| 欧美性长视频在线观看| 亚洲国产看品久久| 满18在线观看网站| 日本在线视频免费播放| 中文亚洲av片在线观看爽| 国产不卡一卡二| 日本a在线网址| 少妇的丰满在线观看| 国产亚洲精品一区二区www| 97碰自拍视频| 国产伦人伦偷精品视频| 亚洲精品国产一区二区精华液| 欧美绝顶高潮抽搐喷水| 精品一品国产午夜福利视频| 欧美成人一区二区免费高清观看 | 成人免费观看视频高清| 精品国产一区二区久久| 无限看片的www在线观看| 99国产极品粉嫩在线观看| 长腿黑丝高跟| АⅤ资源中文在线天堂| 亚洲午夜精品一区,二区,三区| 一级a爱视频在线免费观看| 亚洲 欧美一区二区三区| 窝窝影院91人妻| xxx96com| 欧洲精品卡2卡3卡4卡5卡区| 久久人妻av系列| 国产亚洲精品久久久久久毛片| 黄色女人牲交| 欧美色视频一区免费| 亚洲在线自拍视频| 男人舔女人的私密视频| 亚洲精品中文字幕一二三四区| 中文字幕色久视频| 欧美性长视频在线观看| 国产一卡二卡三卡精品| 免费在线观看黄色视频的| 丁香六月欧美| 亚洲成人精品中文字幕电影| 久久人妻熟女aⅴ| 久久精品国产99精品国产亚洲性色 | 两性午夜刺激爽爽歪歪视频在线观看 | 色综合婷婷激情| 婷婷精品国产亚洲av在线| 成在线人永久免费视频| 女人被狂操c到高潮| 国产成人av教育| 亚洲色图综合在线观看| 人人妻人人澡欧美一区二区 | 一级a爱视频在线免费观看| 亚洲片人在线观看| 一区二区三区精品91| 淫妇啪啪啪对白视频| 欧美亚洲日本最大视频资源| 久久久精品欧美日韩精品| 日本vs欧美在线观看视频| netflix在线观看网站| 久久人人精品亚洲av| 日韩欧美免费精品| 国产精品 欧美亚洲| 国语自产精品视频在线第100页| 婷婷六月久久综合丁香| 一本久久中文字幕| 99国产精品99久久久久| 97人妻精品一区二区三区麻豆 | 男人操女人黄网站| 久久精品国产综合久久久| 亚洲美女黄片视频| 久久久久久久精品吃奶| 久久午夜综合久久蜜桃| 国产99白浆流出| 天堂√8在线中文| 国产精品美女特级片免费视频播放器 | 国产精品久久久人人做人人爽| 日韩欧美一区视频在线观看| 久久久久久久午夜电影| 亚洲一码二码三码区别大吗| 日本撒尿小便嘘嘘汇集6| 99精品在免费线老司机午夜| 亚洲欧美日韩另类电影网站| 乱人伦中国视频| 99国产综合亚洲精品| 久久草成人影院| 国产精品国产高清国产av| 丰满的人妻完整版| 久99久视频精品免费| 亚洲午夜理论影院| 欧美av亚洲av综合av国产av| 高清毛片免费观看视频网站| 亚洲精品av麻豆狂野| 国产av在哪里看| 日本a在线网址| 国产精品永久免费网站| 日韩中文字幕欧美一区二区| 他把我摸到了高潮在线观看| 色综合站精品国产| 久久精品91无色码中文字幕| 亚洲人成伊人成综合网2020| 成人18禁高潮啪啪吃奶动态图| 亚洲专区字幕在线| 国产一卡二卡三卡精品| 在线观看日韩欧美| 色婷婷久久久亚洲欧美| 婷婷六月久久综合丁香| 午夜老司机福利片| 国产精品98久久久久久宅男小说| 88av欧美| 精品久久蜜臀av无| 日本黄色视频三级网站网址| 亚洲人成77777在线视频| 欧美中文日本在线观看视频| 动漫黄色视频在线观看| 黄频高清免费视频| 午夜免费鲁丝| 欧美在线黄色| 中文字幕人妻熟女乱码| 欧美不卡视频在线免费观看 | 日韩 欧美 亚洲 中文字幕| 国产精品久久视频播放| 精品久久久精品久久久| 日韩欧美一区二区三区在线观看| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 99精品欧美一区二区三区四区| 国产欧美日韩综合在线一区二区| 少妇熟女aⅴ在线视频| 18禁国产床啪视频网站| 欧美丝袜亚洲另类 | 在线观看日韩欧美| 又黄又爽又免费观看的视频| 亚洲av美国av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲熟女毛片儿| 久久精品人人爽人人爽视色| 国产高清videossex| 999精品在线视频| 国内毛片毛片毛片毛片毛片| 亚洲情色 制服丝袜| 大型黄色视频在线免费观看| 色精品久久人妻99蜜桃| 精品国产国语对白av| avwww免费| 亚洲色图 男人天堂 中文字幕| 女人爽到高潮嗷嗷叫在线视频| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区精品| 777久久人妻少妇嫩草av网站| 亚洲精品美女久久久久99蜜臀| 性少妇av在线| 亚洲一区二区三区色噜噜| av有码第一页| 国产国语露脸激情在线看| 精品午夜福利视频在线观看一区| 亚洲专区字幕在线| 欧美在线黄色| 少妇被粗大的猛进出69影院| 日本精品一区二区三区蜜桃| 中国美女看黄片| 18禁黄网站禁片午夜丰满| 亚洲一区高清亚洲精品| 欧美成人免费av一区二区三区| 正在播放国产对白刺激| 少妇熟女aⅴ在线视频| 日韩免费av在线播放| 国产精品,欧美在线| 国产高清有码在线观看视频 | xxx96com| 黄色成人免费大全| 亚洲狠狠婷婷综合久久图片| 国产成人啪精品午夜网站| 亚洲中文字幕一区二区三区有码在线看 | 国产成人av激情在线播放| 亚洲美女黄片视频| 国产精华一区二区三区| e午夜精品久久久久久久| 老司机在亚洲福利影院| 大陆偷拍与自拍| 高清在线国产一区| 天天躁狠狠躁夜夜躁狠狠躁| 99riav亚洲国产免费| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三| 人人妻人人澡人人看| 老熟妇乱子伦视频在线观看| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 伊人久久大香线蕉亚洲五| 亚洲黑人精品在线| 亚洲国产欧美网| 欧美老熟妇乱子伦牲交| 亚洲免费av在线视频| 亚洲中文字幕日韩| 电影成人av| 99国产精品99久久久久| 午夜福利一区二区在线看| 精品无人区乱码1区二区| 又紧又爽又黄一区二区| 日本a在线网址| 99精品在免费线老司机午夜| 男女做爰动态图高潮gif福利片 | 12—13女人毛片做爰片一| 高清黄色对白视频在线免费看| 亚洲精品av麻豆狂野| 亚洲片人在线观看| 老司机午夜福利在线观看视频| 国产午夜福利久久久久久| 久久精品国产亚洲av高清一级| 看免费av毛片| 日韩欧美三级三区| 黄色丝袜av网址大全| 午夜影院日韩av| 波多野结衣一区麻豆| 成人国产综合亚洲| 久久人妻熟女aⅴ| 国产激情欧美一区二区| 岛国视频午夜一区免费看| 欧美一级毛片孕妇| av天堂在线播放| 成人手机av| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久男人| 国产精品一区二区免费欧美| 国产高清激情床上av| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区视频在线观看免费| 国产精品久久久久久人妻精品电影| 国产成人免费无遮挡视频| 18禁国产床啪视频网站| 成人18禁在线播放| avwww免费| aaaaa片日本免费| 亚洲精品国产区一区二| 亚洲五月婷婷丁香| 激情在线观看视频在线高清| а√天堂www在线а√下载| 国产激情欧美一区二区| 亚洲熟妇中文字幕五十中出| 天堂影院成人在线观看| 亚洲欧美日韩无卡精品| 很黄的视频免费| 色哟哟哟哟哟哟| 中亚洲国语对白在线视频| 一本大道久久a久久精品| 国产一区二区在线av高清观看| 午夜久久久久精精品| 欧美av亚洲av综合av国产av| 亚洲成a人片在线一区二区| 久久婷婷成人综合色麻豆| 电影成人av| 欧美 亚洲 国产 日韩一| 国产一区二区激情短视频| 最近最新中文字幕大全电影3 | 99在线人妻在线中文字幕| 久久久久精品国产欧美久久久| 在线视频色国产色| 老司机午夜十八禁免费视频| 97碰自拍视频| 国产成人av教育| 欧美日韩黄片免| 久久精品91无色码中文字幕| 国产精品一区二区精品视频观看| 人成视频在线观看免费观看| 99国产精品一区二区三区| 久久精品人人爽人人爽视色| 精品久久久久久久人妻蜜臀av | 午夜成年电影在线免费观看| av欧美777| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 波多野结衣一区麻豆| 一边摸一边做爽爽视频免费| 99riav亚洲国产免费| 手机成人av网站| 一个人免费在线观看的高清视频| 成人亚洲精品av一区二区| 国产亚洲欧美精品永久| 美女扒开内裤让男人捅视频| 手机成人av网站| 亚洲精品美女久久久久99蜜臀| 日本vs欧美在线观看视频| 9热在线视频观看99| 国产欧美日韩一区二区三| 在线观看日韩欧美| 在线十欧美十亚洲十日本专区| 黄色视频不卡| 高清在线国产一区| 身体一侧抽搐| 日本免费a在线| 我的亚洲天堂| 91字幕亚洲| 日韩欧美一区二区三区在线观看| 久久午夜亚洲精品久久| 丝袜美足系列| 免费在线观看影片大全网站| 色播亚洲综合网| 亚洲av片天天在线观看| 男女午夜视频在线观看| 亚洲五月天丁香| 久久人妻av系列| 不卡一级毛片| 日韩欧美三级三区| 精品欧美一区二区三区在线| 欧美性长视频在线观看| 欧美av亚洲av综合av国产av| a在线观看视频网站| 在线国产一区二区在线| 国产真人三级小视频在线观看| 亚洲五月婷婷丁香| netflix在线观看网站| 久热这里只有精品99| tocl精华| 岛国在线观看网站| 十八禁网站免费在线| 久久草成人影院| 黄网站色视频无遮挡免费观看| 午夜福利免费观看在线| 欧美中文综合在线视频| 日韩免费av在线播放| 亚洲av熟女| 老司机深夜福利视频在线观看| 久久中文字幕一级| 99国产精品一区二区三区| 欧美日韩乱码在线| 色老头精品视频在线观看| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲| 亚洲一码二码三码区别大吗| 午夜激情av网站| 免费人成视频x8x8入口观看| 在线十欧美十亚洲十日本专区| 国内毛片毛片毛片毛片毛片| 亚洲最大成人中文| 人成视频在线观看免费观看| 侵犯人妻中文字幕一二三四区| 男女下面插进去视频免费观看| 欧美 亚洲 国产 日韩一| 少妇裸体淫交视频免费看高清 | 久久精品国产亚洲av高清一级| 一二三四社区在线视频社区8| 欧美一级毛片孕妇| 一区二区日韩欧美中文字幕| 国产精品 欧美亚洲| 国产av一区二区精品久久| 久久久国产成人精品二区| 日韩欧美国产一区二区入口| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| 中出人妻视频一区二区| 男人舔女人下体高潮全视频| 国产av一区在线观看免费| 两个人免费观看高清视频| 国产精品久久电影中文字幕| 国产免费av片在线观看野外av| 亚洲成a人片在线一区二区| 亚洲 国产 在线| x7x7x7水蜜桃| 美女免费视频网站| svipshipincom国产片| 国产av一区二区精品久久| 亚洲精品国产色婷婷电影| 色综合亚洲欧美另类图片| 成人亚洲精品av一区二区| 日韩 欧美 亚洲 中文字幕| 午夜久久久在线观看| 精品人妻在线不人妻| 级片在线观看| 天堂动漫精品| 午夜日韩欧美国产| 日本a在线网址| 曰老女人黄片| 午夜免费激情av| 久久久久久免费高清国产稀缺| 两性夫妻黄色片| ponron亚洲| 午夜老司机福利片| 美女免费视频网站| 国产高清videossex| 日韩欧美三级三区| 一级毛片高清免费大全| 中文字幕另类日韩欧美亚洲嫩草| 国产精品国产高清国产av| 久久精品91无色码中文字幕| 999精品在线视频| 18禁黄网站禁片午夜丰满| 婷婷精品国产亚洲av在线| 首页视频小说图片口味搜索| 久久精品aⅴ一区二区三区四区| 国产人伦9x9x在线观看| 变态另类丝袜制服| 一本综合久久免费| a级毛片在线看网站| 黄网站色视频无遮挡免费观看| 国产欧美日韩一区二区精品| 国产av在哪里看| 十分钟在线观看高清视频www| 亚洲成人精品中文字幕电影| svipshipincom国产片| 亚洲,欧美精品.| 啦啦啦观看免费观看视频高清 | 搞女人的毛片| 一级片免费观看大全| 日韩中文字幕欧美一区二区| 黄色片一级片一级黄色片| 国产男靠女视频免费网站| 久久精品国产99精品国产亚洲性色 | 香蕉丝袜av| 激情在线观看视频在线高清| 青草久久国产| 此物有八面人人有两片| 国产97色在线日韩免费| 久久精品国产亚洲av香蕉五月| 久久热在线av| 欧美日韩中文字幕国产精品一区二区三区 | 欧美色视频一区免费| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 91成年电影在线观看| 黄色a级毛片大全视频| 久久精品国产亚洲av香蕉五月| 欧美黄色淫秽网站| 12—13女人毛片做爰片一| 国产亚洲av嫩草精品影院| 久久国产精品影院| 久久久久久久精品吃奶| 9191精品国产免费久久| 中文字幕人妻丝袜一区二区| 久久热在线av| 国产精品久久久久久精品电影 | 亚洲av成人一区二区三| 69av精品久久久久久| 国产视频一区二区在线看| 中文字幕人妻熟女乱码| 国产成人系列免费观看| 久久国产精品人妻蜜桃| 91成年电影在线观看| 757午夜福利合集在线观看| 免费看十八禁软件| 自线自在国产av| 欧美成人免费av一区二区三区| 宅男免费午夜| 午夜日韩欧美国产| av超薄肉色丝袜交足视频| 精品国产亚洲在线| 国产亚洲欧美98| 日韩欧美一区视频在线观看| 国产激情欧美一区二区| 51午夜福利影视在线观看| 国产亚洲av高清不卡| 18禁黄网站禁片午夜丰满| 日本欧美视频一区| 黑人欧美特级aaaaaa片| 俄罗斯特黄特色一大片| 在线观看免费视频日本深夜| 人人妻人人澡人人看| 中文字幕人成人乱码亚洲影| 黑人欧美特级aaaaaa片| 免费看美女性在线毛片视频| 久久香蕉精品热| 精品国产一区二区久久| 男女做爰动态图高潮gif福利片 | 免费在线观看完整版高清| 国产成人精品久久二区二区免费| 久久亚洲真实| 久久久久久人人人人人| 成熟少妇高潮喷水视频| 国产欧美日韩精品亚洲av| 国产成+人综合+亚洲专区| 最近最新免费中文字幕在线| 一进一出抽搐gif免费好疼| 亚洲第一欧美日韩一区二区三区| 18禁国产床啪视频网站| 欧美日本视频| 国产成人影院久久av| 国产精品久久久久久亚洲av鲁大| 国产激情久久老熟女| 在线天堂中文资源库| 国产成+人综合+亚洲专区| 99riav亚洲国产免费| 国产精品久久久久久亚洲av鲁大| 成人18禁在线播放| 国产成人精品在线电影| 在线观看66精品国产| 三级毛片av免费| 一级a爱片免费观看的视频| 九色国产91popny在线| 国产一区二区三区在线臀色熟女| 侵犯人妻中文字幕一二三四区| 人人妻人人澡人人看| 国产高清激情床上av| 国产成人免费无遮挡视频| 人成视频在线观看免费观看| 午夜精品国产一区二区电影| 成人三级做爰电影| 国产午夜精品久久久久久| 亚洲一区中文字幕在线| 久99久视频精品免费| 99re在线观看精品视频| 国产激情欧美一区二区| 免费搜索国产男女视频| www.自偷自拍.com| 国产av一区在线观看免费| 一个人免费在线观看的高清视频| 亚洲五月色婷婷综合| 性少妇av在线| 99热只有精品国产| 又黄又粗又硬又大视频| 成人手机av| 欧美+亚洲+日韩+国产| 久久伊人香网站| 欧美乱妇无乱码| 在线视频色国产色| 中文字幕久久专区| 日日干狠狠操夜夜爽| 99久久久亚洲精品蜜臀av| 大码成人一级视频| 亚洲av成人av| 老熟妇乱子伦视频在线观看| 三级毛片av免费| 欧美午夜高清在线| 亚洲国产日韩欧美精品在线观看 | 亚洲国产欧美一区二区综合| 麻豆成人av在线观看| 男人操女人黄网站| 久久人人97超碰香蕉20202| 亚洲成a人片在线一区二区| 亚洲国产毛片av蜜桃av| 欧美日韩亚洲国产一区二区在线观看| 国产又色又爽无遮挡免费看| 亚洲av电影不卡..在线观看| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 久久中文看片网| 亚洲精品av麻豆狂野| 叶爱在线成人免费视频播放| 精品熟女少妇八av免费久了| 亚洲成人免费电影在线观看| 国产一卡二卡三卡精品| 级片在线观看| 99在线人妻在线中文字幕| 国产成人免费无遮挡视频| 亚洲av日韩精品久久久久久密| 精品久久久精品久久久| 久久人妻福利社区极品人妻图片| 午夜激情av网站| tocl精华| 免费看a级黄色片| 校园春色视频在线观看| 日韩欧美三级三区| 99国产精品99久久久久| 午夜亚洲福利在线播放| 亚洲国产精品合色在线| 日韩高清综合在线| 999久久久国产精品视频| 亚洲成国产人片在线观看| av欧美777| 亚洲欧美日韩高清在线视频| 一个人免费在线观看的高清视频| 国产精品乱码一区二三区的特点 | 啦啦啦观看免费观看视频高清 | 韩国av一区二区三区四区| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 中文字幕人妻熟女乱码| 亚洲自拍偷在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲成av片中文字幕在线观看| 色播在线永久视频| 国产成人精品久久二区二区91| 亚洲电影在线观看av| 国产精品秋霞免费鲁丝片| 中文字幕人成人乱码亚洲影| 九色国产91popny在线| 90打野战视频偷拍视频| 欧美不卡视频在线免费观看 | 久久久久久人人人人人| 亚洲一区高清亚洲精品| 国产精品久久久人人做人人爽| 久久热在线av| 国产一区二区三区在线臀色熟女| 757午夜福利合集在线观看| 大香蕉久久成人网| 亚洲伊人色综图| 国产精品 欧美亚洲| 啦啦啦 在线观看视频|