• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth curve mixture models

    2012-07-08 02:15:19BenjaminLEIBY
    上海精神醫(yī)學(xué) 2012年6期

    Benjamin E. LEIBY

    · Biostatistics in psychiatry (12) ·

    Growth curve mixture models

    Benjamin E. LEIBY

    Psychiatric studies often collect longitudinal data to characterize the natural history of disease in a cohort or to evaluate the effect of behavioral or pharmaceutical interventions. For example, in a recent partially randomized study comparing escitalopram and nortriptyline in the treatment of depression, several depression scales were measured weekly over the 3-month course of treatment.[1]While the primary outcome measure of such studies may be a binary indicator of improvement at the end of treatment, analysis of the full longitudinal profile that makes optimal use of all available data to model rates of change over time may be more informative. For example, in the escitalopram/nortiptyline study, analysis of dichotomous outcomes adjusted for time participating in the study showed no difference between drugs, while analysis of the longitudinal profiles did indicate different patterns of improvement in the two groups over time.[2]

    1. Mixed effects models

    Mixed effects models[3]have become the standard for analysis of data from longitudinal studies that assess the behavior of a single continuous outcome over time. In general, mixed effects models model the average trend in a single variable over time while allowing for subjectspecific deviations from this trend. As an example, consider a 2-arm clinical trial (active drug vs. placebo) where treatment for depression reduces depressive symptoms as measured by the Hamilton depression rating scale (HAMD). Each subject has a certain level of symptoms when beginning treatment (the intercept), and a rate of change in depressive symptoms over time (the slope). If a treatment is effective, the rate of decline for subjects randomized to active treatment will be different from (greater than) that of those randomized to placebo. The focus of analysis is the comparison of the average slope for those on active treatment to the average slope for those on placebo. Mixed effects models formalize this idea by specifying a subject-level model with subject-level parameters which are then related to population-level parameters. In our example, we might specify the subject-level model as

    whereyijis the HAMD score at timej, β0iand β1iare the intercept and slope for subjecti, andeijis normally (i.e., bell-shaped) distributed random noise. Thus, we assume that each subject’s HAMD scores at the different followup times have a linear relationship (i.e., are on a straight line) over time. We relate each subject’s intercept and slope to a population average intercept and slope:

    whereXi=1 for subjects assigned to treatment,Xi=0 for subjects assigned to placebo,γ0is the average intercept,γ1is the average slope for placebo patients,γ1+γ11is the average slope for treated patients, and αi0and αi1are normally distributed random variables that allow each subject’s intercept and slope to differ from the average. The effectiveness of the treatment is determined by testing the null hypothesis thatγ11=0, in which case the rate of decline is the same in placebo and treated patients.

    The mixed effects model assumes that subjects’intercepts and slopes are relatively homogeneous with variation centered around one central line. However, there are cases where this may not be a reasonable assumption. In a time when ‘personalized medicine’ is the goal, it is becoming increasingly clear that many, if not most, diseases are not homogeneous. Different subpopulations may have distinct natural histories and may respond to treatment in different ways. Thus, models that consider the whole population and average across multiple subtypes may miss important differences in the effects of treatment. Without a prior knowledge of these subtypes it can be difficult to account for them. Models incorporating latent class are one way of investigating this type of unobserved population stratification or clustering. Originally developed for cross-sectional data, classical latent class models are a type of finite mixture model where the focus is to identify a finite number of subgroups based on multiple outcomes.[4,5]

    2. Growth curve mixture models

    In the past two decades, many researchers have focused on extending latent class models to consider grouping subjects based on trajectories or growth curves rather than only on cross-sectional data. Growth curve mixture models (GCMMs[6]) are a type of latent variable model that extend the latent class model to the longitudinal setting where subjects are grouped based on the observed longitudinal trend over time. (For a brief review of latent variable modeling, see Cai[7]). This approach assumes that each subject belongs to a certain unobserved group (the latent class) and subjects in that class have a particular mean trajectory. In essence, each latent class has its own mixed effects model. IfCi=kindicates that subjectibelongs to classk, then we have

    where β0i|(Ci=k) and β1i=|(Ci=k) denote the intercept and slope for subjectigiven that the latent class membership for subjectiis groupk. Estimates are obtained for growth curve parameters (e.g., intercepts, slopes, etc.) for each latent class.

    It is important to note that although the model assumes that subjects belong to one of the classes, the class membership is unknown and the results of the analysis can only assign subjects to a given class with a certain probability. To do this, after the model is estimated, each subject’s observed data are compared with the resulting class-specific curves. The closer the subject’s data resemble the class-specific curve, the higher the probability of belonging to that class. Based on this probability, subjects can be assigned to their most likely class and factors associated with class membership can be investigated.

    GCMMs can be used in many ways. At their most basic, they can be used to identify subgroups whose observed trajectories look similar to each other but different from the other subgroups. For example, investigators in the aforementioned drug trial categorized subjects based on their pattern of depressive symptoms during a 12-week treatment period[2]and identified two classes –gradual improvers and rapid improvers. Once patterns are discovered, the association of other factors with these patterns may provide insight into risk factors for an outcome or predictors of improvement. In the drug trial, one of the treatments was more prevalent among the rapid improvers than the other.

    In randomized trials, the type of interventions administered can also be taken into consideration when creating the classes. When adding this factor to the longitudinal model, the identified classes may differ not only with respect to the shape of the average trajectory, but also with respect to the magnitude of the treatment effect. In conditions that are very heterogeneous, the results of this analysis may be able to identify the distinct subgroups in which the intervention of interest is effective.[8]

    Originally developed for single continuous outcomes, extensions to the GCMM methodology allow for the analysis of categorical outcomes[9]and of multiple outcomes.[10,11]GCMMs can also be used to jointly model longitudinal processes and distal outcomes, and can be an effective way of modeling the relationship between biomarkers and event times.[12]

    3. Practical considerations for growth curve mixture modeling

    Jung and Wickrama[13]provide a good review of GCMMs and their implementation. GCMMs require specification of the number of latent classes prior to fitting the model. The choice of this number is not easy. Standard likelihood ratio tests for choosing between models cannot be used, but adjustments to the standard test that can help in the decision about the number of latent classes to be used in the model are available in some software packages. Information criteria (e.g., Akaike information criteria, or Bayesian information criteria) can also be used to compare models to choose the number of classes with the best fit. GCMM analysis is usually exploratory; the models can become complex fairly quickly, so to avoid spurious results or generating models with more parameters than the data can support, clinical and scientific knowledge should guide the modeling.

    Software for fitting GCMMs is fairly specialized and generally unavailable in standard statistical packages. Recently, the R-package LCMM has been developed to fit some types of GCMMs including joint models for longitudinal and time-to-event data (http://cran.rproject.org/web/packages/lcmm/). The most widely used software is Mplus[14]which provides modeling capabilities for an extensive array of GCMMs in addition to other latent variable methods such as factor analysis and structural equation modeling.

    A special case of GCMMs is latent class growth analysis (LCGA)[15,16]which does not allow for departure from the average trajectory within each latent class (by setting α0iand α1iequal to zero in equation 1.3). Thus, in contrast to mixed effects models where each subject’s intercept and slope are drawn from a normal distribution or GCMMs where they are drawn from a mixture of normal distributions, LCGAs allow only for a limited set of discrete options (one possibility for each class). LCGA can be implemented using the specialized SAS procedure Proc Traj.[17]

    4. An example

    The following simulated example demonstrates the uses of GCMMs in the analysis of longitudinal data from a clinical trial. The simulated data set contains weekly HAMD scores for 100 patients randomized to placebo or active treatment for 10 weeks. A standard analysis of this data would apply the mixed effects model outlined above. The subject-specific trajectories of HAMD scores and the estimated population curves for placebo and treated patients resulting from this analysis are given in Figure 1. On average, placebo patients’HAMD scores decreased by 0.33 points per week, while the active treatment groups’ scores declined by 0.54 points per week. The difference in rates of decline was not statistically significant (p=0.053). While strict interpretation of the results would conclude that the treatment was not effective, a visual examination of the plots shows a substantial number of patients in the active treatment arm that had much greater decline than average. This suggests that there may be a subset of patients for whom the treatment was effective.

    Figure 1. Simulated observed HAMD scores by subject and model-estimated curves from the mixed effects model

    A GCMM analysis that allows for differing effects of treatment within each class was fit using Mplus. A model with two classes fit best, and subjects were assigned to their most likely class with 67 subjects assigned to class 1 and 33 assigned to class 2. Results are displayed graphically in Figure 2. Class 1 was categorized by similar minimal rates of decline in treated and placebo subjects (slopes of -0.105 and -0.087, respectively, p=0.53). In Class 2, both treated and placebo subjects declined more than in Class 1, but treated subjects improved about two-fold more quickly than placebo subjects (slopes of -1.545 and -0.754, respectively, p<0.001). Further investigation would be warranted to identify baseline characteristics that differed between the two latent classes; these characteristics would help identify the type of patients for whom the drug would be beneficial.

    Figure 2. Results of a GCMM applied to the same data. Treated subjects in class 2 have greater decline than placebo subjects

    An alternative GCMM analysis could ignore treatment in forming the classes based on the HAMD trajectories. Again, a 2-class model fits best, as depicted in Figure 3. In this analysis, the model identifies a small class of subjects (n=16) whose HAMD scores decline by 1.49 points per week. A cross-tabulation with treatment assignment reveals a significant association between class and treatment assignment (p<0.001) with all 16 improvers being assigned to active treatment. Again, post-hoc comparisons of subjects who did and did not improve with treatment would help identify the demographic and clinical characteristics of patients who are most likely to improve.

    Figure 3. Results of a GCMM ignoring treatment assignment

    5. Conclusion

    Growth curve mixture modeling can be a useful analysis tool when it is desirable to identify subgroups of patients who differ with respect to the trajectory of a longitudinal measurement. GCMMs extend commonly used mixed effects methods to allow for multiple classes, each with its own mixed effects model. These models are useful in observational and experimental studies, and they provide a method for identifying subgroups of patients who respond differently to interventions in randomized trials.

    1. Uher R, Maier W, Hauser J, Marusic A, Schmael C, Mors O, et al. Differential efficacy of escitalopram and nortriptyline on dimensional measures of depression.Br J Psychiatry2009; 194(3): 252-259.

    2. Uher R, Muthen B, Souery D, Mors O, Jaracz J, Placentino A, et al. Trajectories of change in depression severity during treatment with antidepressants.Psychol Med2010; 40(8): 1367-1377.

    3. Laird N, Ware J. Random-effects models for longitudinal data.Biometrics1982; 38: 963-974.

    4. Clogg CC. Latent class models. In: Arminger G, Clogg CC, Sobel ME, eds.Handbook of Statistical Modeling for the Social and Behavioral Sciences. New York: Plenum Publishing Corporation, 1995.

    5. Garrett ES, Zeger SL. Latent class model diagnosis.Biometrics2000; 56: 1055-1067.

    6. Muthén B, Asparouhov T. Growth mixture modeling: Analysis with non-Gaussian random effects. In: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G, eds.Longitudinal Data Analysis. Boca Raton: Chapman Hall/CRC Press, 2008:143-165.

    7. Cai L. Latent variable modeling.Shanghai Arch Psychiatry2012; 24(2): 118-120.

    8. Muthén B, Brown CH, Masyn K, Jo B, Khoo ST, Yang CC, et al. General growth mixture modeling for randomized preventive interventions.Biostatistics2002; 3(4): 459-475.

    9. Muthén B, Shedden K. Finite mixture modeling with mixture outcomes using the EM algorithm.Biometrics1999; 55: 463-469.

    10. Elliott MR, Gallo JJ, Ten Have TR, Bogner HR, Katz IR. Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction.Biostatistics2005; 6:119-143.

    11. Leiby BE, Sammel MD, Ten Have TR, Lynch KG. Identification of multivariate responders/non-responders using Bayesian growth curve latent class models.J R Stat Soc Ser C Appl Stat2009; 58: 505-524.

    12. Lin H, Turnbull B, McCulloch C, Slate E. Latent class models for joint analysis of longitudinal biomarker and event process data.J Am Stat Assoc2002; 97: 53-65.

    13. Jung T, Wickrama K. An introduction to latent class growth analysis and growth mixture modeling.Soc Personal Psychol Compass2008; 2: 302-317.

    14. Muthén LK, Muthén BO.Mplus User's Guide (Seventh Edition). Los Angeles, CA: Muthén and Muthén, 1998-2012.

    15. Nagin DS, Land KC. Age, Criminal careers, and population heterogeneity specification and estimation of a nonparametric mixed poisson model.Criminology1993; 31: 327-362.

    16. Roeder K, Lynch KG, Nagin DS. Modeling uncertainty in latent class membership: A case study in criminology.J Am Stat Assoc1999; 94: 766-776.

    17. Jones BL, Nagin DS. Advances in group-based trajectory modeling and an SAS procedure for estimating them.Sociol Method Res2007; 35: 542-571.

    Benjamin Leiby is assistant professor in the Division of Biostatistics of Thomas Jefferson University, Philadelphia, Pennsylvania, USA and an associate member of the Kimmel Cancer Center. He collaborates with researchers in a diverse set of fields including cancer, psychiatry, ophthalmology, and rehabilitative medicine. His methodological interests are in the area of latent variable and latent class models with special focus on applications in psychiatry and cancer.

    10.3969/j.issn.1002-0829.2012.06.009

    Division of Biostatistics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

    *Correspondence: benjamin.leiby@jefferson.edu

    久久99蜜桃精品久久| 少妇熟女欧美另类| 综合色丁香网| 又粗又硬又长又爽又黄的视频| 少妇被粗大猛烈的视频| 男的添女的下面高潮视频| 欧美日韩综合久久久久久| av专区在线播放| av专区在线播放| 又爽又黄a免费视频| 97精品久久久久久久久久精品| 国产精品熟女久久久久浪| 毛片一级片免费看久久久久| 国产av不卡久久| 成人国产av品久久久| 午夜激情久久久久久久| 免费看a级黄色片| 亚洲欧美精品自产自拍| 白带黄色成豆腐渣| 精品久久久久久久人妻蜜臀av| 乱码一卡2卡4卡精品| 国产在线一区二区三区精| 久久久久久久国产电影| 日本黄色片子视频| 搡老乐熟女国产| 2018国产大陆天天弄谢| 亚洲国产av新网站| 九九久久精品国产亚洲av麻豆| 日韩中字成人| 少妇丰满av| 国产黄频视频在线观看| 在线看a的网站| 欧美日韩综合久久久久久| 成人亚洲精品一区在线观看 | 免费观看的影片在线观看| 亚洲欧美日韩卡通动漫| 午夜亚洲福利在线播放| 嫩草影院精品99| 偷拍熟女少妇极品色| 777米奇影视久久| 国产欧美另类精品又又久久亚洲欧美| 欧美变态另类bdsm刘玥| 狂野欧美激情性bbbbbb| 精品人妻熟女av久视频| 一级毛片我不卡| 一个人观看的视频www高清免费观看| 91在线精品国自产拍蜜月| 91在线精品国自产拍蜜月| 美女xxoo啪啪120秒动态图| 久久ye,这里只有精品| 国国产精品蜜臀av免费| 中国三级夫妇交换| 精品国产三级普通话版| 亚洲精品视频女| 亚洲一区二区三区欧美精品 | 一边亲一边摸免费视频| av又黄又爽大尺度在线免费看| 亚洲av免费在线观看| 插逼视频在线观看| 人妻一区二区av| 青春草国产在线视频| 国产免费视频播放在线视频| a级毛片免费高清观看在线播放| 男女边吃奶边做爰视频| 亚洲精品乱久久久久久| 精品久久久久久久久亚洲| 天堂中文最新版在线下载 | 国产毛片a区久久久久| 久久精品国产亚洲av涩爱| 亚洲在线观看片| 欧美一级a爱片免费观看看| 亚洲av成人精品一区久久| 97在线人人人人妻| 男女那种视频在线观看| 97在线人人人人妻| 超碰97精品在线观看| 2021少妇久久久久久久久久久| 最后的刺客免费高清国语| 亚洲精品影视一区二区三区av| 18禁在线无遮挡免费观看视频| av在线播放精品| 卡戴珊不雅视频在线播放| 午夜免费鲁丝| 六月丁香七月| 男男h啪啪无遮挡| 午夜免费鲁丝| av卡一久久| 精品久久久久久久末码| 欧美xxxx黑人xx丫x性爽| 亚洲,一卡二卡三卡| 国产成人a∨麻豆精品| 亚洲婷婷狠狠爱综合网| 一级毛片我不卡| 91精品伊人久久大香线蕉| 亚洲国产最新在线播放| 国产中年淑女户外野战色| 久久久色成人| 男插女下体视频免费在线播放| 亚洲综合精品二区| 2021少妇久久久久久久久久久| 麻豆成人午夜福利视频| 亚洲精品国产av成人精品| 精品一区二区三区视频在线| 舔av片在线| 国产真实伦视频高清在线观看| av天堂中文字幕网| 天天一区二区日本电影三级| 精品视频人人做人人爽| 另类亚洲欧美激情| 欧美老熟妇乱子伦牲交| 人人妻人人爽人人添夜夜欢视频 | 国产永久视频网站| 国产精品国产三级专区第一集| 成人黄色视频免费在线看| 欧美bdsm另类| 国内揄拍国产精品人妻在线| 99热网站在线观看| 国产成人福利小说| 观看美女的网站| 性插视频无遮挡在线免费观看| 18禁在线无遮挡免费观看视频| 在线 av 中文字幕| 性色av一级| 久热久热在线精品观看| 久久久久久久亚洲中文字幕| 免费人成在线观看视频色| 日韩成人伦理影院| 亚洲,欧美,日韩| 一个人看的www免费观看视频| h日本视频在线播放| 在线a可以看的网站| 一级毛片黄色毛片免费观看视频| 日韩人妻高清精品专区| 免费高清在线观看视频在线观看| 精品人妻视频免费看| 少妇人妻 视频| 大码成人一级视频| 国产亚洲最大av| 亚洲av福利一区| 青春草亚洲视频在线观看| 青青草视频在线视频观看| 91久久精品国产一区二区成人| 国产在视频线精品| 熟女人妻精品中文字幕| 特大巨黑吊av在线直播| 涩涩av久久男人的天堂| 天天一区二区日本电影三级| 亚洲真实伦在线观看| 亚洲欧美精品专区久久| 777米奇影视久久| 丰满乱子伦码专区| av在线天堂中文字幕| 亚洲欧美一区二区三区国产| 久久久精品免费免费高清| 交换朋友夫妻互换小说| 欧美日韩视频精品一区| 视频区图区小说| 久久精品综合一区二区三区| 嫩草影院新地址| 最后的刺客免费高清国语| 三级国产精品片| 极品少妇高潮喷水抽搐| 亚洲精品一二三| 成人亚洲精品一区在线观看 | 亚洲不卡免费看| 国产精品蜜桃在线观看| 亚洲丝袜综合中文字幕| av福利片在线观看| 亚洲精品乱码久久久久久按摩| 亚洲美女视频黄频| 久久久久久久午夜电影| 一区二区三区免费毛片| 午夜激情福利司机影院| 涩涩av久久男人的天堂| 搞女人的毛片| 精品人妻偷拍中文字幕| 国产一区二区三区av在线| 少妇的逼好多水| 国产精品久久久久久av不卡| 精品人妻熟女av久视频| 国产精品久久久久久精品古装| 免费人成在线观看视频色| 白带黄色成豆腐渣| 日韩av在线免费看完整版不卡| 亚洲av男天堂| 18禁在线播放成人免费| 五月天丁香电影| 久久久久久久大尺度免费视频| 午夜免费观看性视频| 国产精品久久久久久久电影| 日日啪夜夜撸| 国产欧美另类精品又又久久亚洲欧美| 校园人妻丝袜中文字幕| 国产精品久久久久久精品电影小说 | 精品国产一区二区三区久久久樱花 | 好男人在线观看高清免费视频| 国产精品久久久久久精品古装| 午夜视频国产福利| 一个人看的www免费观看视频| 高清午夜精品一区二区三区| 成人亚洲欧美一区二区av| 国产精品成人在线| 国产精品人妻久久久影院| 国产精品久久久久久av不卡| 女人被狂操c到高潮| 成年女人在线观看亚洲视频 | 波野结衣二区三区在线| 亚洲成人av在线免费| 久久99精品国语久久久| 精品久久久久久电影网| 久久久久久国产a免费观看| 性插视频无遮挡在线免费观看| 亚洲国产精品成人久久小说| 午夜精品国产一区二区电影 | 全区人妻精品视频| 中文欧美无线码| 黄色怎么调成土黄色| 欧美3d第一页| 看免费成人av毛片| 国产黄频视频在线观看| 爱豆传媒免费全集在线观看| 在线观看免费高清a一片| 日韩一区二区三区影片| 涩涩av久久男人的天堂| 特级一级黄色大片| 2022亚洲国产成人精品| 18禁裸乳无遮挡动漫免费视频 | 看黄色毛片网站| 国产高清不卡午夜福利| 中文欧美无线码| 久久人人爽人人爽人人片va| 69人妻影院| 下体分泌物呈黄色| 久久久久久久久久久丰满| 搞女人的毛片| 日本-黄色视频高清免费观看| 中文欧美无线码| 搡老乐熟女国产| 久久久色成人| 国产色爽女视频免费观看| 久久久久国产网址| 亚洲激情五月婷婷啪啪| 国产成人免费观看mmmm| 亚洲国产精品成人综合色| 韩国高清视频一区二区三区| 国产淫语在线视频| 国产老妇女一区| 亚洲精品日韩av片在线观看| 亚洲av电影在线观看一区二区三区 | 热re99久久精品国产66热6| 国产探花在线观看一区二区| 高清午夜精品一区二区三区| 精华霜和精华液先用哪个| 精品一区在线观看国产| 日本欧美国产在线视频| 欧美成人午夜免费资源| 国产精品99久久久久久久久| 三级经典国产精品| 欧美最新免费一区二区三区| 97在线人人人人妻| 久久久久久国产a免费观看| 国产精品伦人一区二区| 一级片'在线观看视频| 天天躁夜夜躁狠狠久久av| 亚洲精品视频女| av免费在线看不卡| 欧美xxxx黑人xx丫x性爽| tube8黄色片| 久久女婷五月综合色啪小说 | 精品午夜福利在线看| 国产精品久久久久久av不卡| 特大巨黑吊av在线直播| 国产伦在线观看视频一区| 日本黄大片高清| 亚洲一级一片aⅴ在线观看| 91久久精品国产一区二区成人| 五月天丁香电影| 国产日韩欧美亚洲二区| 白带黄色成豆腐渣| 日日啪夜夜撸| 久久精品综合一区二区三区| 日韩亚洲欧美综合| 又爽又黄a免费视频| 国产白丝娇喘喷水9色精品| 一区二区三区精品91| 综合色av麻豆| 久久久色成人| 男女那种视频在线观看| 免费av不卡在线播放| 美女主播在线视频| 亚洲国产欧美人成| 婷婷色综合www| 丝瓜视频免费看黄片| 尾随美女入室| 两个人的视频大全免费| 久久精品久久久久久噜噜老黄| 久久ye,这里只有精品| 五月天丁香电影| 最近最新中文字幕大全电影3| www.av在线官网国产| 午夜福利在线在线| 又粗又硬又长又爽又黄的视频| 美女内射精品一级片tv| 久久精品久久久久久久性| av专区在线播放| 午夜福利高清视频| 亚洲国产欧美在线一区| 亚洲婷婷狠狠爱综合网| 久久久久久久大尺度免费视频| 亚洲精品一区蜜桃| 成年人午夜在线观看视频| 免费黄网站久久成人精品| 人人妻人人爽人人添夜夜欢视频 | 国产伦精品一区二区三区视频9| 午夜福利视频1000在线观看| 少妇的逼水好多| 纵有疾风起免费观看全集完整版| 中国三级夫妇交换| 18禁裸乳无遮挡免费网站照片| 日本三级黄在线观看| 国产男女超爽视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影院入口| 嘟嘟电影网在线观看| 亚洲丝袜综合中文字幕| 国产av码专区亚洲av| 色吧在线观看| 插阴视频在线观看视频| 又爽又黄a免费视频| 天堂中文最新版在线下载 | 日日摸夜夜添夜夜爱| 中文字幕亚洲精品专区| 成人免费观看视频高清| 99久久精品热视频| videossex国产| 涩涩av久久男人的天堂| 三级国产精品欧美在线观看| 国产成人精品婷婷| 插阴视频在线观看视频| 国产在线一区二区三区精| 久久女婷五月综合色啪小说 | 啦啦啦在线观看免费高清www| 久久国内精品自在自线图片| 亚洲人成网站高清观看| 欧美xxⅹ黑人| 午夜激情久久久久久久| 国产人妻一区二区三区在| 成人一区二区视频在线观看| 边亲边吃奶的免费视频| 国产一区亚洲一区在线观看| 男插女下体视频免费在线播放| 亚洲av在线观看美女高潮| av福利片在线观看| 各种免费的搞黄视频| 热99国产精品久久久久久7| 99热这里只有是精品50| 国产精品一区二区性色av| 久久久久久伊人网av| 欧美成人一区二区免费高清观看| 久久精品国产亚洲av天美| 一个人看的www免费观看视频| 五月玫瑰六月丁香| 国产成人aa在线观看| 免费av观看视频| 2022亚洲国产成人精品| 免费大片18禁| 51国产日韩欧美| 97超碰精品成人国产| 国产精品成人在线| 日本爱情动作片www.在线观看| 高清在线视频一区二区三区| 国产熟女欧美一区二区| 日韩大片免费观看网站| 嫩草影院入口| 亚洲av中文字字幕乱码综合| 交换朋友夫妻互换小说| 国产高清有码在线观看视频| 国产精品蜜桃在线观看| 白带黄色成豆腐渣| 黄片wwwwww| 一级毛片久久久久久久久女| 久久精品久久久久久久性| 久久亚洲国产成人精品v| eeuss影院久久| 美女内射精品一级片tv| 亚洲精品国产色婷婷电影| 国产成人精品福利久久| 黄片无遮挡物在线观看| 国产高清有码在线观看视频| 熟妇人妻不卡中文字幕| 永久网站在线| 搡老乐熟女国产| 久久精品久久久久久久性| 国产欧美亚洲国产| 亚洲怡红院男人天堂| 在线观看免费高清a一片| 一级爰片在线观看| 成人毛片a级毛片在线播放| 亚洲av电影在线观看一区二区三区 | 在线观看免费高清a一片| 亚洲精品乱码久久久v下载方式| 色网站视频免费| 精品久久国产蜜桃| 日本黄色片子视频| 久久久久久久久久人人人人人人| 2018国产大陆天天弄谢| 狂野欧美激情性bbbbbb| 亚洲国产精品999| 亚洲怡红院男人天堂| 下体分泌物呈黄色| 十八禁网站网址无遮挡 | 成人欧美大片| 只有这里有精品99| 亚洲高清免费不卡视频| 国产探花在线观看一区二区| 免费观看a级毛片全部| 亚洲国产最新在线播放| 99久久精品一区二区三区| 欧美bdsm另类| 免费黄色在线免费观看| 国产黄片美女视频| 97在线视频观看| 亚洲美女搞黄在线观看| 国产永久视频网站| 性插视频无遮挡在线免费观看| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 免费观看的影片在线观看| 国产伦在线观看视频一区| 久久99热这里只有精品18| 国产精品国产三级国产专区5o| 欧美区成人在线视频| 一级毛片电影观看| av线在线观看网站| freevideosex欧美| 性色avwww在线观看| 91精品一卡2卡3卡4卡| 免费电影在线观看免费观看| 国产亚洲一区二区精品| av天堂中文字幕网| a级毛片免费高清观看在线播放| 国产91av在线免费观看| av网站免费在线观看视频| 性插视频无遮挡在线免费观看| 人人妻人人看人人澡| av免费在线看不卡| a级毛色黄片| 免费观看在线日韩| 高清av免费在线| 亚洲人成网站在线播| 边亲边吃奶的免费视频| 亚洲国产精品成人综合色| 大又大粗又爽又黄少妇毛片口| 欧美日韩视频精品一区| 国产黄色视频一区二区在线观看| 成人亚洲精品一区在线观看 | 精品人妻视频免费看| 亚洲国产精品成人久久小说| 日本欧美国产在线视频| 51国产日韩欧美| 国产老妇女一区| 国产高清有码在线观看视频| 一级毛片aaaaaa免费看小| 亚洲最大成人av| 亚洲精品456在线播放app| 边亲边吃奶的免费视频| 少妇猛男粗大的猛烈进出视频 | 国产成人免费观看mmmm| 超碰97精品在线观看| 亚洲欧美精品自产自拍| 久久6这里有精品| 午夜视频国产福利| 久久久久久伊人网av| a级毛色黄片| 久久久亚洲精品成人影院| 18禁在线无遮挡免费观看视频| 91精品一卡2卡3卡4卡| 777米奇影视久久| 欧美极品一区二区三区四区| 成人毛片60女人毛片免费| 国产高清有码在线观看视频| 午夜免费观看性视频| 亚洲怡红院男人天堂| 国产乱来视频区| 午夜福利网站1000一区二区三区| 天天躁日日操中文字幕| 中文资源天堂在线| 国产欧美另类精品又又久久亚洲欧美| videos熟女内射| 在线观看av片永久免费下载| videossex国产| 黄色配什么色好看| 一级二级三级毛片免费看| 国产日韩欧美在线精品| 久久久久精品久久久久真实原创| 狂野欧美激情性bbbbbb| 天堂中文最新版在线下载 | 性色av一级| 亚洲精品乱码久久久久久按摩| 国产在视频线精品| www.av在线官网国产| 美女xxoo啪啪120秒动态图| 成人欧美大片| av又黄又爽大尺度在线免费看| 久久久久久久大尺度免费视频| 中文字幕av成人在线电影| 亚洲va在线va天堂va国产| 九草在线视频观看| 少妇裸体淫交视频免费看高清| 赤兔流量卡办理| 亚洲内射少妇av| 一级爰片在线观看| 国产精品久久久久久精品电影| 国产欧美日韩一区二区三区在线 | 亚洲欧美日韩无卡精品| 国产亚洲精品久久久com| 波野结衣二区三区在线| 午夜亚洲福利在线播放| 国产又色又爽无遮挡免| 国产亚洲91精品色在线| 高清在线视频一区二区三区| 成人黄色视频免费在线看| 日本黄色片子视频| 国内少妇人妻偷人精品xxx网站| 99久国产av精品国产电影| 国产有黄有色有爽视频| 大片免费播放器 马上看| 久久鲁丝午夜福利片| 午夜免费鲁丝| 国产精品人妻久久久久久| 亚洲av福利一区| 国产成人精品一,二区| 日韩制服骚丝袜av| 别揉我奶头 嗯啊视频| 少妇丰满av| 国产精品蜜桃在线观看| 日本色播在线视频| 国产精品一二三区在线看| 国产精品爽爽va在线观看网站| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 欧美高清性xxxxhd video| 3wmmmm亚洲av在线观看| 晚上一个人看的免费电影| 久久国产乱子免费精品| 嘟嘟电影网在线观看| 2021天堂中文幕一二区在线观| 狂野欧美白嫩少妇大欣赏| 亚洲av欧美aⅴ国产| 男人和女人高潮做爰伦理| 在线天堂最新版资源| 99久久精品国产国产毛片| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 免费观看av网站的网址| 春色校园在线视频观看| 精品熟女少妇av免费看| 午夜福利视频1000在线观看| 精品熟女少妇av免费看| 日本欧美国产在线视频| 寂寞人妻少妇视频99o| 久久久色成人| 国内精品美女久久久久久| 2021少妇久久久久久久久久久| 夜夜看夜夜爽夜夜摸| av国产久精品久网站免费入址| 国产老妇女一区| 美女cb高潮喷水在线观看| 亚洲av日韩在线播放| 国产精品一区www在线观看| 天天躁夜夜躁狠狠久久av| 少妇人妻精品综合一区二区| 国产亚洲5aaaaa淫片| 女人被狂操c到高潮| 97人妻精品一区二区三区麻豆| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区| 日本三级黄在线观看| 亚洲国产精品专区欧美| 国产日韩欧美亚洲二区| 中国三级夫妇交换| 男人添女人高潮全过程视频| 高清av免费在线| 国产在线男女| 久久精品综合一区二区三区| 国产成人午夜福利电影在线观看| 久久久精品欧美日韩精品| 国产精品国产av在线观看| 久久综合国产亚洲精品| 人妻制服诱惑在线中文字幕| 综合色av麻豆| 老师上课跳d突然被开到最大视频| 国产伦精品一区二区三区视频9| av在线app专区| 中文精品一卡2卡3卡4更新| 人妻 亚洲 视频| 亚洲精品国产色婷婷电影| 十八禁网站网址无遮挡 | 国产成人精品福利久久| 大片免费播放器 马上看| 99视频精品全部免费 在线| 日韩免费高清中文字幕av| 午夜福利在线观看免费完整高清在| 男人爽女人下面视频在线观看| 欧美精品人与动牲交sv欧美| 51国产日韩欧美| 欧美日韩视频精品一区| 九九爱精品视频在线观看| 日日撸夜夜添| 欧美潮喷喷水| 18禁在线播放成人免费| 国产毛片a区久久久久| 好男人视频免费观看在线| 亚洲电影在线观看av| 日本欧美国产在线视频|