• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Key challenges to the development of extracorporeal bioartificial liver support systems

    2012-07-07 01:00:45

    Hangzhou, China

    Key challenges to the development of extracorporeal bioartificial liver support systems

    Li-Fu Zhao, Xiao-Ping Pan and Lan-Juan Li

    Hangzhou, China

    BACKGROUND: For nearly three decades, extracorporeal bioartificial liver (BAL) support systems have been anticipated as promising tools for the treatment of liver failure. However, these systems are still far from clinical application. This review aimed to analyze the key challenges to the development of BALs.

    DATA SOURCE: We carried out a PubMed search of Englishlanguage articles relevant to extracorporeal BAL support systems and liver failure.

    RESULTS: Extracorporeal BALs face a series of challenges. First, an appropriate cell source for BAL is not readily available. Second, existing bioreactors do not providein vivolike oxygenation and bile secretion. Third, emergency needs cannot be met by current BALs. Finally, the effectiveness of BALs, either in animals or in patients, has been difficult to document.

    CONCLUSIONS: Extracorporeal BAL support systems are mainly challenged by incompetent cell sources and flawed bioreactors. To advance this technology, future research is needed to provide more insights into interpreting the conditions for hepatocyte differentiation and liver microstructure formation.

    (Hepatobiliary Pancreat Dis Int 2012;11:243-249)

    bioartificial liver; liver failure; cell source; bioreactor

    Introduction

    Liver failure is the inability of the liver to perform its normal detoxification, biosynthesis, and/ or biotransformation functions. The clinical presentation of liver failure includes a prolonged prothrombin time, encephalopathy, and jaundice. Regardless of the etiology, liver failure can be divided into two categories: acute (ALF) or acute-on-chronic (AoCLF).[1]Both are accompanied by high mortality.[2-4]Transplantation is still the only ultimate solution for end-stage liver failure, but its application is hampered by a world-wide scarcity of donor organs. In this context, extracorporeal liver support systems have been expected to provide a bridge to transplantation or to provide an opportunity for the native liver to regenerate.[5,6]

    Depending on whether they are loaded with metabolically active hepatocytes or not, these systems can be roughly classified into two types: artificial or bioartificial liver (BAL) systems. It is widely accepted that an artificial liver, which can only detoxify, is insufficient to support liver failure patients, while in theory an ideal hepatocyte-based BAL could provide most or even all normal liver functions.[6-15]

    However, it has to be recognized that the BAL is still far from being ready for routine clinical application. BAL systems currently under clinical trials include ELAD,[16-20]HepatAssist,[21-26]BLSS,[27-29]AMC-BAL,[30-32]MELS,[33-35]RFB,[36,37]and HBAL/TECA-HALSS.[38,39](Table 1). Among these, the HepatAssist system was the first and initially reported in the 1980s.[23]All of these systems were found to be safe in phase I clinical trials (Table 2). However, to date, only two randomized controlled clinical trials exploring the effectiveness of BALs have been reported,[18,24]and the results were not encouraging, suggesting that the development of an effective BAL system with widespread clinical acceptance must be quite difficult. Hence we aimed to analyze the key issues restricting the developmentof extracorporeal BAL support systems. Detailed descriptions of individual research contents will not appear in this review.

    Table 1. Characteristics of BAL systems currently under clinical trials

    Table 2. Clinical efficacy and adverse events of BAL systems under phase I trials and randomized controlled trials (RCTs)

    Absence of an ideal cell source for BAL support

    Cell sources that have been previously used in extracorporeal BAL treatment in patients and/or large animal models include primary pig hepatocytes, primary human hepatocytes, and human liver tumor-derived cell lines. Primary pig hepatocytes are the biological components of all of the BALs currently under clinical trials, except for ELAD. Consequently, zoonosis and immunogenicity restrict their widespread use. In addition, although a high degree of metabolic similarity is found between human and pig hepatocytes,[40]the latter are unable to synthesize coagulation factors that function in the human body.[41]

    Primary human hepatocytes have only been used in three clinical trials, based on ELAD or MELS. There are two single-case studies and one phase I clinical trial.[20,34,35]Common applications of primary human hepatocytes are very difficult because both yield and quality are poor. For one thing, healthy donor livers are scarce, so that only organs or tissues discarded at transplantation (i.e. with fibrosis and steatosis) are available for BALs. For another, primary human hepatocytes do not proliferate efficientlyin vitroand demonstrate a serious loss of viability after the freeze-thaw process.

    Among non-primary cell sources, only the C3A cell line, a HepG2 hepatoma subclone, has been used in clinical trials and was adopted for the ELAD system.[16-19]Unfortunately, no improvement in either survival or biochemical parameters was demonstrated in a pilotcontrolled clinical trial.[18]Several other human liver tumor-derived cell lines, such as GS-HepG2 (glutamine synthetase, GS), HepG2-GS-3A4, and FLC-4, were used in BAL support in large animal models.[42-46]Prolongations of survival, with or without statistical significance, were achieved in these studies. However, none have been so far applied in clinical trials. Poor differentiation and the potential risk of metastatic tumor formation might be the main hurdles.[40,47]In addition, a hepatocyte line with high GS expression, for ammonia removal, would potentially increase the production of glutamine. This may further disturb brain function in patients with liver failure.[48]

    Cell sources that have not yet been tested in extracorporeal BAL systems include immortalized fetal human hepatocytes, immortalized adult human hepatocytes, and human stem cell-derived hepatocytes. More than a decade ago, some researchers claimed that their immortalized fetal or adult hepatocyte lines were promising cell sources for BALs.[49-52]However, the followup research and applications are still absent, which may suggest that they encountered insurmountable difficulties. Recently, a new immortalized human fetal hepatocyte line, cBAL111, was established by overexpression of the reverse transcriptase of telomerase (hTERT).[53]However, this cell line fell under scrutiny because it was found to have considerable variations at the genetic level, compared with primary hepatocytes in BALsin vitro.[54]

    The method of reversible immortalization was once encouraging. In this process, the immortalizing genes, i.e., simian virus 40 large T antigen (SV40LT) or hTERT, can be excised using a Cre/LoxP site-specific recombination. Then, an increase of liver-specific functionality can be shown later.[55-58]However, it was reported that even the reversibly immortalized human hepatocyte line, NKNT-3,[57]was poorly differentiatedin vitroafter reversion.[53]Another reversibly immortalized human hepatocyte line, 16-T3,[58]has never been compared with mature human hepatocytes at the genetic level. Although stem cells from different tissues have the potential to differentiate into hepatocyte-like cells, some issues, such as insufficient quantity, incomplete functionality, ethical controversy, and safety still challenge the clinical availability of these cells.[59,60]

    From all of this information, a relevant conclusion can be drawn. As the biological component of extracorporeal BAL support systems, an appropriate cell source should combine the following characteristics: (i) nearly full functionality of mature human hepatocytes, (ii) unlimited life-span and proliferative capacityin vitro, and (iii) no potential risk of metastatic tumor formation, zoonotic transmission, or immunogenicity. Unfortunately, no such cell source has yet been found. Some thought that a highly differentiated human hepatocyte line was most likely to be competent in BALs.[15]Others, however, argued that it was difficult to replace liver functions with a single cell line.[61,62]The liver is formed by hepatocytes and a variety of non-parenchymal cells such as Kupffer cells, sinusoidal endothelial cells and stellate cells. These cells communicate with each other and maintain the physiological functions of the liver. Coculture techniques, therefore, are considered promising for obtaining cell sources for BALsin vitro.[62]While it is possible to obtain an ideal cell source ultimately, the existing bioreactor design remains flawed.

    An ideal BAL bioreactor should also provide anin vivo-like environment, where the viability and functionality of a large number of hepatocytes can be optimally maintainedin vitro. However, such highlevel simulation has not been achieved, as oxygenationand bile secretion are two major on-going controversial issues.

    In vivo-like oxygen supply

    The human liver has a dual blood supply; it is fed by the hepatic arteries and the portal vein. Both sources enter the sinusoids and provide oxygen to hepatocytes. The hepatic blood flow rate in physiological conditions averages 1450 mL/min, which is roughly equivalent to a quarter of resting cardiac output.[63]It is not difficult to infer that an adequate and controllable oxygen supply is the prerequisite for the maintenance of hepatocytes on a large scale. In most BALs currently under clinical trials, the perfusion fluids are plasma or blood ultrafiltrate, since whole blood perfusion inevitably leads to hemolysis and coagulation. In contrast to whole blood, which contains red blood cells, the oxygencarrying capacity of plasma or blood ultrafiltrate is quite insufficient. Therefore, hepatocytes in BAL bioreactors are inevitably exposed to hypoxia.[64,65]Two strategies have been used to solve this problem so far.

    One solution is the application of an integral oxygenator, as in the AMC-BAL and MELS systems.[31,34]In these systems, the oxygenation capillaries are uniformly distributed throughout the bioreactor cavity or interwoven with the cell attachment matrix. Such a structure enables hepatocytes to acquire oxygen from its immediate surroundings. An integral oxygenator may be superior to an external one, but neither has the self-regulation ability possessed by organisms. In physiological environments, hemoglobin acquires oxygen molecules at high partial pressures of oxygen (pO2), and releases them at low levels of pO2. The oxygen affinity of hemoglobin is affected by several factors, such as body temperature, carbon dioxide concentration, and pH. Thus, organisms can protect themselves from hypoxia and oxygen toxicity by relying on self-regulation, whereas these artificial oxygenators cannot.

    Another strategy is the supplementation of perfusion fluids with red blood cell substitutes (e.g., artificial oxygen carriers), such as perfluorocarbons (PFCs) and/ or hemoglobin-based O2carriers (HBOCs).[66-68]PFCs are capable of carrying large quantities of oxygen to tissues,[69]but can reach levels that are toxic. Moreover, phase III clinical trials showed that an increased risk of stroke is associated with PFCs.[70]At least to some extent, HBOCs mimic thein vivooxygen supply but, unfortunately, a meta-analysis showed a significant increase in the risk of death and myocardial infarction by HBOCs.[71]The serious adverse side-effects of PFCs and HBOCs make their future very uncertain.

    Absence of bile secretory function

    No existing BAL bioreactor has a biliary system capable of collecting bile produced by hepatocytes and moving it out of extracorporeal circulation. To solve this, a combination of a BAL bioreactor and an artificial liver device, such as albumin dialysis, carbon absorption, or plasma exchange, has been proposed.[34,38,39]However, this strategy may be questionable. First, it is not clear what proportion of bile is retained intracellularly, and whether it can be washed away by an artificial liver device. Second, these combinatorial devices make it difficult to discern whether it is the artificial liver device or the BAL bioreactor that contributes to the efficacy.

    Lack of convenience

    To serve as a piece of emergency equipment, a BAL should be easy to operate and immediately available at any time. However, before a BAL system can be connected to a live body, operators must complete a series of procedures. First, for a pig hepatocyte-based BAL, complications related to sacrificing animals and isolating cells must be overcome. Second, for a primary human hepatocyte-based BAL, human organ tissues must be collected and/or thawed, and hepatocytes must then be isolated. In addition, for a hepatocyte line-based BAL, there needs to be a large-scale cultivation and/or freeze-thaw process. And finally, there needs to be a cell adhesion process within the bioreactor. All of these obstacles are complicated and time-consuming.

    Difficulty of efficacy evaluation

    In animal experiments, evaluation of a BAL system loaded with human-derived hepatocytes is not easy since the metabolic capability of human cells still differs in some aspects from that of pig hepatocytes.[41]The difference between human and other species is even greater.[40]The clinical efficacy of BALs is also difficult to show since, in many cases, BAL therapy just acts as a bridge, with the ultimate solution being liver transplantation.

    Conclusions

    For nearly 30 years, extracorporeal BAL support systems have raised great expectations for the treatment of liver failure. However, so far, none of these systems is ready for routine clinical use. BAL systems experience bottlenecks in several areas, including cell sourcing, bioreactor design, convenience, and efficacy assessment. To makethis technology more hopeful, two things are essential: 1) we need a highly differentiated human hepatocyte line; and 2) we need a bioreactor capable of providing anin vivo-like environment for cells. Future research should not only be focused on better understanding hepatocyte proliferation and differentiation, but also on studying liver microstructure formation, such as liver microvessels and bile canaliculi.

    Contributors: ZLF wrote the main body of the article. PXP provided advice. All authors contributed to the design and interpretation of the study and to further drafts. LLJ is the guarantor.

    Funding: This work was supported by grants from the National Natural Science Foundation of China (30630023) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (81121002).

    Ethical approval: Not needed.

    Competing interest: No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    1 Kjaergard LL, Liu J, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure: a systematic review. JAMA 2003;289:217-222.

    2 Polson J, Lee WM; American Association for the Study of Liver Disease. AASLD position paper: the management of acute liver failure. Hepatology 2005;41:1179-1197.

    3 Du WB, Li LJ, Huang JR, Yang Q, Liu XL, Li J, et al. Effects of artificial liver support system on patients with acute or chronic liver failure. Transplant Proc 2005;37:4359-4364.

    4 Mas A, Rodés J. Fulminant hepatic failure. Lancet 1997;349: 1081-1085.

    5 Strain AJ, Neuberger JM. A bioartificial liver--state of the art. Science 2002;295:1005-1009.

    6 Carpentier B, Gautier A, Legallais C. Artificial and bioartificial liver devices: present and future. Gut 2009;58:1690-1702.

    7 Pless G. Artificial and bioartificial liver support. Organogenesis 2007;3:20-24.

    8 McKenzie TJ, Lillegard JB, Nyberg SL. Artificial and bioartificial liver support. Semin Liver Dis 2008;28:210-217.

    9 Sechser A, Osorio J, Freise C, Osorio RW. Artificial liver support devices for fulminant liver failure. Clin Liver Dis 2001;5:415-430.

    10 van de Kerkhove MP, Hoekstra R, Chamuleau RA, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg 2004;240:216-230.

    11 Adham M. Extracorporeal liver support: waiting for the deciding vote. ASAIO J 2003;49:621-632.

    12 Demetriou AA. Hepatic assist devices. Panminerva Med 2005;47:31-37.

    13 Santoro A, Mancini E, Ferramosca E, Faenza S. Liver support systems. Contrib Nephrol 2007;156:396-404.

    14 Rozga J. Liver support technology--an update. Xenotransplantation 2006;13:380-389.

    15 Chamuleau RA. Future of bioartificial liver support. World J Gastrointest Surg 2009;1:21-25.

    16 Sussman NL, Kelly JH. Improved liver function following treatment with an extracorporeal liver assist device. Artif Organs 1993;17:27-30.

    17 Millis JM, Cronin DC, Johnson R, Conjeevaram H, Conlin C, Trevino S, et al. Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure: system modifications and clinical impact. Transplantation 2002;74:1735-1746.

    18 Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996;24:1446-1451.

    19 Sussman NL, Gislason GT, Conlin CA, Kelly JH. The Hepatix extracorporeal liver assist device: initial clinical experience. Artif Organs 1994;18:390-396.

    20 Millis JM, Cronin DC, Johnson R, Conjeevaram H, Faust TW, Trevino S, et al. Bioartificial liver support: report of the longest continuous treatment with human hepatocytes. Transplant Proc 2001;33:1935.

    21 Pitkin Z, Mullon C. Evidence of absence of porcine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system. Artif Organs 1999; 23:829-833.

    22 Samuel D, Ichai P, Feray C, Saliba F, Azoulay D, Arulnaden JL, et al. Neurological improvement during bioartificial liver sessions in patients with acute liver failure awaiting transplantation. Transplantation 2002;73:257-264.

    23 Demetriou AA, Whiting J, Levenson SM, Chowdhury NR, Schechner R, Michalski S, et al. New method of hepatocyte transplantation and extracorporeal liver support. Ann Surg 1986;204:259-271.

    24 Demetriou AA, Brown RS Jr, Busuttil RW, Fair J, McGuire BM, Rosenthal P, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 2004;239:660-667.

    25 Mullon C, Pitkin Z. The HepatAssist bioartificial liver support system: clinical study and pig hepatocyte process. Expert Opin Investig Drugs 1999;8:229-235.

    26 Demetriou AA, Rozga J, Podesta L, Lepage E, Morsiani E, Moscioni AD, et al. Early clinical experience with a hybrid bioartificial liver. Scand J Gastroenterol Suppl 1995;208:111-117.

    27 Mazariegos GV, Patzer JF 2nd, Lopez RC, Giraldo M, Devera ME, Grogan TA, et al. First clinical use of a novel bioartificial liver support system (BLSS). Am J Transplant 2002;2:260-266.

    28 Patzer JF 2nd, Mazariegos GV, Lopez R, Molmenti E, Gerber D, Riddervold F, et al. Novel bioartificial liver support system: preclinical evaluation. Ann N Y Acad Sci 1999;875:340-352.

    29 Mazariegos GV, Kramer DJ, Lopez RC, Shakil AO, Rosenbloom AJ, DeVera M, et al. Safety observations in phase I clinical evaluation of the Excorp Medical Bioartificial Liver Support System after the first four patients. ASAIO J 2001;47: 471-475.

    30 van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Bridging a patient with acute liver failure to liver transplantation by the AMC-bioartificial liver. Cell Transplant 2003;12:563-568.

    31 Flendrig LM, la Soe JW, J?rning GG, Steenbeek A, Karlsen OT, Bovée WM, et al. In vitro evaluation of a novel bioreactor based on an integral oxygenator and a spirally woundnonwoven polyester matrix for hepatocyte culture as small aggregates. J Hepatol 1997;26:1379-1392.

    32 van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs 2002;25:950-959.

    33 Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, et al. Clinical extracorporeal hybrid liver support--phase I study with primary porcine liver cells. Xenotransplantation 2003;10:460-469.

    34 Sauer IM, Zeilinger K, Pless G, Kardassis D, Theruvath T, Pascher A, et al. Extracorporeal liver support based on primary human liver cells and albumin dialysis--treatment of a patient with primary graft non-function. J Hepatol 2003; 39:649-653.

    35 Sauer IM, Zeilinger K, Obermayer N, Pless G, Grünwald A, Pascher A, et al. Primary human liver cells as source for modular extracorporeal liver support--a preliminary report. Int J Artif Organs 2002;25:1001-1005.

    36 Morsiani E, Pazzi P, Puviani AC, Brogli M, Valieri L, Gorini P, et al. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs 2002;25:192-202.

    37 Morsiani E, Brogli M, Galavotti D, Bellini T, Ricci D, Pazzi P, et al. Long-term expression of highly differentiated functions by isolated porcine hepatocytes perfused in a radial-flow bioreactor. Artif Organs 2001;25:740-748.

    38 Xue YL, Zhao SF, Luo Y, Li XJ, Duan ZP, Chen XP, et al. TECA hybrid artificial liver support system in treatment of acute liver failure. World J Gastroenterol 2001;7:826-829.

    39 Ding YT, Qiu YD, Chen Z, Xu QX, Zhang HY, Tang Q, et al. The development of a new bioartificial liver and its application in 12 acute liver failure patients. World J Gastroenterol 2003;9:829-832.

    40 Donato MT, Castell JV, Gómez-Lechón MJ. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: comparison with other hepatic cellular models. J Hepatol 1999;31:542-549.

    41 Cowan PJ, d'Apice AJ. The coagulation barrier in xenotransplantation: incompatibilities and strategies to overcome them. Curr Opin Organ Transplant 2008;13:178-183.

    42 Kanai H, Marushima H, Kimura N, Iwaki T, Saito M, Maehashi H, et al. Extracorporeal bioartificial liver using the radial-flow bioreactor in treatment of fatal experimental hepatic encephalopathy. Artif Organs 2007;31:148-151.

    43 Enosawa S, Miyashita T, Fujita Y, Suzuki S, Amemiya H, Omasa T, et al.In vivoestimation of bioartificial liver with recombinant HepG2 cells using pigs with ischemic liver failure. Cell Transplant 2001;10:429-433.

    44 Enosawa S, Miyashita T, Tanaka H, Li X, Suzuki S, Amemiya H, et al. Prolongation of survival of pigs with ischemic liver failure by treatment with a bioartificial liver using glutamine synthetase transfected recombinant HepG2. Transplant Proc 2001;33:1945-1947.

    45 Wang N, Tsuruoka S, Yamamoto H, Enosawa S, Omasa T, Sata N, et al. The bioreactor with CYP3A4- and glutamine synthetase-introduced HepG2 cells: treatment of hepatic failure dog with diazepam overdosage. Artif Organs 2005;29: 681-684.

    46 Enosawa S, Miyashita T, Saito T, Omasa T, Matsumura T. The significant improvement of survival times and pathological parameters by bioartificial liver with recombinant HepG2 in porcine liver failure model. Cell Transplant 2006;15:873-880.

    47 Nyberg SL, Remmel RP, Mann HJ, Peshwa MV, Hu WS, Cerra FB. Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver. Ann Surg 1994;220:59-67.

    48 Mavri-Damelin D, Damelin LH, Eaton S, Rees M, Selden C, Hodgson HJ. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia. Biotechnol Bioeng 2008;99:644-651.

    49 Werner A, Duvar S, Müthing J, Büntemeyer H, Lünsdorf H, Strauss M, et al. Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. Biotechnol Bioeng 2000;68:59-70.

    50 Werner A, Duvar S, Müthing J, Büntemeyer H, Kahmann U, Lünsdorf H, et al. Cultivation and characterization of a new immortalized human hepatocyte cell line, HepZ, for use in an artificial liver support system. Ann N Y Acad Sci 1999; 875:364-368.

    51 Kobayashi N, Miyazaki M, Fukaya K, Inoue Y, Sakaguchi M, Noguchi H, et al. Establishment of a highly differentiated immortalized human hepatocyte cell line as a source of hepatic function in the bioartificial liver. Transplant Proc 2000;32:237-241.

    52 Kobayashi N, Noguchi H, Watanabe T, Matsumura T, Totsugawa T, Fujiwara T, et al. A tightly regulated immortalized human fetal hepatocyte cell line to develop a bioartificial liver. Transplant Proc 2001;33:1948-1949.

    53 Deurholt T, van Til NP, Chhatta AA, ten Bloemendaal L, Schwartlander R, Payne C, et al. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009;9:89.

    54 Poyck PP, van Wijk AC, van der Hoeven TV, de Waart DR, Chamuleau RA, van Gulik TM, et al. Evaluation of a new immortalized human fetal liver cell line (cBAL111) for application in bioartificial liver. J Hepatol 2008;48:266-275.

    55 Kobayashi N, Westerman KA, Tanaka N, Fox IJ, Leboulch P. A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol 2001;6:293-300.

    56 Kobayashi N. Life support of artificial liver: development of a bioartificial liver to treat liver failure. J Hepatobiliary Pancreat Surg 2009;16:113-117.

    57 Kobayashi N, Fujiwara T, Westerman KA, Inoue Y, Sakaguchi M, Noguchi H, et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000;287:1258-1262.

    58 Totsugawa T, Yong C, Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-Alvarez N, Noguchi H, et al. Survival of liver failure pigs by transplantation of reversibly immortalized human hepatocytes with Tamoxifen-mediated self-recombination. J Hepatol 2007;47:74-82.

    59 Dalgetty DM, Medine CN, Iredale JP, Hay DC. Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 2009;297:G241-248.

    60 Dan YY, Yeoh GC. Liver stem cells: a scientific and clinical perspective. J Gastroenterol Hepatol 2008;23:687-698.

    61 Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 2005; 20:327-335.

    62 Ding YT, Shi XL. Bioartificial liver devices: Perspectives on the state of the art. Front Med 2011;5:15-19.

    63 Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993;10:1093-1095.

    64 Hay PD, Veitch AR, Smith MD, Cousins RB, Gaylor JD. Oxygen transfer in a diffusion-limited hollow fiber bioartificial liver. Artif Organs 2000;24:278-288.

    65 Hay PD, Veitch AR, Gaylor JD. Oxygen transfer in a convection-enhanced hollow fiber bioartificial liver. Artif Organs 2001;25:119-130.

    66 Chen G, Palmer AF. Perfluorocarbon facilitated O(2) transport in a hepatic hollow fiber bioreactor. Biotechnol Prog 2009;25:1317-1321.

    67 Chen G, Palmer AF. Mixtures of hemoglobin-based oxygen carriers and perfluorocarbons exhibit a synergistic effect in oxygenating hepatic hollow fiber bioreactors. Biotechnol Bioeng 2010;105:534-542.

    68 Chen G, Palmer AF. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor. Biotechnol Bioeng 2009;102:1603-1612.

    69 Remy B, Deby-Dupont G, Lamy M. Red blood cell substitutes: fluorocarbon emulsions and haemoglobin solutions. Br Med Bull 1999;55:277-298.

    70 Seghatchian J, de Sousa G. An overview of unresolved inherent problems associated with red cell transfusion and potential use of artificial oxygen carriers and ECO-RBC: current status/future trends. Transfus Apher Sci 2007;37:251-259.

    71 Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA 2008;299:2304-2312.

    Accepted after revision March 7, 2012

    It requires wisdom to understand wisdom; the music is nothing if the audience is deaf.

    —Walter Lippmann

    December 13, 2011

    Author Affiliations: State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China (Zhao LF, Pan XP and Li LJ)

    Lan-Juan Li, MD, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China (Tel: 86-571-87236759; Fax: 86-571-87236759; Email: ljli@zju.edu.cn)

    ? 2012, Hepatobiliary Pancreat Dis Int. All rights reserved.

    10.1016/S1499-3872(12)60155-6

    好男人在线观看高清免费视频| 99热精品在线国产| 男女午夜视频在线观看| 亚洲精品粉嫩美女一区| 少妇的逼水好多| 一边摸一边抽搐一进一小说| 天天躁日日操中文字幕| av黄色大香蕉| 亚洲av电影在线进入| 高潮久久久久久久久久久不卡| 亚洲av免费在线观看| 99热这里只有是精品50| 99国产极品粉嫩在线观看| 国产男靠女视频免费网站| 欧美日韩中文字幕国产精品一区二区三区| 婷婷亚洲欧美| 午夜激情欧美在线| 他把我摸到了高潮在线观看| 一进一出抽搐gif免费好疼| 又黄又粗又硬又大视频| 欧美一级毛片孕妇| 亚洲男人的天堂狠狠| 亚洲av片天天在线观看| 日本免费a在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品国产精品久久久不卡| 国产69精品久久久久777片 | 窝窝影院91人妻| 国产欧美日韩一区二区三| 国产黄色小视频在线观看| 白带黄色成豆腐渣| 国产成人啪精品午夜网站| 久久午夜综合久久蜜桃| 毛片女人毛片| 一级黄色大片毛片| 欧美乱色亚洲激情| 99久久精品国产亚洲精品| 一夜夜www| 成人国产综合亚洲| 精品国内亚洲2022精品成人| 国产高清三级在线| 麻豆国产av国片精品| 91在线精品国自产拍蜜月 | 嫩草影院精品99| 午夜影院日韩av| 动漫黄色视频在线观看| 一本一本综合久久| 美女高潮的动态| 欧美一区二区国产精品久久精品| 久久久久性生活片| 黄片大片在线免费观看| 熟妇人妻久久中文字幕3abv| 色综合欧美亚洲国产小说| 日韩欧美免费精品| 9191精品国产免费久久| 99精品久久久久人妻精品| 国产亚洲精品一区二区www| 巨乳人妻的诱惑在线观看| 日韩精品青青久久久久久| 男插女下体视频免费在线播放| 网址你懂的国产日韩在线| 18禁裸乳无遮挡免费网站照片| www日本在线高清视频| 一级a爱片免费观看的视频| 麻豆一二三区av精品| 国产成+人综合+亚洲专区| 舔av片在线| 特级一级黄色大片| 99国产精品一区二区蜜桃av| 久久国产乱子伦精品免费另类| 99精品久久久久人妻精品| 91久久精品国产一区二区成人 | 最新美女视频免费是黄的| 少妇丰满av| 欧美一区二区精品小视频在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精华国产精华精| 男人舔奶头视频| 国产成人系列免费观看| 网址你懂的国产日韩在线| 亚洲欧美日韩高清在线视频| 欧美日韩亚洲国产一区二区在线观看| 色尼玛亚洲综合影院| 亚洲 欧美一区二区三区| 国产视频内射| 桃色一区二区三区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 91九色精品人成在线观看| 久久久久久九九精品二区国产| 国产精品99久久久久久久久| av福利片在线观看| 一个人看视频在线观看www免费 | 长腿黑丝高跟| 久久中文看片网| 亚洲中文av在线| 免费看光身美女| 每晚都被弄得嗷嗷叫到高潮| 在线观看日韩欧美| 国产91精品成人一区二区三区| 三级男女做爰猛烈吃奶摸视频| 韩国av一区二区三区四区| 日韩欧美国产在线观看| 亚洲成a人片在线一区二区| 免费看美女性在线毛片视频| 日本黄大片高清| 国产综合懂色| 精品一区二区三区视频在线观看免费| 成人欧美大片| 日本一本二区三区精品| 丁香六月欧美| 欧美中文日本在线观看视频| 一个人免费在线观看电影 | 成人av在线播放网站| 国产高清激情床上av| 在线免费观看的www视频| 精品国产亚洲在线| 九九在线视频观看精品| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利在线观看免费完整高清在 | 麻豆成人av在线观看| 91麻豆精品激情在线观看国产| 一二三四社区在线视频社区8| 成人三级黄色视频| av国产免费在线观看| 久久精品91蜜桃| 欧美日韩国产亚洲二区| 亚洲无线在线观看| 国产又色又爽无遮挡免费看| 无遮挡黄片免费观看| 免费在线观看视频国产中文字幕亚洲| 老司机深夜福利视频在线观看| 久久欧美精品欧美久久欧美| 久久久久国产精品人妻aⅴ院| 欧美国产日韩亚洲一区| 99热这里只有是精品50| 午夜免费激情av| 一夜夜www| 免费人成视频x8x8入口观看| 欧美成狂野欧美在线观看| 一级作爱视频免费观看| 观看免费一级毛片| 国内少妇人妻偷人精品xxx网站 | 99久久综合精品五月天人人| 亚洲欧美精品综合一区二区三区| 19禁男女啪啪无遮挡网站| 日本一二三区视频观看| 国产高清videossex| 亚洲一区二区三区色噜噜| 亚洲精品粉嫩美女一区| 精品一区二区三区视频在线观看免费| 最好的美女福利视频网| 亚洲av熟女| 久久久久精品国产欧美久久久| 日本黄色视频三级网站网址| 日韩三级视频一区二区三区| 欧美黄色淫秽网站| 欧美三级亚洲精品| 欧美性猛交╳xxx乱大交人| 1024手机看黄色片| 超碰成人久久| 国产av不卡久久| 别揉我奶头~嗯~啊~动态视频| 麻豆一二三区av精品| 午夜免费成人在线视频| 午夜免费激情av| 一级毛片女人18水好多| 丁香欧美五月| 在线观看日韩欧美| 色老头精品视频在线观看| 亚洲片人在线观看| 桃红色精品国产亚洲av| 国产aⅴ精品一区二区三区波| 午夜视频精品福利| 国产一区二区在线av高清观看| 亚洲人成伊人成综合网2020| 欧美日韩瑟瑟在线播放| 女生性感内裤真人,穿戴方法视频| 亚洲欧美激情综合另类| 久久国产精品影院| 亚洲av电影在线进入| 久久草成人影院| 欧美激情久久久久久爽电影| 1000部很黄的大片| 精品乱码久久久久久99久播| a级毛片a级免费在线| 长腿黑丝高跟| 亚洲精品美女久久av网站| 国产午夜精品久久久久久| 中亚洲国语对白在线视频| 欧美zozozo另类| 精品国产美女av久久久久小说| 精品一区二区三区四区五区乱码| 国产不卡一卡二| 欧美成人一区二区免费高清观看 | 俺也久久电影网| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 最近最新免费中文字幕在线| 国内精品久久久久久久电影| 国产日本99.免费观看| 久久精品国产99精品国产亚洲性色| 日本在线视频免费播放| 成人永久免费在线观看视频| 精品人妻1区二区| 免费人成视频x8x8入口观看| 9191精品国产免费久久| 热99在线观看视频| 午夜激情欧美在线| av福利片在线观看| 1024香蕉在线观看| 国产精品亚洲av一区麻豆| 亚洲午夜精品一区,二区,三区| 国产av不卡久久| 欧美一级毛片孕妇| 国内少妇人妻偷人精品xxx网站 | 两个人的视频大全免费| 国产精品 国内视频| 99热这里只有是精品50| 一区福利在线观看| 亚洲五月婷婷丁香| 色老头精品视频在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲成a人片在线一区二区| 激情在线观看视频在线高清| 舔av片在线| 国产人伦9x9x在线观看| 日韩精品青青久久久久久| 久久久久久久精品吃奶| 啦啦啦韩国在线观看视频| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 窝窝影院91人妻| 精品国产三级普通话版| 免费在线观看成人毛片| 欧美三级亚洲精品| 天天躁日日操中文字幕| 国产精品野战在线观看| 国产免费av片在线观看野外av| av女优亚洲男人天堂 | 亚洲av熟女| 国产精品电影一区二区三区| 国产精品av视频在线免费观看| 亚洲人成电影免费在线| 老熟妇乱子伦视频在线观看| av在线天堂中文字幕| 国产人伦9x9x在线观看| 在线观看一区二区三区| 欧美日韩福利视频一区二区| 亚洲熟女毛片儿| 一二三四社区在线视频社区8| 精品日产1卡2卡| 日韩人妻高清精品专区| 变态另类丝袜制服| 成人av在线播放网站| 欧美不卡视频在线免费观看| 国产成年人精品一区二区| 欧美一级毛片孕妇| 日本与韩国留学比较| 18禁裸乳无遮挡免费网站照片| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 欧美色视频一区免费| 国内精品一区二区在线观看| 一个人免费在线观看的高清视频| 黑人欧美特级aaaaaa片| 亚洲片人在线观看| 婷婷丁香在线五月| 国产精品久久久久久亚洲av鲁大| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久 | 18禁观看日本| 观看美女的网站| 亚洲在线自拍视频| 一区福利在线观看| 黄色片一级片一级黄色片| 欧美日韩精品网址| 91av网站免费观看| 一区二区三区国产精品乱码| 1024香蕉在线观看| 国内久久婷婷六月综合欲色啪| 亚洲 国产 在线| 18美女黄网站色大片免费观看| 久久国产精品人妻蜜桃| 日本 av在线| 日本黄色片子视频| 精品电影一区二区在线| 俺也久久电影网| 日韩精品中文字幕看吧| 一个人免费在线观看电影 | 99国产综合亚洲精品| 伦理电影免费视频| av国产免费在线观看| 99热6这里只有精品| 国产午夜福利久久久久久| 国产精品 国内视频| 亚洲自偷自拍图片 自拍| 一二三四社区在线视频社区8| 在线播放国产精品三级| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 一区二区三区高清视频在线| 久久九九热精品免费| 免费看光身美女| 久久精品国产清高在天天线| 久久中文字幕人妻熟女| 国产免费av片在线观看野外av| 亚洲国产欧美一区二区综合| 99久久成人亚洲精品观看| av福利片在线观看| 欧美日本视频| 亚洲国产精品久久男人天堂| 最近在线观看免费完整版| 在线播放国产精品三级| 久久这里只有精品19| 少妇的丰满在线观看| 国产毛片a区久久久久| 五月伊人婷婷丁香| 免费在线观看成人毛片| 不卡av一区二区三区| 精华霜和精华液先用哪个| 成年人黄色毛片网站| 超碰成人久久| 香蕉丝袜av| 99精品在免费线老司机午夜| 精品国产美女av久久久久小说| 国产成人欧美在线观看| 日本与韩国留学比较| 美女cb高潮喷水在线观看 | 欧美日韩福利视频一区二区| 国产99白浆流出| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 男女下面进入的视频免费午夜| 麻豆成人午夜福利视频| 女人高潮潮喷娇喘18禁视频| 日韩欧美在线二视频| 日本一二三区视频观看| 一二三四社区在线视频社区8| 国产精品精品国产色婷婷| 青草久久国产| av欧美777| 亚洲av电影在线进入| 国产黄色小视频在线观看| 好男人在线观看高清免费视频| 国产激情久久老熟女| 99国产极品粉嫩在线观看| 亚洲色图 男人天堂 中文字幕| 免费av不卡在线播放| 一个人免费在线观看电影 | 国产亚洲精品综合一区在线观看| 性色av乱码一区二区三区2| www日本在线高清视频| 夜夜躁狠狠躁天天躁| 日日摸夜夜添夜夜添小说| 在线观看一区二区三区| 午夜视频精品福利| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 国产精品98久久久久久宅男小说| 啪啪无遮挡十八禁网站| 两性午夜刺激爽爽歪歪视频在线观看| 香蕉丝袜av| 韩国av一区二区三区四区| 成年女人永久免费观看视频| 国产在线精品亚洲第一网站| 悠悠久久av| 亚洲国产欧洲综合997久久,| www.精华液| 国产精品久久久av美女十八| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人中文字幕在线播放| 国产成人欧美在线观看| 亚洲成人中文字幕在线播放| 亚洲avbb在线观看| 国产精品香港三级国产av潘金莲| 国产激情久久老熟女| 国产不卡一卡二| 狂野欧美激情性xxxx| 亚洲av成人不卡在线观看播放网| 一边摸一边抽搐一进一小说| 国产精品一区二区精品视频观看| 国产高清有码在线观看视频| www日本在线高清视频| 黄频高清免费视频| 99久久99久久久精品蜜桃| 女生性感内裤真人,穿戴方法视频| 日韩大尺度精品在线看网址| 长腿黑丝高跟| 啦啦啦观看免费观看视频高清| 国产精品一及| 久久热在线av| 中文字幕人妻丝袜一区二区| 99热这里只有是精品50| 十八禁网站免费在线| 日本一本二区三区精品| 国产一区在线观看成人免费| 亚洲欧美精品综合久久99| 天天躁狠狠躁夜夜躁狠狠躁| 少妇的丰满在线观看| 亚洲国产精品sss在线观看| 在线观看午夜福利视频| 国产精品久久久久久久电影 | 可以在线观看的亚洲视频| 人妻夜夜爽99麻豆av| 桃红色精品国产亚洲av| 国产99白浆流出| 真人一进一出gif抽搐免费| 动漫黄色视频在线观看| 禁无遮挡网站| 国产爱豆传媒在线观看| 熟女人妻精品中文字幕| 97碰自拍视频| 色视频www国产| 免费看a级黄色片| 日韩有码中文字幕| 久久久久久九九精品二区国产| 桃红色精品国产亚洲av| 12—13女人毛片做爰片一| 99在线视频只有这里精品首页| 悠悠久久av| bbb黄色大片| 成人av一区二区三区在线看| 久99久视频精品免费| 欧美一区二区精品小视频在线| 俺也久久电影网| 亚洲 欧美 日韩 在线 免费| 好男人在线观看高清免费视频| 一进一出抽搐gif免费好疼| 嫩草影院入口| 九九在线视频观看精品| 亚洲欧美日韩高清专用| 国产高潮美女av| 嫁个100分男人电影在线观看| 一本久久中文字幕| 亚洲人成网站在线播放欧美日韩| 一个人观看的视频www高清免费观看 | 亚洲精华国产精华精| 又紧又爽又黄一区二区| 午夜精品在线福利| 日韩人妻高清精品专区| 日本黄色片子视频| 亚洲国产看品久久| 精品久久久久久久久久久久久| 国产伦精品一区二区三区视频9 | 国产伦精品一区二区三区四那| 女生性感内裤真人,穿戴方法视频| 黑人操中国人逼视频| 国产精品九九99| 精品久久久久久久人妻蜜臀av| 欧美一区二区国产精品久久精品| 成人永久免费在线观看视频| 亚洲国产精品成人综合色| 成年版毛片免费区| 男插女下体视频免费在线播放| 国产美女午夜福利| 国内少妇人妻偷人精品xxx网站 | 国产蜜桃级精品一区二区三区| 国产精品久久电影中文字幕| 免费电影在线观看免费观看| 天堂网av新在线| 90打野战视频偷拍视频| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 好看av亚洲va欧美ⅴa在| 岛国在线免费视频观看| 久久香蕉精品热| 好男人在线观看高清免费视频| 神马国产精品三级电影在线观看| 精品久久蜜臀av无| 97人妻精品一区二区三区麻豆| 精品久久久久久成人av| 国产精品久久久av美女十八| 久9热在线精品视频| 麻豆一二三区av精品| 在线观看舔阴道视频| 2021天堂中文幕一二区在线观| 亚洲黑人精品在线| 午夜成年电影在线免费观看| 亚洲av中文字字幕乱码综合| 精品国产美女av久久久久小说| 亚洲五月天丁香| 亚洲国产日韩欧美精品在线观看 | 中文字幕精品亚洲无线码一区| 国产高清三级在线| 亚洲国产精品999在线| 最近最新中文字幕大全免费视频| 男人的好看免费观看在线视频| 国产伦精品一区二区三区四那| 香蕉av资源在线| 日本黄色片子视频| 免费在线观看视频国产中文字幕亚洲| 亚洲精品美女久久av网站| 狂野欧美激情性xxxx| 精品一区二区三区视频在线观看免费| 亚洲欧美一区二区三区黑人| 中文字幕久久专区| 国产精品av视频在线免费观看| 欧美日韩福利视频一区二区| 在线观看免费视频日本深夜| 岛国视频午夜一区免费看| 成年女人毛片免费观看观看9| 老司机深夜福利视频在线观看| www日本黄色视频网| 天天躁日日操中文字幕| 99精品在免费线老司机午夜| 他把我摸到了高潮在线观看| 两人在一起打扑克的视频| 麻豆成人av在线观看| 俄罗斯特黄特色一大片| 真实男女啪啪啪动态图| 国产真人三级小视频在线观看| 久久久国产成人免费| 激情在线观看视频在线高清| 99在线视频只有这里精品首页| 亚洲成人精品中文字幕电影| 熟女少妇亚洲综合色aaa.| 久久久久久九九精品二区国产| 婷婷丁香在线五月| 天堂√8在线中文| 国产伦精品一区二区三区四那| 91在线精品国自产拍蜜月 | 91字幕亚洲| 91麻豆av在线| 午夜福利18| 最新美女视频免费是黄的| 一个人免费在线观看的高清视频| 成年版毛片免费区| 成人无遮挡网站| 99国产精品99久久久久| 波多野结衣高清作品| 国产综合懂色| 日韩 欧美 亚洲 中文字幕| 女人被狂操c到高潮| 国产成人系列免费观看| 女人被狂操c到高潮| 五月伊人婷婷丁香| 99久久综合精品五月天人人| 午夜福利欧美成人| 欧美日韩亚洲国产一区二区在线观看| 美女免费视频网站| 亚洲欧美激情综合另类| 欧美日本亚洲视频在线播放| 国产麻豆成人av免费视频| 99久久精品一区二区三区| 色在线成人网| 俺也久久电影网| 1000部很黄的大片| 麻豆国产av国片精品| 国产高清视频在线播放一区| 久9热在线精品视频| 一进一出抽搐gif免费好疼| 一进一出抽搐动态| 国产高清视频在线播放一区| 黄色片一级片一级黄色片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲色图 男人天堂 中文字幕| 国产精品98久久久久久宅男小说| 性色av乱码一区二区三区2| 搞女人的毛片| 久久精品国产亚洲av香蕉五月| 男人和女人高潮做爰伦理| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 欧美一级a爱片免费观看看| 精品国产三级普通话版| 欧美国产日韩亚洲一区| 久久这里只有精品中国| 熟女少妇亚洲综合色aaa.| av欧美777| 中文字幕最新亚洲高清| av欧美777| 听说在线观看完整版免费高清| 亚洲,欧美精品.| 最近最新中文字幕大全电影3| 丰满的人妻完整版| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼| bbb黄色大片| 亚洲成人精品中文字幕电影| 老司机福利观看| 久久亚洲精品不卡| 国产成人aa在线观看| 国产一区二区三区视频了| a在线观看视频网站| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 亚洲va日本ⅴa欧美va伊人久久| 国产一区在线观看成人免费| 毛片女人毛片| 欧美日韩黄片免| 成人性生交大片免费视频hd| 欧美一区二区精品小视频在线| 一进一出抽搐动态| 此物有八面人人有两片| 中文字幕精品亚洲无线码一区| 久久欧美精品欧美久久欧美| 色视频www国产| 午夜a级毛片| 日韩欧美国产在线观看| 国产91精品成人一区二区三区| www.精华液| 91麻豆精品激情在线观看国产| 丰满人妻熟妇乱又伦精品不卡| 欧美黄色片欧美黄色片| 精品国内亚洲2022精品成人| 国产欧美日韩精品亚洲av| 欧美最黄视频在线播放免费| 亚洲精品美女久久av网站| 色综合婷婷激情| 精品免费久久久久久久清纯| 国产亚洲av高清不卡| 18禁裸乳无遮挡免费网站照片| 亚洲一区二区三区色噜噜| 无人区码免费观看不卡| 一级a爱片免费观看的视频|