• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel functional proteins interact with midkine in hepatic cancer cells

    2012-07-07 01:00:45

    Hangzhou, China

    Novel functional proteins interact with midkine in hepatic cancer cells

    Qiang Yan, Hui-Lian Huang, Xing Yao, Jing Li, Li-Qin Li, Jing Zhong, Li-Shan Min, Li-Cheng Dai and Shu-Sen Zheng

    Hangzhou, China

    BACKGROUND: Midkine is a heparin-binding growth factor that promotes the proliferation, survival, migration and differentiation of various target cells. Midkine plays an important role in tumorigenesis and tumor progression, and is overexpressed in many human malignant tumors. Patients with high tumor midkine expression frequently have a worse prognosis than those with low expression. The present study was designed to investigate the interaction network of midkine in hepatic cancer cells, and to elucidate its role in hepatocellular carcinoma.

    METHODS: DNA encoding full-length midkine was cloned into pDBLeu vector to serve as bait in yeast two-hybrid screening to identify interacting proteins. Candidate proteins were examined on SC-Leu-Trp-His+3-AT (20 mmol/L) plates and assayed for X-gal activity, then sequenced and classified according to the GenBank. Finally, identified proteins were expressed by thein vitroexpression system pCMVTnT, and protein interactions were confirmed by co-immunoprecipitation.

    RESULTS: Using the yeast two-hybrid system, we found 6 proteins that interacted with midkine: NK-kappa-B inhibitor alpha (I-κ-B-α), Dvl-binding protein naked cuticle 2, granulin, latent active TGF-β binding protein 3, latent active TGF-β binding protein 4, and phospholipid scramblase 1.In vitroco-immunoprecipitation demonstrated that all identified proteins directly interacted with midkine.

    CONCLUSION: The identification of midkine-interacting proteins in hepatic cancer cells indicates that midkine is a multifunctional factor that may participate in cell migration, differentiation, and proliferation, and is also associated with the multicellular response feedback during the development of hepatocellular carcinoma.

    (Hepatobiliary Pancreat Dis Int 2012;11:272-277)

    midkine; yeast two-hybrid; interaction; hepatic cancer cell

    Introduction

    Midkine is a member of the heparin-binding growth factor family and has been identified as the product of a retinoic acid-responsive gene.[1]It is a cytokine that is highly expressed in the mid-gestation period during embryogenesis.[2]Midkine enhances the proliferation, differentiation, survival and migration of various target cells,[3,4]and is involved in cancer development, inflammation, reproduction, and wound repair.[5,6]It is overexpressed in many human malignant tumors including hepatocellular carcinoma (HCC),[7]gastric carcinoma,[8]colon carcinoma,[9]lung carcinoma,[10]urinary bladder carcinoma,[11]prostate carcinoma,[12]breast carcinoma,[13]ovarian carcinoma,[14]neuroblastoma[15]and astrocytoma.[16]It acts as an angiogenic, fibrinolytic, and anti-apoptotic factor in carcinoma cell lines.[17]Patients with high midkine tumor expression frequently have a worse prognosis than those with low expression.

    Midkine is overexpressed in HCC and can promote HCC cell proliferation and invasion. It is also involved in the angiogenesis and tumorigenesis of HCC,[18]but the cellular signaling receptors for midkine have not yet been identified and characterized in hepatic cancer cells. Study of the molecular basis of midkine signal transduction pathways in hepatic cancer cells would further enhancethe understanding of their roles in the development and growth of cancer. To date, receptor-type protein tyrosine phosphatase ζ (PTPζ),[19]anaplastic lymphoma kinase (ALK),[20]syndecans,[21]low-density-lipoprotein (LDL) receptor-related protein,[22]glypican-2,[23]PG-M/ versican,[24]neuroglycan C,[25]α4β1-integrin and α6β1-integrin[26]have been proposed to have a strong affinity for midkine, and may function as midkine receptors. Therefore, in this study we investigated the protein interactions with midkine in hepatic cancer cells by screening with the yeast two-hybrid system.

    Methods

    Plasmid constructs

    The yeast expression vectors pDBLeu and pEXPAD502 (both from Invitrogen, Carlsbad, CA) are fusion vectors for the linkage of proteins to the GAL4 DNA binding domain and the GAL4 transactivation domain, respectively. Full-length midkine was amplified by PCR from the cDNA of hepatic cancer cells and cloned inframe into the Sal I/EcoR I sites of pDBLeu (pDBLeu-MK) to serve as bait in the screening assay.

    Screening interaction proteins using the yeast two-hybrid system

    Plasmid pDBLeu-midkine was used as the bait in the yeast two-hybrid system to screen a cDNA library from human hepatic cancer cells (Invitrogen) using the ProquestTMtwo-hybrid system, according to the manufacturer's protocol (Invitrogen). Briefly, the cDNA library was inserted into pEXP-AD502 vector (pEXP-cDNA), and was co-introduced into the MAV203 yeast strain along with pDBLeu-midkine. Yeast cells containing pDBLeu-midkine and the pEXP-cDNA library were spread onto SC-Leu-Trp-His (SC-LTH)+3-AT (20 mmol/L) plates. After culture for 48-72 hours at 30 ℃, positive colonies were acquired. Replicate plates were obtained by gently pressing the autoclaved filter discs onto SC-LTH plates to transfer clones to yeast extract peptone adenine sulfate dextros (YPAD) plates and selection plates, SC-Leu-Trp plates and SC-Leu-Trp-Ura plates. The former were incubated for X-gal assays to screen positive clones, and the latter were incubated for further screening through absence of uracil. Meanwhile, parallel controls prepared from fresh clones of 5 yeast control strains from glycerol stocks were plated onto SCLeu-Trp plates.

    Screening and validation of positive clones

    Individual clones were chosen and inoculated into SC-Leu-Trp culture medium. After culture at 30 ℃ for 24 hours, yeast plasmids that contained pDBLeu-midkine and low copies of pEXP-candidate protein were prepared by alkali lysis. Yeast plasmids were electroporated intoE. coliDH5α cells and incubated at 37 ℃ on luria broth (LB) plates (Amp+) for 12 hours. Due to the kanamycin resistance of pDBLeu vector and the ampicillin resistance of pEXP-AD502 vector, pEXP-X could be selected using LB plates (Amp+), resulting in high copies of pEXP-candidate protein plasmid. Then, the candidate protein-coding plasmids and pDBLeu were co-introduced into yeast cells to identify self-activity and to confirm the activity.

    DNA sequencing

    Candidate protein-coding plasmids were digested by Sal I and Nco I, and the insertion fragments were recorded. Positive colonies were sequenced by Invitrogen, and the genes were classified according to sequence homology analysis in the GenBank (http://blast.ncbi. nlm.nih.gov/).

    Reverse identification using the yeast two-hybrid system

    Midkine was cloned into the pEXP-AD502 vector, and the cDNA sequences of the potential interacting proteins were cloned into pDBLeu. Yeast cells were cointroduced with both pEXP-midkine and pDBLeu-X, thus identifying the interaction between midkine and the potential protein identified (reverse identification). The self-activity of the system was also identified.

    Interaction identification using thein vitro protein expression system

    The midkine gene was cloned into pET28a+ vector and fused with His-tag, while the candidate interacting protein genes were cloned into thein vitroprotein expression vector pCMVTnT (Promega). Proteins were expressed in the TnTin vitroprotein expression system and stained by 35S methionine. Coimmunoprecipitation analysis was performed according to the protocol for pCMVTnTTMvector (Promega). Briefly, solutions containing midkine protein and the candidate proteins were slowly mixed by rolling in binding buffer for 1 hour at 4 ℃. Ni2+-NTA beads were added and slowly mixed by rolling for 1 hour at 4 ℃, then centrifuged at 7000 rpm for 20 seconds. The supernatant was discarded, the residual liquid was thoroughly removed, and then the beads were carefully aspirated off. The complexes were suspended in 2× sample buffer (60 mmol/L Tris-HCl pH 6.8, 3% sodium dodecyl sulfate (SDS), 10% glycerol, 0.05% bovinefetal brain (BFB), 10% β-mercaptoethanol (β-Me), and boiled in a water bath for 5 minutes, then separated by SDS-PAGE followed by transfer onto polyvinylidene fluoride (PVDF) membranes. Anti-progranulin antibody (R&D Systems, Inc., Minneapolis, MN), anti-IKBA antibody (Abcam, Cambridge, MA), anti-PLSCR1 antibody (Abcam), anti-NKD2 antibody (Abcam), and anti-mouse IgG HRP antibody (R&D Systems) were used for immunoblotting. Proteins were detected by enhanced chemiluminescence.

    Results

    Yeast two-hybrid screening identification of midkine-interacting proteins

    The midkine gene was cloned into the pDBLeu vector to form pDBLeu-midkine, and then assayed by X-gal to demonstrate that it lacked self-regulating activity in the yeast two-hybrid system. pDBLeu-midkine and the pEXP-cDNA library were co-introduced into competent yeast cells, then cultured on SC-LTH+3-AT (20 mmol/L) plates (Leu-, Trp-, His-) for 48-72 hours at 30 ℃, resulting in 56 positive clones. These were selected and re-selected using X-gal to obtain positive clones (Table 1). Of 44 positive clones, 22 displayed high, 8 moderate, and 14 weak X-gal activity. Thirty X-gal-positive highly and moderately active clones were cultured overnight in LB medium. Yeast plasmids were prepared and introducedintoE. coli. The amplified plasmid was then digested by Sal I and Nco I to identify the inserted fragment (Fig. 1), and the plasmids were sequenced. The coding proteins were identified by homology alignment in the GenBank (Table 2). The self-regulating activity of different coding protein colonies were identified and re-identified to exclude false-positive clones (Fig. 2).

    Table 1. X-gal activity of positive clones selected from SC-LTH+3-AT (20 mmol/L) plates (Leu-, Trp-, and His-)

    Table 2. Plasmid cloning number, sequence number and BLAST results

    Fig. 1. Positive clones with X-gal activity were cultured overnight, and the plasmids were prepared and then introduced intoE. coli.The plasmids were digested by Sal I and Nco I to acquire the insertion fragments.

    Fig. 2. The left panel shows the self-activity of proteins interacting with midkine. A, B, C, D and E are comparison bacteria, with increasing blue intensity representing stronger activity. The results showed that the 6 interacting proteins had no self-regulating activity. The right panel shows confirmation of the activity of midkine-interacting proteins. The result showed that all 6 identified proteins have X-gal activity, and all were identified to interact with midkine.

    After screening and identification from the human hepatic cDNA library, we found that NK-kappa-B inhibitor alpha (I-κ-B-α, IKBA), Dvl-binding protein naked cuticle 2 (NKD2), granulin (PGRN), latent active TGF-β binding protein 3 (LTBP3), LTBP4, and PLSCR1 interacted with midkine.

    Protein interaction verification by co-immunoprecipitation

    Fig. 3. Co-immunoprecipitation analysis was performed to confirm the individual interactions between midkine and IKBA, NKD2, PLSCR1 and PGRN. Empty vector and protein X served as the negative and positive controls, respectively.

    In order to confirm interactions with midkine, the proteins acquired from yeast two-hybrid screening were tested byin vitroco-immunoprecipitation. The full-length cDNA of genes coding midkine-interacting proteins were individually cloned into the pCMVTnT vector (Promega). Protein X was labeled by [35S]. Nickel beads specifically bound with midkine protein fused with His-tag were then used to co-precipitate protein X. Empty pCMVTnT vector served as a control group. Midkine individually interacted with IKBA, NKD2, PLSCR1 and PGRN (Fig. 3).

    Discussion

    HCC is one of the most malignant diseases in the world with a high incidence and mortality.[27]No satisfactory treatment is currently available for patients with HCC, and the outcome of chemotherapy has been extremely disappointing. Recent insights into the biology of HCC suggest that certain pathways are likely to play essential roles in its development, such as Wnt-β-catenin,[28]TGF-β,[29]EGF[30]and PI3 kinase/Akt signaling.[31]But how these protein cascades relate to HCC is not clear, and any molecular alterations are likely to have important effects on signaling.

    Our previous study demonstrated that midkine is overexpressed in HCC.[32]Antisense oligonucleotide (ASODN) targeting midkine has been reported to suppress the growth of tumors in nude mice.[33]In addition, siRNA or ASODN that targets midkine inhibits neointimal hyperplasia formation[34]and renal injury after ischemia.[35]However, the cellular signaling receptors for midkine in hepatic cancer cells urgently need to be identified and characterized.

    Known cellular signaling receptors of midkine include PTPζ,[19]ALK,[20]syndecans,[21]LDL receptorrelated protein,[22]glypican-2,[23]PG-M/versican,[24]neuroglycan C,[25]α4β1-integrin and α6β1-integrin.[26]Among these, PTPζ, LDL receptor-related protein, glypican-2, PG-M/versican and neuroglycan C are involved in neuronal systems, ALK is involved in tumorigenesis,[36]α4β1-integrin and α6β1-integrin are involved both in embryonic neurons and osteoblastlike cells, and syndecans are involved in epithelialmesenchymal interactions during fetal development and organogenesis.[21]The six proteins identified in our experiment by the yeast two-hybrid screening of a hepatic cancer cell library, IKBA, NKD2, PLSCR1, PGRN, LTBP3 and LTBP4, might be involved in important intracellular signaling pathways as well as functioning as extracellular matrix components. IKBA inhibits NF-kappaB[37]and plays a role in cell migration, the immune response, inflammation primary stage reaction, apoptosis, differentiation, growth and other activities.[38]NKD2 is a dishevelled binding protein, and is a negative regulatory factor in Wnt-β-catenin-TGF signaling.[39]PLSCR1 is a multi-palmitoyl, Ca2+-binding endothelial membrane protein. It participates in cell proliferation, maturation, and apoptosis kinase (including c-Abl, c-Src, and PKC) phosphorylation.[40]PGRN is a newly-discovered growth factor, which activates PI3K, AKT/protein kinase B and p70S6 kinase in the ERK pathway.[41]Thus, it plays important roles in accelerating cell proliferation and migration.[42]Finally, LTBP is an extracellular matrix protein, and is involved in TGF-β signaling, with functions such as cell migration, extracellular matrix degradation and cell cycle regulation.[43]

    In conclusion, the proteins identified in our study participate in cell migration, differentiation, proliferation, apoptosis, multicellular response feedback and cell cycle regulation. They have important biological functions and are closely associated with tumorigenesis as well as multiple signaling pathways, including the Wnt-β-catenin, TGF-β, EGF and PI3 kinase/Akt cascades, and are associated with HCC development possibly through complex mechanisms. From our study, the PGRN and midkine interaction could promote the proliferation and invasion of hepatic cancer cells, and affect tumor angiogenesis (data not shown). And the role of other protein interactions with midkine during HCC development will also be investigated in our future research.

    The identification of midkine-interacting proteins indicates that midkine is a multifunctional factor, and unveils its role in HCC tumorigenesis and progression. The future challenges are to demonstrate and characterize the interactions and regulatory mechanisms of midkine with these functional proteins, from which novel therapeutic strategies for HCC could be developed.

    Contributors: YQ and HHL wrote the main body of the article under the supervision of DLC and ZSS. YX provided advice on medical aspects. All authors contributed to the design and interpretation of the study and to further drafts. DLC and ZSS are the guarantors.

    Funding: This study was supported by grants from the National Natural Science Foundation of China (30772534) and the Natural Science Foundation of Huzhou (2010YS05).

    Ethical approval: Not needed.

    Competing interest: No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    1 Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer. Cancer Lett 2004;204:127-143.

    2 Muramatsu T. Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 2002;132:359-371.

    3 Ota K, Fujimori H, Ueda M, Shiniriki S, Kudo M, Jono H, et al. Midkine as a prognostic biomarker in oral squamous cell carcinoma. Br J Cancer 2008;99:655-662.

    4 van der Horst EH, Frank BT, Chinn L, Coxon A, Li S, Polesso F, et al. The growth factor Midkine antagonizes VEGF signalingin vitroandin vivo. Neoplasia 2008;10:340-347.

    5 Kerzerho J, Adotevi O, Castelli FA, Dosset M, Bernardeau K, Szely N, et al. The angiogenic growth factor and biomarker midkine is a tumor-shared antigen. J Immunol 2010;185:418-423.

    6 Webb TR, Slavish J, George RE, Look AT, Xue L, Jiang Q, et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther 2009;9:331-356.

    7 Koide N, Hada H, Shinji T, Ujike K, Hirasaki S, Yumoto Y, et al. Expression of the midkine gene in human hepatocellular carcinomas. Hepatogastroenterology 1999;46:3189-3196.

    8 Rawnaq T, Kunkel M, Bachmann K, Simon R, Zander H, Brandl S, et al. Serum midkine correlates with tumor progression and imatinib response in gastrointestinal stromal tumors. Ann Surg Oncol 2011;18:559-565.

    9 Ye C, Qi M, Fan QW, Ito K, Akiyama S, Kasai Y, et al. Expression of midkine in the early stage of carcinogenesis in human colorectal cancer. Br J Cancer 1999;79:179-184.

    10 Sone M, Muramatsu H, Muramatsu T, Nakashima T. Morphological observation of the stria vascularis in midkine and pleiotrophin knockout mice. Auris Nasus Larynx 2011; 38:41-45.

    11 Terao S, Shirakawa T, Kubo S, Bishunu A, Lee SJ, Goda K, et al. Midkine promoter-based conditionally replicative adenovirus for targeting midkine-expressing human bladder cancer model. Urology 2007;70:1009-1013.

    12 Konishi N, Nakamura M, Nakaoka S, Hiasa Y, Cho M, Uemura H, et al. Immunohistochemical analysis of midkine expression in human prostate carcinoma. Oncology 1999;57: 253-257.

    13 Perez-Pinera P, Garcia-Suarez O, Menendez-Rodriguez P, Mortimer J, Chang Y, Astudillo A, et al. The receptor protein tyrosine phosphatase (RPTP)beta/zeta is expressed in different subtypes of human breast cancer. Biochem Biophys Res Commun 2007;362:5-10.

    14 Nakanishi T, Kadomatsu K, Okamoto T, Tomoda Y,Muramatsu T. Expression of midkine and pleiotropin in ovarian tumors. Obstet Gynecol 1997;90:285-290.

    15 Nakagawara A, Milbrandt J, Muramatsu T, Deuel TF, Zhao H, Cnaan A, et al. Differential expression of pleiotrophin and midkine in advanced neuroblastomas. Cancer Res 1995;55: 1792-1797.

    16 Mishima K, Asai A, Kadomatsu K, Ino Y, Nomura K, Narita Y, et al. Increased expression of midkine during the progression of human astrocytomas. Neurosci Lett 1997;233:29-32.

    17 Qi M, Ikematsu S, Ichihara-Tanaka K, Sakuma S, Muramatsu T, Kadomatsu K. Midkine rescues Wilms' tumor cells from cisplatin-induced apoptosis: regulation of Bcl-2 expression by Midkine. J Biochem 2000;127:269-277.

    18 Muramatsu T. Midkine: a promising molecule for drug development to treat diseases of the central nervous system. Curr Pharm Des 2011;17:410-423.

    19 Maeda N, Ichihara-Tanaka K, Kimura T, Kadomatsu K, Muramatsu T, Noda M. A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta. J Biol Chem 1999;274:12474-12479.

    20 Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT, et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 2002;277:35990-35998.

    21 Mitsiadis TA, Salmivirta M, Muramatsu T, Muramatsu H, Rauvala H, Lehtonen E, et al. Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 1995;121:37-51.

    22 Muramatsu H, Zou K, Sakaguchi N, Ikematsu S, Sakuma S, Muramatsu T. LDL receptor-related protein as a component of the midkine receptor. Biochem Biophys Res Commun 2000;270:936-941.

    23 Kurosawa N, Chen GY, Kadomatsu K, Ikematsu S, Sakuma S, Muramatsu T. Glypican-2 binds to midkine: the role of glypican-2 in neuronal cell adhesion and neurite outgrowth. Glycoconj J 2001;18:499-507.

    24 Zou K, Muramatsu H, Ikematsu S, Sakuma S, Salama RH, Shinomura T, et al. A heparin-binding growth factor, midkine, binds to a chondroitin sulfate proteoglycan, PG-M/ versican. Eur J Biochem 2000;267:4046-4053.

    25 Ichihara-Tanaka K, Oohira A, Rumsby M, Muramatsu T. Neuroglycan C is a novel midkine receptor involved in process elongation of oligodendroglial precursor-like cells. J Biol Chem 2006;281:30857-30864.

    26 Muramatsu H, Zou P, Suzuki H, Oda Y, Chen GY, Sakaguchi N, et al. alpha4beta1- and alpha6beta1-integrins are functional receptors for midkine, a heparin-binding growth factor. J Cell Sci 2004;117:5405-5415.

    27 Alves RC, Alves D, Guz B, Matos C, Viana M, Harriz M, et al. Advanced hepatocellular carcinoma. Review of targeted molecular drugs. Ann Hepatol 2011;10:21-27.

    28 Wang XH, Meng XW, Sun X, Liu BR, Han MZ, DU YJ, et al. Wnt/β-catenin signaling regulates MAPK and Akt1 expression and growth of hepatocellular carcinoma cells. Neoplasma 2011;58:239-244.

    29 Baek HJ, Pishvaian MJ, Tang Y, Kim TH, Yang S, Zouhairi ME, et al. Transforming growth factor-β adaptor, β2-spectrin, modulates cyclin dependent kinase 4 to reduce development of hepatocellular cancer. Hepatology 2011;53:1676-1684.

    30 Ueda S, Basaki Y, Yoshie M, Ogawa K, Sakisaka S, Kuwano M, et al. PTEN/Akt signaling through epidermal growth factor receptor is prerequisite for angiogenesis by hepatocellular carcinoma cells that is susceptible to inhibition by gefitinib. Cancer Res 2006;66:5346-5353.

    31 Gedaly R, Angulo P, Hundley J, Daily MF, Chen C, Koch A, et al. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/ mTOR pathways. Anticancer Res 2010;30:4951-4958.

    32 Dai LC, Wang X, Yao X, Lu YL, Ping JL, He JF. Antisense oligonucleotide targeting midkine suppressesin vivoangiogenesis. World J Gastroenterol 2007;13:1208-1213.

    33 Dai LC, Wang X, Yao X, Min LS, Ping JL, He JF. Antisense oligonucleotides targeting midkine inhibit tumor growth in an in situ human hepatocellular carcinoma model. Acta Pharmacol Sin 2007;28:453-458.

    34 Takei Y, Kadomatsu K, Goto T, Muramatsu T. Combinational antitumor effect of siRNA against midkine and paclitaxel on growth of human prostate cancer xenografts. Cancer 2006; 107:864-873.

    35 Katsuno M, Adachi H, Minamiyama M, Waza M, Tokui K, Banno H, et al. Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. J Neurosci 2006;26:12106-12117.

    36 Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, et al. Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 2010;207:85-100.

    37 Ihekwaba AE, Broomhead DS, Grimley RL, Benson N, Kell DB. Sensitivity analysis of parameters controlling oscillatory signalling in the NF-kappaB pathway: the roles of IKK and IkappaBalpha. Syst Biol (Stevenage) 2004;1:93-103.

    38 Yang X, Lu H, Yan B, Romano RA, Bian Y, Friedman J, et al. ΔNp63 versatilely regulates a Broad NF-κB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res 2011;71:3688-3700.

    39 Zhang S, Cagatay T, Amanai M, Zhang M, Kline J, Castrillon DH, et al. Viable mice with compound mutations in the Wnt/Dvl pathway antagonists nkd1 and nkd2. Mol Cell Biol 2007;27:4454-4464.

    40 Nanjundan M, Sun J, Zhao J, Zhou Q, Sims PJ, Wiedmer T. Plasma membrane phospholipid scramblase 1 promotes EGF-dependent activation of c-Src through the epidermal growth factor receptor. J Biol Chem 2003;278:37413-37418.

    41 Monami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV, et al. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res 2006;66:7103-7110.

    42 Vehvil?inen P, Koli K, Myll?rniemi M, Lindholm P, Soini Y, Salmenkivi K, et al. Latent TGF-β binding proteins (LTBPs) 1 and 3 differentially regulate transforming growth factor-β activity in malignant mesothelioma. Hum Pathol 2011;42: 269-278.

    43 Kantola AK, Ryyn?nen MJ, Lhota F, Keski-Oja J, Koli K. Independent regulation of short and long forms of latent TGF-beta binding protein (LTBP)-4 in cultured fibroblasts and human tissues. J Cell Physiol 2010;223:727-736.

    October 18, 2011

    Accepted after revision March 26, 2012

    Author Affiliations: Department of Hepatobiliary and Pancreatic Surgery, Huzhou Central Hospital (Yan Q and Yao X); Huzhou Key Laboratory of Molecular Medicine, Affiliated Central Hospital of Huzhou Teachers College (Huang HL, Li J, Li LQ, Zhong J, Min LS and Dai LC), Huzhou 313000, China; Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China (Yan Q and Zheng SS)

    Shu-Sen Zheng, MD, PhD, FACS, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China (Tel: 86-571-87236601; Fax: 86-571-87236601; Email: shusenzheng@zju.edu.cn); Li-Cheng Dai, Professor, Huzhou Key Laboratory of Molecular Medicine, Affiliated Central Hospital of Huzhou Teachers College, Huzhou 313000, China (Tel/Fax: 86-572-2033020; Email: dlc@hzhospital.com)

    ? 2012, Hepatobiliary Pancreat Dis Int. All rights reserved.

    10.1016/S1499-3872(12)60160-X

    久久久国产成人免费| 亚洲精品美女久久av网站| 久久国产精品影院| 欧美精品啪啪一区二区三区| 岛国在线观看网站| 国产成人精品久久二区二区免费| 一级毛片高清免费大全| 91老司机精品| 中文字幕久久专区| 最近最新中文字幕大全电影3| 久久伊人香网站| 精品国产乱子伦一区二区三区| 午夜久久久久精精品| 免费在线观看日本一区| 啦啦啦韩国在线观看视频| 国产探花在线观看一区二区| 丁香六月欧美| 99久久99久久久精品蜜桃| 一区二区三区国产精品乱码| 九色国产91popny在线| 国产99久久九九免费精品| 国产熟女xx| 老司机深夜福利视频在线观看| 欧美 亚洲 国产 日韩一| 波多野结衣巨乳人妻| 亚洲国产欧美网| 亚洲专区字幕在线| 亚洲国产欧美网| 757午夜福利合集在线观看| 欧美日韩精品网址| 午夜两性在线视频| 亚洲中文字幕日韩| 国产午夜福利久久久久久| 国产爱豆传媒在线观看 | 国产三级黄色录像| 一个人免费在线观看的高清视频| 欧美黑人欧美精品刺激| 日韩欧美三级三区| 亚洲九九香蕉| 黄色视频,在线免费观看| 在线观看美女被高潮喷水网站 | 天天添夜夜摸| 搡老妇女老女人老熟妇| 人成视频在线观看免费观看| a在线观看视频网站| 亚洲精品久久国产高清桃花| 成人手机av| 最近在线观看免费完整版| 亚洲人成电影免费在线| 美女 人体艺术 gogo| 很黄的视频免费| 午夜成年电影在线免费观看| 国产成人av激情在线播放| 一级毛片高清免费大全| 久久精品亚洲精品国产色婷小说| 少妇熟女aⅴ在线视频| 日韩精品中文字幕看吧| 一边摸一边做爽爽视频免费| 午夜福利高清视频| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品sss在线观看| 丁香欧美五月| 99久久精品热视频| 国产精品,欧美在线| 亚洲av电影在线进入| 亚洲av第一区精品v没综合| 午夜精品久久久久久毛片777| 97超级碰碰碰精品色视频在线观看| 国产高清videossex| 在线播放国产精品三级| 成人精品一区二区免费| 欧美日韩国产亚洲二区| 欧美乱码精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 全区人妻精品视频| 成人国产一区最新在线观看| 我的老师免费观看完整版| 欧美又色又爽又黄视频| 亚洲美女视频黄频| 亚洲熟妇熟女久久| 国产黄色小视频在线观看| 久久性视频一级片| 两人在一起打扑克的视频| а√天堂www在线а√下载| а√天堂www在线а√下载| 成人av在线播放网站| 91麻豆av在线| 国产激情欧美一区二区| 亚洲午夜精品一区,二区,三区| 在线观看www视频免费| 搡老岳熟女国产| 日韩 欧美 亚洲 中文字幕| 国产精品日韩av在线免费观看| 最近在线观看免费完整版| 国产v大片淫在线免费观看| 一级毛片精品| 欧美不卡视频在线免费观看 | 国产精品 国内视频| 欧美zozozo另类| 麻豆av在线久日| 99精品久久久久人妻精品| 丰满人妻熟妇乱又伦精品不卡| 成人精品一区二区免费| 999久久久精品免费观看国产| 日本 av在线| 一二三四社区在线视频社区8| 黄频高清免费视频| 在线观看免费日韩欧美大片| 欧美一级毛片孕妇| 欧美一级a爱片免费观看看 | 听说在线观看完整版免费高清| 夜夜爽天天搞| 无人区码免费观看不卡| 久久午夜综合久久蜜桃| 久久精品国产综合久久久| 在线a可以看的网站| 18禁观看日本| 他把我摸到了高潮在线观看| 叶爱在线成人免费视频播放| 亚洲欧美一区二区三区黑人| 黄色片一级片一级黄色片| 欧美极品一区二区三区四区| 观看免费一级毛片| 国内精品久久久久精免费| 一级黄色大片毛片| 少妇人妻一区二区三区视频| 国产黄a三级三级三级人| 久久精品国产亚洲av高清一级| 久99久视频精品免费| 日韩欧美国产在线观看| 久久久久久久久中文| 国产99白浆流出| 亚洲精品久久成人aⅴ小说| 黄色视频不卡| 老鸭窝网址在线观看| 国产成人av教育| 特大巨黑吊av在线直播| 黄色毛片三级朝国网站| 午夜两性在线视频| 巨乳人妻的诱惑在线观看| 五月玫瑰六月丁香| 我要搜黄色片| 久久香蕉激情| 中文字幕久久专区| 激情在线观看视频在线高清| 精品国产亚洲在线| 日本 av在线| 亚洲国产欧洲综合997久久,| 嫩草影院精品99| 午夜福利视频1000在线观看| 久久精品国产99精品国产亚洲性色| 日韩大尺度精品在线看网址| av福利片在线观看| 97人妻精品一区二区三区麻豆| 免费在线观看完整版高清| 欧美zozozo另类| 亚洲欧美激情综合另类| 欧美久久黑人一区二区| 曰老女人黄片| 女人高潮潮喷娇喘18禁视频| 亚洲熟妇熟女久久| 一边摸一边抽搐一进一小说| 国产单亲对白刺激| 怎么达到女性高潮| 日韩中文字幕欧美一区二区| 久久人人精品亚洲av| 欧美黑人欧美精品刺激| av超薄肉色丝袜交足视频| 久久精品国产99精品国产亚洲性色| 中文字幕高清在线视频| 在线观看免费视频日本深夜| 午夜福利欧美成人| 亚洲欧美一区二区三区黑人| 国产成人欧美在线观看| 中文字幕高清在线视频| 色哟哟哟哟哟哟| 久久精品夜夜夜夜夜久久蜜豆 | 久久久精品国产亚洲av高清涩受| 日本一本二区三区精品| 国产黄片美女视频| 国产野战对白在线观看| 99在线人妻在线中文字幕| 18禁裸乳无遮挡免费网站照片| 日韩欧美在线二视频| 国产免费男女视频| 精品人妻1区二区| 日本精品一区二区三区蜜桃| 两个人视频免费观看高清| 亚洲欧美日韩高清专用| 精品久久久久久久久久久久久| 免费在线观看视频国产中文字幕亚洲| 麻豆久久精品国产亚洲av| 国产精品久久久久久精品电影| 日韩三级视频一区二区三区| 一边摸一边抽搐一进一小说| 久久精品国产99精品国产亚洲性色| 精品高清国产在线一区| 国语自产精品视频在线第100页| 国产成人系列免费观看| 国产精品爽爽va在线观看网站| 欧美人与性动交α欧美精品济南到| 亚洲国产中文字幕在线视频| 久久精品亚洲精品国产色婷小说| 精品人妻1区二区| 久久香蕉国产精品| 99在线视频只有这里精品首页| 两个人看的免费小视频| 亚洲欧美日韩东京热| 午夜视频精品福利| 国产精品免费一区二区三区在线| 欧美日韩中文字幕国产精品一区二区三区| 亚洲黑人精品在线| 国产视频内射| 午夜久久久久精精品| 91九色精品人成在线观看| 日本 av在线| 搡老妇女老女人老熟妇| 久久久久性生活片| 脱女人内裤的视频| 久久久久久免费高清国产稀缺| 国产真人三级小视频在线观看| 99国产综合亚洲精品| aaaaa片日本免费| 欧美最黄视频在线播放免费| 一二三四在线观看免费中文在| 午夜福利18| 亚洲国产欧美人成| 成年人黄色毛片网站| 在线播放国产精品三级| 国产精品乱码一区二三区的特点| 日韩欧美精品v在线| 亚洲av美国av| 亚洲五月婷婷丁香| 亚洲欧美精品综合久久99| 亚洲国产欧美网| 国产99白浆流出| 亚洲18禁久久av| 亚洲欧美日韩高清专用| 制服人妻中文乱码| 国产精品1区2区在线观看.| 中文字幕人成人乱码亚洲影| 免费观看人在逋| 在线观看免费午夜福利视频| 一区二区三区国产精品乱码| 日韩精品青青久久久久久| 在线永久观看黄色视频| 亚洲av熟女| aaaaa片日本免费| 欧美日本视频| 在线观看www视频免费| 欧美一区二区精品小视频在线| 亚洲av成人不卡在线观看播放网| 国产欧美日韩精品亚洲av| 亚洲五月天丁香| 可以免费在线观看a视频的电影网站| 在线观看舔阴道视频| 老熟妇仑乱视频hdxx| 欧美黑人欧美精品刺激| 久久天躁狠狠躁夜夜2o2o| 性欧美人与动物交配| 久久精品国产综合久久久| 国产男靠女视频免费网站| 中文字幕熟女人妻在线| 黄色片一级片一级黄色片| 一区二区三区国产精品乱码| 999久久久国产精品视频| www.999成人在线观看| 91国产中文字幕| 日日夜夜操网爽| 久热爱精品视频在线9| 在线永久观看黄色视频| 亚洲五月天丁香| 久久伊人香网站| 国产精品乱码一区二三区的特点| 精品久久久久久,| 黄色视频,在线免费观看| 国产区一区二久久| 9191精品国产免费久久| 波多野结衣高清无吗| 亚洲无线在线观看| 国产av又大| 看免费av毛片| 国产高清视频在线播放一区| 国产精品久久久久久精品电影| 十八禁人妻一区二区| 国产av一区在线观看免费| 熟女电影av网| 亚洲,欧美精品.| 毛片女人毛片| 看免费av毛片| 神马国产精品三级电影在线观看 | 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费| 国产黄a三级三级三级人| 99热6这里只有精品| 亚洲成av人片在线播放无| 国产av在哪里看| 久久久精品欧美日韩精品| 久久草成人影院| 又黄又爽又免费观看的视频| 日本 av在线| 1024手机看黄色片| 麻豆一二三区av精品| 男女午夜视频在线观看| 在线观看美女被高潮喷水网站 | 久久草成人影院| 亚洲专区国产一区二区| 精品福利观看| 国产99白浆流出| 久久久久久大精品| 性欧美人与动物交配| 白带黄色成豆腐渣| 1024香蕉在线观看| 精品欧美国产一区二区三| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 少妇裸体淫交视频免费看高清 | 成人永久免费在线观看视频| 色噜噜av男人的天堂激情| 国模一区二区三区四区视频 | 国产久久久一区二区三区| 亚洲熟女毛片儿| 变态另类丝袜制服| 99久久精品国产亚洲精品| 国产精品国产高清国产av| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩高清专用| 欧美日本视频| 在线永久观看黄色视频| 久久九九热精品免费| 中文字幕高清在线视频| 日韩成人在线观看一区二区三区| 久久亚洲真实| 中文字幕久久专区| 日韩成人在线观看一区二区三区| 午夜免费激情av| 99久久精品国产亚洲精品| 人妻丰满熟妇av一区二区三区| 亚洲美女黄片视频| 中亚洲国语对白在线视频| 免费一级毛片在线播放高清视频| 最好的美女福利视频网| 俺也久久电影网| 中文字幕高清在线视频| 国产高清激情床上av| 久久香蕉激情| 亚洲国产中文字幕在线视频| 欧美精品亚洲一区二区| АⅤ资源中文在线天堂| 欧美中文日本在线观看视频| 欧美绝顶高潮抽搐喷水| 国产精品一区二区三区四区免费观看 | 国产精品 国内视频| 窝窝影院91人妻| 97人妻精品一区二区三区麻豆| 日韩高清综合在线| 在线国产一区二区在线| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放 | 国内揄拍国产精品人妻在线| 免费搜索国产男女视频| 免费观看精品视频网站| 啦啦啦免费观看视频1| 真人一进一出gif抽搐免费| 熟妇人妻久久中文字幕3abv| 宅男免费午夜| 久久久久性生活片| 国产精品一区二区精品视频观看| 男女做爰动态图高潮gif福利片| 一本一本综合久久| 91九色精品人成在线观看| 一进一出好大好爽视频| 精品无人区乱码1区二区| 亚洲自偷自拍图片 自拍| 亚洲精品一区av在线观看| av在线天堂中文字幕| 亚洲国产中文字幕在线视频| 亚洲成人久久性| 99在线人妻在线中文字幕| 91麻豆av在线| 亚洲精品中文字幕在线视频| 免费搜索国产男女视频| 日日夜夜操网爽| 一进一出抽搐gif免费好疼| 亚洲七黄色美女视频| 国产探花在线观看一区二区| 色噜噜av男人的天堂激情| 操出白浆在线播放| 国产乱人伦免费视频| 一级二级三级毛片免费看| 亚洲图色成人| 三级国产精品欧美在线观看| a级毛片a级免费在线| 免费黄网站久久成人精品| 悠悠久久av| 美女xxoo啪啪120秒动态图| 高清在线视频一区二区三区 | 欧美日本视频| 99久久精品热视频| 中文字幕精品亚洲无线码一区| 亚洲av二区三区四区| 欧美性猛交╳xxx乱大交人| 国产亚洲av片在线观看秒播厂 | 在现免费观看毛片| kizo精华| 我的女老师完整版在线观看| 成年免费大片在线观看| 亚洲av二区三区四区| 成人漫画全彩无遮挡| 国产色爽女视频免费观看| eeuss影院久久| 可以在线观看的亚洲视频| 国产熟女欧美一区二区| 国产国拍精品亚洲av在线观看| 中出人妻视频一区二区| 日韩欧美 国产精品| 一夜夜www| 青春草视频在线免费观看| 搡女人真爽免费视频火全软件| 麻豆乱淫一区二区| h日本视频在线播放| 国产精品爽爽va在线观看网站| 高清毛片免费看| 亚洲av中文av极速乱| 国模一区二区三区四区视频| 国产精品99久久久久久久久| 波多野结衣高清作品| 亚洲av电影不卡..在线观看| 久久精品人妻少妇| 久久韩国三级中文字幕| 91精品一卡2卡3卡4卡| 在线免费观看的www视频| 晚上一个人看的免费电影| 亚洲精品自拍成人| 美女内射精品一级片tv| 日韩成人伦理影院| 国产精品一区二区三区四区久久| 国产精品久久久久久久久免| 99久久久亚洲精品蜜臀av| 欧美成人a在线观看| 日韩欧美在线乱码| 国产私拍福利视频在线观看| 麻豆乱淫一区二区| 边亲边吃奶的免费视频| 国产成人a∨麻豆精品| 亚洲性久久影院| 中文精品一卡2卡3卡4更新| 亚洲国产精品久久男人天堂| 久久人人精品亚洲av| 国产片特级美女逼逼视频| 丰满的人妻完整版| 亚洲成人精品中文字幕电影| 国产伦精品一区二区三区视频9| 国产成人91sexporn| 青春草亚洲视频在线观看| 午夜福利视频1000在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲第一电影网av| 全区人妻精品视频| 亚洲av第一区精品v没综合| 国产精品麻豆人妻色哟哟久久 | 午夜精品一区二区三区免费看| 男人舔奶头视频| 色播亚洲综合网| 免费一级毛片在线播放高清视频| 日韩制服骚丝袜av| 晚上一个人看的免费电影| 欧美+亚洲+日韩+国产| 卡戴珊不雅视频在线播放| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 在线国产一区二区在线| 国产国拍精品亚洲av在线观看| 最近最新中文字幕大全电影3| 欧美日韩精品成人综合77777| 可以在线观看的亚洲视频| 不卡一级毛片| 国产亚洲精品久久久com| 免费av不卡在线播放| 欧美一区二区亚洲| 久久久久久久久中文| 久久久久久国产a免费观看| 日本一本二区三区精品| 高清日韩中文字幕在线| 亚洲成人久久爱视频| 天天躁夜夜躁狠狠久久av| 久久久国产成人免费| av在线蜜桃| 少妇猛男粗大的猛烈进出视频 | 午夜a级毛片| 欧美成人免费av一区二区三区| 精华霜和精华液先用哪个| 成人性生交大片免费视频hd| 在线天堂最新版资源| 日韩欧美精品免费久久| 免费无遮挡裸体视频| 色播亚洲综合网| 成年版毛片免费区| 亚洲五月天丁香| 国产亚洲精品久久久久久毛片| 亚洲欧美清纯卡通| 九九在线视频观看精品| 午夜老司机福利剧场| 亚洲中文字幕日韩| 日本一二三区视频观看| 国产亚洲精品久久久久久毛片| 性色avwww在线观看| 亚洲av二区三区四区| 日韩高清综合在线| av天堂中文字幕网| 亚洲精品影视一区二区三区av| 人人妻人人看人人澡| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂 | 亚洲一区高清亚洲精品| 国产亚洲5aaaaa淫片| 桃色一区二区三区在线观看| 午夜福利高清视频| 亚洲四区av| 国产精品一区二区性色av| 男人和女人高潮做爰伦理| 一区二区三区高清视频在线| 精品一区二区三区视频在线| 高清午夜精品一区二区三区 | 我的老师免费观看完整版| 亚洲四区av| 国产免费一级a男人的天堂| 日韩亚洲欧美综合| 国产成人一区二区在线| 精品久久久久久久久av| 国产成人午夜福利电影在线观看| 国产一区二区亚洲精品在线观看| 看片在线看免费视频| 久久人人爽人人爽人人片va| 麻豆一二三区av精品| 成人特级av手机在线观看| 国产成人精品一,二区 | 别揉我奶头 嗯啊视频| 日韩制服骚丝袜av| av黄色大香蕉| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 亚洲综合色惰| 国产成人精品一,二区 | 国产在线精品亚洲第一网站| avwww免费| 欧美成人精品欧美一级黄| 26uuu在线亚洲综合色| 国产久久久一区二区三区| www日本黄色视频网| 免费黄网站久久成人精品| www.色视频.com| 国产大屁股一区二区在线视频| 久久精品国产亚洲av香蕉五月| 国产在视频线在精品| 黑人高潮一二区| 国产伦精品一区二区三区四那| 国产一区二区在线av高清观看| 久久久久久久久中文| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 嫩草影院精品99| 久久鲁丝午夜福利片| 免费搜索国产男女视频| 国产老妇女一区| 亚洲四区av| 日韩精品青青久久久久久| 99热这里只有是精品在线观看| 日本色播在线视频| 午夜精品国产一区二区电影 | 久久精品国产自在天天线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 久久精品久久久久久久性| 精品人妻视频免费看| 久久精品久久久久久久性| 国产一区二区在线观看日韩| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 国产在线精品亚洲第一网站| 九色成人免费人妻av| 在线国产一区二区在线| 青青草视频在线视频观看| 国产伦一二天堂av在线观看| 欧美zozozo另类| 国产高清不卡午夜福利| 一级毛片我不卡| 91久久精品电影网| 国产精品一二三区在线看| 亚洲国产精品sss在线观看| 国产精品永久免费网站| 亚洲av男天堂| 日本一本二区三区精品| 97在线视频观看| 久久久久久久久久成人| 一个人免费在线观看电影| 国产精品一区二区在线观看99 | www.av在线官网国产| 久久久久九九精品影院| 12—13女人毛片做爰片一| 少妇熟女欧美另类| 1000部很黄的大片| 青春草国产在线视频 | av视频在线观看入口| 成人亚洲欧美一区二区av| 亚洲欧美日韩高清专用| 久久欧美精品欧美久久欧美| 老司机福利观看| 久久久久久久久久黄片| 免费观看精品视频网站| 亚洲最大成人av| 久久久久久久久久久免费av| 99久国产av精品国产电影| 亚洲成人久久性| 美女 人体艺术 gogo|