• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Key challenges to the development of extracorporeal bioartificial liver support systems

    2012-07-07 01:00:45

    Hangzhou, China

    Key challenges to the development of extracorporeal bioartificial liver support systems

    Li-Fu Zhao, Xiao-Ping Pan and Lan-Juan Li

    Hangzhou, China

    BACKGROUND: For nearly three decades, extracorporeal bioartificial liver (BAL) support systems have been anticipated as promising tools for the treatment of liver failure. However, these systems are still far from clinical application. This review aimed to analyze the key challenges to the development of BALs.

    DATA SOURCE: We carried out a PubMed search of Englishlanguage articles relevant to extracorporeal BAL support systems and liver failure.

    RESULTS: Extracorporeal BALs face a series of challenges. First, an appropriate cell source for BAL is not readily available. Second, existing bioreactors do not providein vivolike oxygenation and bile secretion. Third, emergency needs cannot be met by current BALs. Finally, the effectiveness of BALs, either in animals or in patients, has been difficult to document.

    CONCLUSIONS: Extracorporeal BAL support systems are mainly challenged by incompetent cell sources and flawed bioreactors. To advance this technology, future research is needed to provide more insights into interpreting the conditions for hepatocyte differentiation and liver microstructure formation.

    (Hepatobiliary Pancreat Dis Int 2012;11:243-249)

    bioartificial liver; liver failure; cell source; bioreactor

    Introduction

    Liver failure is the inability of the liver to perform its normal detoxification, biosynthesis, and/ or biotransformation functions. The clinical presentation of liver failure includes a prolonged prothrombin time, encephalopathy, and jaundice. Regardless of the etiology, liver failure can be divided into two categories: acute (ALF) or acute-on-chronic (AoCLF).[1]Both are accompanied by high mortality.[2-4]Transplantation is still the only ultimate solution for end-stage liver failure, but its application is hampered by a world-wide scarcity of donor organs. In this context, extracorporeal liver support systems have been expected to provide a bridge to transplantation or to provide an opportunity for the native liver to regenerate.[5,6]

    Depending on whether they are loaded with metabolically active hepatocytes or not, these systems can be roughly classified into two types: artificial or bioartificial liver (BAL) systems. It is widely accepted that an artificial liver, which can only detoxify, is insufficient to support liver failure patients, while in theory an ideal hepatocyte-based BAL could provide most or even all normal liver functions.[6-15]

    However, it has to be recognized that the BAL is still far from being ready for routine clinical application. BAL systems currently under clinical trials include ELAD,[16-20]HepatAssist,[21-26]BLSS,[27-29]AMC-BAL,[30-32]MELS,[33-35]RFB,[36,37]and HBAL/TECA-HALSS.[38,39](Table 1). Among these, the HepatAssist system was the first and initially reported in the 1980s.[23]All of these systems were found to be safe in phase I clinical trials (Table 2). However, to date, only two randomized controlled clinical trials exploring the effectiveness of BALs have been reported,[18,24]and the results were not encouraging, suggesting that the development of an effective BAL system with widespread clinical acceptance must be quite difficult. Hence we aimed to analyze the key issues restricting the developmentof extracorporeal BAL support systems. Detailed descriptions of individual research contents will not appear in this review.

    Table 1. Characteristics of BAL systems currently under clinical trials

    Table 2. Clinical efficacy and adverse events of BAL systems under phase I trials and randomized controlled trials (RCTs)

    Absence of an ideal cell source for BAL support

    Cell sources that have been previously used in extracorporeal BAL treatment in patients and/or large animal models include primary pig hepatocytes, primary human hepatocytes, and human liver tumor-derived cell lines. Primary pig hepatocytes are the biological components of all of the BALs currently under clinical trials, except for ELAD. Consequently, zoonosis and immunogenicity restrict their widespread use. In addition, although a high degree of metabolic similarity is found between human and pig hepatocytes,[40]the latter are unable to synthesize coagulation factors that function in the human body.[41]

    Primary human hepatocytes have only been used in three clinical trials, based on ELAD or MELS. There are two single-case studies and one phase I clinical trial.[20,34,35]Common applications of primary human hepatocytes are very difficult because both yield and quality are poor. For one thing, healthy donor livers are scarce, so that only organs or tissues discarded at transplantation (i.e. with fibrosis and steatosis) are available for BALs. For another, primary human hepatocytes do not proliferate efficientlyin vitroand demonstrate a serious loss of viability after the freeze-thaw process.

    Among non-primary cell sources, only the C3A cell line, a HepG2 hepatoma subclone, has been used in clinical trials and was adopted for the ELAD system.[16-19]Unfortunately, no improvement in either survival or biochemical parameters was demonstrated in a pilotcontrolled clinical trial.[18]Several other human liver tumor-derived cell lines, such as GS-HepG2 (glutamine synthetase, GS), HepG2-GS-3A4, and FLC-4, were used in BAL support in large animal models.[42-46]Prolongations of survival, with or without statistical significance, were achieved in these studies. However, none have been so far applied in clinical trials. Poor differentiation and the potential risk of metastatic tumor formation might be the main hurdles.[40,47]In addition, a hepatocyte line with high GS expression, for ammonia removal, would potentially increase the production of glutamine. This may further disturb brain function in patients with liver failure.[48]

    Cell sources that have not yet been tested in extracorporeal BAL systems include immortalized fetal human hepatocytes, immortalized adult human hepatocytes, and human stem cell-derived hepatocytes. More than a decade ago, some researchers claimed that their immortalized fetal or adult hepatocyte lines were promising cell sources for BALs.[49-52]However, the followup research and applications are still absent, which may suggest that they encountered insurmountable difficulties. Recently, a new immortalized human fetal hepatocyte line, cBAL111, was established by overexpression of the reverse transcriptase of telomerase (hTERT).[53]However, this cell line fell under scrutiny because it was found to have considerable variations at the genetic level, compared with primary hepatocytes in BALsin vitro.[54]

    The method of reversible immortalization was once encouraging. In this process, the immortalizing genes, i.e., simian virus 40 large T antigen (SV40LT) or hTERT, can be excised using a Cre/LoxP site-specific recombination. Then, an increase of liver-specific functionality can be shown later.[55-58]However, it was reported that even the reversibly immortalized human hepatocyte line, NKNT-3,[57]was poorly differentiatedin vitroafter reversion.[53]Another reversibly immortalized human hepatocyte line, 16-T3,[58]has never been compared with mature human hepatocytes at the genetic level. Although stem cells from different tissues have the potential to differentiate into hepatocyte-like cells, some issues, such as insufficient quantity, incomplete functionality, ethical controversy, and safety still challenge the clinical availability of these cells.[59,60]

    From all of this information, a relevant conclusion can be drawn. As the biological component of extracorporeal BAL support systems, an appropriate cell source should combine the following characteristics: (i) nearly full functionality of mature human hepatocytes, (ii) unlimited life-span and proliferative capacityin vitro, and (iii) no potential risk of metastatic tumor formation, zoonotic transmission, or immunogenicity. Unfortunately, no such cell source has yet been found. Some thought that a highly differentiated human hepatocyte line was most likely to be competent in BALs.[15]Others, however, argued that it was difficult to replace liver functions with a single cell line.[61,62]The liver is formed by hepatocytes and a variety of non-parenchymal cells such as Kupffer cells, sinusoidal endothelial cells and stellate cells. These cells communicate with each other and maintain the physiological functions of the liver. Coculture techniques, therefore, are considered promising for obtaining cell sources for BALsin vitro.[62]While it is possible to obtain an ideal cell source ultimately, the existing bioreactor design remains flawed.

    An ideal BAL bioreactor should also provide anin vivo-like environment, where the viability and functionality of a large number of hepatocytes can be optimally maintainedin vitro. However, such highlevel simulation has not been achieved, as oxygenationand bile secretion are two major on-going controversial issues.

    In vivo-like oxygen supply

    The human liver has a dual blood supply; it is fed by the hepatic arteries and the portal vein. Both sources enter the sinusoids and provide oxygen to hepatocytes. The hepatic blood flow rate in physiological conditions averages 1450 mL/min, which is roughly equivalent to a quarter of resting cardiac output.[63]It is not difficult to infer that an adequate and controllable oxygen supply is the prerequisite for the maintenance of hepatocytes on a large scale. In most BALs currently under clinical trials, the perfusion fluids are plasma or blood ultrafiltrate, since whole blood perfusion inevitably leads to hemolysis and coagulation. In contrast to whole blood, which contains red blood cells, the oxygencarrying capacity of plasma or blood ultrafiltrate is quite insufficient. Therefore, hepatocytes in BAL bioreactors are inevitably exposed to hypoxia.[64,65]Two strategies have been used to solve this problem so far.

    One solution is the application of an integral oxygenator, as in the AMC-BAL and MELS systems.[31,34]In these systems, the oxygenation capillaries are uniformly distributed throughout the bioreactor cavity or interwoven with the cell attachment matrix. Such a structure enables hepatocytes to acquire oxygen from its immediate surroundings. An integral oxygenator may be superior to an external one, but neither has the self-regulation ability possessed by organisms. In physiological environments, hemoglobin acquires oxygen molecules at high partial pressures of oxygen (pO2), and releases them at low levels of pO2. The oxygen affinity of hemoglobin is affected by several factors, such as body temperature, carbon dioxide concentration, and pH. Thus, organisms can protect themselves from hypoxia and oxygen toxicity by relying on self-regulation, whereas these artificial oxygenators cannot.

    Another strategy is the supplementation of perfusion fluids with red blood cell substitutes (e.g., artificial oxygen carriers), such as perfluorocarbons (PFCs) and/ or hemoglobin-based O2carriers (HBOCs).[66-68]PFCs are capable of carrying large quantities of oxygen to tissues,[69]but can reach levels that are toxic. Moreover, phase III clinical trials showed that an increased risk of stroke is associated with PFCs.[70]At least to some extent, HBOCs mimic thein vivooxygen supply but, unfortunately, a meta-analysis showed a significant increase in the risk of death and myocardial infarction by HBOCs.[71]The serious adverse side-effects of PFCs and HBOCs make their future very uncertain.

    Absence of bile secretory function

    No existing BAL bioreactor has a biliary system capable of collecting bile produced by hepatocytes and moving it out of extracorporeal circulation. To solve this, a combination of a BAL bioreactor and an artificial liver device, such as albumin dialysis, carbon absorption, or plasma exchange, has been proposed.[34,38,39]However, this strategy may be questionable. First, it is not clear what proportion of bile is retained intracellularly, and whether it can be washed away by an artificial liver device. Second, these combinatorial devices make it difficult to discern whether it is the artificial liver device or the BAL bioreactor that contributes to the efficacy.

    Lack of convenience

    To serve as a piece of emergency equipment, a BAL should be easy to operate and immediately available at any time. However, before a BAL system can be connected to a live body, operators must complete a series of procedures. First, for a pig hepatocyte-based BAL, complications related to sacrificing animals and isolating cells must be overcome. Second, for a primary human hepatocyte-based BAL, human organ tissues must be collected and/or thawed, and hepatocytes must then be isolated. In addition, for a hepatocyte line-based BAL, there needs to be a large-scale cultivation and/or freeze-thaw process. And finally, there needs to be a cell adhesion process within the bioreactor. All of these obstacles are complicated and time-consuming.

    Difficulty of efficacy evaluation

    In animal experiments, evaluation of a BAL system loaded with human-derived hepatocytes is not easy since the metabolic capability of human cells still differs in some aspects from that of pig hepatocytes.[41]The difference between human and other species is even greater.[40]The clinical efficacy of BALs is also difficult to show since, in many cases, BAL therapy just acts as a bridge, with the ultimate solution being liver transplantation.

    Conclusions

    For nearly 30 years, extracorporeal BAL support systems have raised great expectations for the treatment of liver failure. However, so far, none of these systems is ready for routine clinical use. BAL systems experience bottlenecks in several areas, including cell sourcing, bioreactor design, convenience, and efficacy assessment. To makethis technology more hopeful, two things are essential: 1) we need a highly differentiated human hepatocyte line; and 2) we need a bioreactor capable of providing anin vivo-like environment for cells. Future research should not only be focused on better understanding hepatocyte proliferation and differentiation, but also on studying liver microstructure formation, such as liver microvessels and bile canaliculi.

    Contributors: ZLF wrote the main body of the article. PXP provided advice. All authors contributed to the design and interpretation of the study and to further drafts. LLJ is the guarantor.

    Funding: This work was supported by grants from the National Natural Science Foundation of China (30630023) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (81121002).

    Ethical approval: Not needed.

    Competing interest: No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    1 Kjaergard LL, Liu J, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure: a systematic review. JAMA 2003;289:217-222.

    2 Polson J, Lee WM; American Association for the Study of Liver Disease. AASLD position paper: the management of acute liver failure. Hepatology 2005;41:1179-1197.

    3 Du WB, Li LJ, Huang JR, Yang Q, Liu XL, Li J, et al. Effects of artificial liver support system on patients with acute or chronic liver failure. Transplant Proc 2005;37:4359-4364.

    4 Mas A, Rodés J. Fulminant hepatic failure. Lancet 1997;349: 1081-1085.

    5 Strain AJ, Neuberger JM. A bioartificial liver--state of the art. Science 2002;295:1005-1009.

    6 Carpentier B, Gautier A, Legallais C. Artificial and bioartificial liver devices: present and future. Gut 2009;58:1690-1702.

    7 Pless G. Artificial and bioartificial liver support. Organogenesis 2007;3:20-24.

    8 McKenzie TJ, Lillegard JB, Nyberg SL. Artificial and bioartificial liver support. Semin Liver Dis 2008;28:210-217.

    9 Sechser A, Osorio J, Freise C, Osorio RW. Artificial liver support devices for fulminant liver failure. Clin Liver Dis 2001;5:415-430.

    10 van de Kerkhove MP, Hoekstra R, Chamuleau RA, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg 2004;240:216-230.

    11 Adham M. Extracorporeal liver support: waiting for the deciding vote. ASAIO J 2003;49:621-632.

    12 Demetriou AA. Hepatic assist devices. Panminerva Med 2005;47:31-37.

    13 Santoro A, Mancini E, Ferramosca E, Faenza S. Liver support systems. Contrib Nephrol 2007;156:396-404.

    14 Rozga J. Liver support technology--an update. Xenotransplantation 2006;13:380-389.

    15 Chamuleau RA. Future of bioartificial liver support. World J Gastrointest Surg 2009;1:21-25.

    16 Sussman NL, Kelly JH. Improved liver function following treatment with an extracorporeal liver assist device. Artif Organs 1993;17:27-30.

    17 Millis JM, Cronin DC, Johnson R, Conjeevaram H, Conlin C, Trevino S, et al. Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure: system modifications and clinical impact. Transplantation 2002;74:1735-1746.

    18 Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996;24:1446-1451.

    19 Sussman NL, Gislason GT, Conlin CA, Kelly JH. The Hepatix extracorporeal liver assist device: initial clinical experience. Artif Organs 1994;18:390-396.

    20 Millis JM, Cronin DC, Johnson R, Conjeevaram H, Faust TW, Trevino S, et al. Bioartificial liver support: report of the longest continuous treatment with human hepatocytes. Transplant Proc 2001;33:1935.

    21 Pitkin Z, Mullon C. Evidence of absence of porcine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system. Artif Organs 1999; 23:829-833.

    22 Samuel D, Ichai P, Feray C, Saliba F, Azoulay D, Arulnaden JL, et al. Neurological improvement during bioartificial liver sessions in patients with acute liver failure awaiting transplantation. Transplantation 2002;73:257-264.

    23 Demetriou AA, Whiting J, Levenson SM, Chowdhury NR, Schechner R, Michalski S, et al. New method of hepatocyte transplantation and extracorporeal liver support. Ann Surg 1986;204:259-271.

    24 Demetriou AA, Brown RS Jr, Busuttil RW, Fair J, McGuire BM, Rosenthal P, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 2004;239:660-667.

    25 Mullon C, Pitkin Z. The HepatAssist bioartificial liver support system: clinical study and pig hepatocyte process. Expert Opin Investig Drugs 1999;8:229-235.

    26 Demetriou AA, Rozga J, Podesta L, Lepage E, Morsiani E, Moscioni AD, et al. Early clinical experience with a hybrid bioartificial liver. Scand J Gastroenterol Suppl 1995;208:111-117.

    27 Mazariegos GV, Patzer JF 2nd, Lopez RC, Giraldo M, Devera ME, Grogan TA, et al. First clinical use of a novel bioartificial liver support system (BLSS). Am J Transplant 2002;2:260-266.

    28 Patzer JF 2nd, Mazariegos GV, Lopez R, Molmenti E, Gerber D, Riddervold F, et al. Novel bioartificial liver support system: preclinical evaluation. Ann N Y Acad Sci 1999;875:340-352.

    29 Mazariegos GV, Kramer DJ, Lopez RC, Shakil AO, Rosenbloom AJ, DeVera M, et al. Safety observations in phase I clinical evaluation of the Excorp Medical Bioartificial Liver Support System after the first four patients. ASAIO J 2001;47: 471-475.

    30 van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Bridging a patient with acute liver failure to liver transplantation by the AMC-bioartificial liver. Cell Transplant 2003;12:563-568.

    31 Flendrig LM, la Soe JW, J?rning GG, Steenbeek A, Karlsen OT, Bovée WM, et al. In vitro evaluation of a novel bioreactor based on an integral oxygenator and a spirally woundnonwoven polyester matrix for hepatocyte culture as small aggregates. J Hepatol 1997;26:1379-1392.

    32 van de Kerkhove MP, Di Florio E, Scuderi V, Mancini A, Belli A, Bracco A, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs 2002;25:950-959.

    33 Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, et al. Clinical extracorporeal hybrid liver support--phase I study with primary porcine liver cells. Xenotransplantation 2003;10:460-469.

    34 Sauer IM, Zeilinger K, Pless G, Kardassis D, Theruvath T, Pascher A, et al. Extracorporeal liver support based on primary human liver cells and albumin dialysis--treatment of a patient with primary graft non-function. J Hepatol 2003; 39:649-653.

    35 Sauer IM, Zeilinger K, Obermayer N, Pless G, Grünwald A, Pascher A, et al. Primary human liver cells as source for modular extracorporeal liver support--a preliminary report. Int J Artif Organs 2002;25:1001-1005.

    36 Morsiani E, Pazzi P, Puviani AC, Brogli M, Valieri L, Gorini P, et al. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs 2002;25:192-202.

    37 Morsiani E, Brogli M, Galavotti D, Bellini T, Ricci D, Pazzi P, et al. Long-term expression of highly differentiated functions by isolated porcine hepatocytes perfused in a radial-flow bioreactor. Artif Organs 2001;25:740-748.

    38 Xue YL, Zhao SF, Luo Y, Li XJ, Duan ZP, Chen XP, et al. TECA hybrid artificial liver support system in treatment of acute liver failure. World J Gastroenterol 2001;7:826-829.

    39 Ding YT, Qiu YD, Chen Z, Xu QX, Zhang HY, Tang Q, et al. The development of a new bioartificial liver and its application in 12 acute liver failure patients. World J Gastroenterol 2003;9:829-832.

    40 Donato MT, Castell JV, Gómez-Lechón MJ. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices: comparison with other hepatic cellular models. J Hepatol 1999;31:542-549.

    41 Cowan PJ, d'Apice AJ. The coagulation barrier in xenotransplantation: incompatibilities and strategies to overcome them. Curr Opin Organ Transplant 2008;13:178-183.

    42 Kanai H, Marushima H, Kimura N, Iwaki T, Saito M, Maehashi H, et al. Extracorporeal bioartificial liver using the radial-flow bioreactor in treatment of fatal experimental hepatic encephalopathy. Artif Organs 2007;31:148-151.

    43 Enosawa S, Miyashita T, Fujita Y, Suzuki S, Amemiya H, Omasa T, et al.In vivoestimation of bioartificial liver with recombinant HepG2 cells using pigs with ischemic liver failure. Cell Transplant 2001;10:429-433.

    44 Enosawa S, Miyashita T, Tanaka H, Li X, Suzuki S, Amemiya H, et al. Prolongation of survival of pigs with ischemic liver failure by treatment with a bioartificial liver using glutamine synthetase transfected recombinant HepG2. Transplant Proc 2001;33:1945-1947.

    45 Wang N, Tsuruoka S, Yamamoto H, Enosawa S, Omasa T, Sata N, et al. The bioreactor with CYP3A4- and glutamine synthetase-introduced HepG2 cells: treatment of hepatic failure dog with diazepam overdosage. Artif Organs 2005;29: 681-684.

    46 Enosawa S, Miyashita T, Saito T, Omasa T, Matsumura T. The significant improvement of survival times and pathological parameters by bioartificial liver with recombinant HepG2 in porcine liver failure model. Cell Transplant 2006;15:873-880.

    47 Nyberg SL, Remmel RP, Mann HJ, Peshwa MV, Hu WS, Cerra FB. Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver. Ann Surg 1994;220:59-67.

    48 Mavri-Damelin D, Damelin LH, Eaton S, Rees M, Selden C, Hodgson HJ. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia. Biotechnol Bioeng 2008;99:644-651.

    49 Werner A, Duvar S, Müthing J, Büntemeyer H, Lünsdorf H, Strauss M, et al. Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. Biotechnol Bioeng 2000;68:59-70.

    50 Werner A, Duvar S, Müthing J, Büntemeyer H, Kahmann U, Lünsdorf H, et al. Cultivation and characterization of a new immortalized human hepatocyte cell line, HepZ, for use in an artificial liver support system. Ann N Y Acad Sci 1999; 875:364-368.

    51 Kobayashi N, Miyazaki M, Fukaya K, Inoue Y, Sakaguchi M, Noguchi H, et al. Establishment of a highly differentiated immortalized human hepatocyte cell line as a source of hepatic function in the bioartificial liver. Transplant Proc 2000;32:237-241.

    52 Kobayashi N, Noguchi H, Watanabe T, Matsumura T, Totsugawa T, Fujiwara T, et al. A tightly regulated immortalized human fetal hepatocyte cell line to develop a bioartificial liver. Transplant Proc 2001;33:1948-1949.

    53 Deurholt T, van Til NP, Chhatta AA, ten Bloemendaal L, Schwartlander R, Payne C, et al. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009;9:89.

    54 Poyck PP, van Wijk AC, van der Hoeven TV, de Waart DR, Chamuleau RA, van Gulik TM, et al. Evaluation of a new immortalized human fetal liver cell line (cBAL111) for application in bioartificial liver. J Hepatol 2008;48:266-275.

    55 Kobayashi N, Westerman KA, Tanaka N, Fox IJ, Leboulch P. A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol 2001;6:293-300.

    56 Kobayashi N. Life support of artificial liver: development of a bioartificial liver to treat liver failure. J Hepatobiliary Pancreat Surg 2009;16:113-117.

    57 Kobayashi N, Fujiwara T, Westerman KA, Inoue Y, Sakaguchi M, Noguchi H, et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000;287:1258-1262.

    58 Totsugawa T, Yong C, Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-Alvarez N, Noguchi H, et al. Survival of liver failure pigs by transplantation of reversibly immortalized human hepatocytes with Tamoxifen-mediated self-recombination. J Hepatol 2007;47:74-82.

    59 Dalgetty DM, Medine CN, Iredale JP, Hay DC. Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 2009;297:G241-248.

    60 Dan YY, Yeoh GC. Liver stem cells: a scientific and clinical perspective. J Gastroenterol Hepatol 2008;23:687-698.

    61 Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 2005; 20:327-335.

    62 Ding YT, Shi XL. Bioartificial liver devices: Perspectives on the state of the art. Front Med 2011;5:15-19.

    63 Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993;10:1093-1095.

    64 Hay PD, Veitch AR, Smith MD, Cousins RB, Gaylor JD. Oxygen transfer in a diffusion-limited hollow fiber bioartificial liver. Artif Organs 2000;24:278-288.

    65 Hay PD, Veitch AR, Gaylor JD. Oxygen transfer in a convection-enhanced hollow fiber bioartificial liver. Artif Organs 2001;25:119-130.

    66 Chen G, Palmer AF. Perfluorocarbon facilitated O(2) transport in a hepatic hollow fiber bioreactor. Biotechnol Prog 2009;25:1317-1321.

    67 Chen G, Palmer AF. Mixtures of hemoglobin-based oxygen carriers and perfluorocarbons exhibit a synergistic effect in oxygenating hepatic hollow fiber bioreactors. Biotechnol Bioeng 2010;105:534-542.

    68 Chen G, Palmer AF. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor. Biotechnol Bioeng 2009;102:1603-1612.

    69 Remy B, Deby-Dupont G, Lamy M. Red blood cell substitutes: fluorocarbon emulsions and haemoglobin solutions. Br Med Bull 1999;55:277-298.

    70 Seghatchian J, de Sousa G. An overview of unresolved inherent problems associated with red cell transfusion and potential use of artificial oxygen carriers and ECO-RBC: current status/future trends. Transfus Apher Sci 2007;37:251-259.

    71 Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA 2008;299:2304-2312.

    Accepted after revision March 7, 2012

    It requires wisdom to understand wisdom; the music is nothing if the audience is deaf.

    —Walter Lippmann

    December 13, 2011

    Author Affiliations: State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China (Zhao LF, Pan XP and Li LJ)

    Lan-Juan Li, MD, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China (Tel: 86-571-87236759; Fax: 86-571-87236759; Email: ljli@zju.edu.cn)

    ? 2012, Hepatobiliary Pancreat Dis Int. All rights reserved.

    10.1016/S1499-3872(12)60155-6

    精品久久久久久久久av| 久久 成人 亚洲| 亚洲欧美一区二区三区国产| 国产深夜福利视频在线观看| 九草在线视频观看| 亚洲色图 男人天堂 中文字幕 | 日韩av不卡免费在线播放| 一本—道久久a久久精品蜜桃钙片| 国产精品一区二区在线不卡| 国产亚洲一区二区精品| 热99久久久久精品小说推荐| 一区二区三区精品91| 大码成人一级视频| 简卡轻食公司| 久久国产精品男人的天堂亚洲 | 亚洲综合色惰| 高清欧美精品videossex| 99久久人妻综合| 国产在线视频一区二区| 男人操女人黄网站| 久久99热这里只频精品6学生| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 哪个播放器可以免费观看大片| 中国国产av一级| 在现免费观看毛片| av专区在线播放| 高清黄色对白视频在线免费看| 日韩大片免费观看网站| 青青草视频在线视频观看| 美女内射精品一级片tv| 大香蕉97超碰在线| 国产精品久久久久成人av| 黄片播放在线免费| 亚洲av电影在线观看一区二区三区| 9色porny在线观看| 美女xxoo啪啪120秒动态图| 亚洲情色 制服丝袜| 日韩成人av中文字幕在线观看| 综合色丁香网| 午夜免费鲁丝| 亚洲成人手机| 国产精品久久久久成人av| 少妇 在线观看| 亚洲国产成人一精品久久久| 亚洲久久久国产精品| 国产精品偷伦视频观看了| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩综合久久久久久| 久久精品久久久久久噜噜老黄| 啦啦啦中文免费视频观看日本| 热re99久久精品国产66热6| 亚洲精品色激情综合| 看十八女毛片水多多多| 国产精品国产三级国产av玫瑰| 91久久精品电影网| 亚洲av成人精品一区久久| 日本欧美国产在线视频| 青青草视频在线视频观看| 国产精品一区二区在线观看99| 久久午夜福利片| 草草在线视频免费看| 亚洲精品美女久久av网站| 欧美成人午夜免费资源| 香蕉精品网在线| 高清毛片免费看| 热re99久久精品国产66热6| 丝袜在线中文字幕| 久久久久网色| 精品少妇内射三级| 国产av国产精品国产| 一区二区三区免费毛片| 日日爽夜夜爽网站| 男女高潮啪啪啪动态图| 亚洲精品色激情综合| 欧美精品国产亚洲| 69精品国产乱码久久久| 亚洲第一区二区三区不卡| 不卡视频在线观看欧美| 插逼视频在线观看| 亚洲av二区三区四区| 欧美变态另类bdsm刘玥| 国产亚洲一区二区精品| av国产久精品久网站免费入址| 在线观看国产h片| 日韩三级伦理在线观看| 美女大奶头黄色视频| 久久av网站| 在线观看www视频免费| 欧美 亚洲 国产 日韩一| xxxhd国产人妻xxx| 伦理电影免费视频| xxx大片免费视频| 国产欧美日韩综合在线一区二区| 亚洲成人av在线免费| 国产在线免费精品| 国产不卡av网站在线观看| 97在线人人人人妻| 久久久久久久久久久丰满| 欧美亚洲日本最大视频资源| 青春草国产在线视频| 国产精品99久久99久久久不卡 | 性高湖久久久久久久久免费观看| 午夜精品国产一区二区电影| 国产精品熟女久久久久浪| 久久国产亚洲av麻豆专区| 国产亚洲午夜精品一区二区久久| 亚洲伊人久久精品综合| 成人手机av| 欧美三级亚洲精品| 国产免费现黄频在线看| 人人妻人人爽人人添夜夜欢视频| 精品人妻在线不人妻| 亚洲av在线观看美女高潮| 久久人人爽人人片av| 在线免费观看不下载黄p国产| 成人无遮挡网站| 成人18禁高潮啪啪吃奶动态图 | 乱码一卡2卡4卡精品| av国产久精品久网站免费入址| 9色porny在线观看| a级毛片免费高清观看在线播放| 五月玫瑰六月丁香| 国产成人免费观看mmmm| 欧美bdsm另类| 成人手机av| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区黑人 | 国产成人免费观看mmmm| 在线观看免费日韩欧美大片 | 国产国拍精品亚洲av在线观看| 一区二区av电影网| 九九久久精品国产亚洲av麻豆| 色94色欧美一区二区| 国产毛片在线视频| 五月开心婷婷网| 伦精品一区二区三区| 青春草视频在线免费观看| a级毛色黄片| 午夜激情av网站| 99久国产av精品国产电影| 午夜福利视频精品| 在线观看免费高清a一片| 男女高潮啪啪啪动态图| 日韩中字成人| 日韩伦理黄色片| 一级,二级,三级黄色视频| 22中文网久久字幕| 在线观看人妻少妇| 特大巨黑吊av在线直播| 曰老女人黄片| a级毛片黄视频| 亚洲av免费高清在线观看| 热99国产精品久久久久久7| 亚洲婷婷狠狠爱综合网| 久久午夜福利片| 一本大道久久a久久精品| 在现免费观看毛片| 秋霞在线观看毛片| 亚洲欧美中文字幕日韩二区| 亚洲高清免费不卡视频| 中文字幕av电影在线播放| 夜夜骑夜夜射夜夜干| 一本大道久久a久久精品| 国产精品一区www在线观看| 亚洲精品成人av观看孕妇| 麻豆乱淫一区二区| 久久精品国产亚洲av天美| 中文字幕人妻熟人妻熟丝袜美| 三上悠亚av全集在线观看| 丝袜脚勾引网站| 最近中文字幕高清免费大全6| 在线观看美女被高潮喷水网站| 久久久久久久精品精品| 国产黄片视频在线免费观看| 校园人妻丝袜中文字幕| 久久精品久久精品一区二区三区| 丝袜美足系列| 久久青草综合色| 美女内射精品一级片tv| 啦啦啦视频在线资源免费观看| 黄色毛片三级朝国网站| 午夜福利视频精品| 少妇猛男粗大的猛烈进出视频| 丰满少妇做爰视频| 免费黄色在线免费观看| 国产日韩欧美视频二区| 欧美丝袜亚洲另类| 国产精品久久久久久久久免| 蜜桃国产av成人99| 极品少妇高潮喷水抽搐| 日韩精品免费视频一区二区三区 | 九九久久精品国产亚洲av麻豆| 国产 一区精品| 男女边摸边吃奶| 国产午夜精品久久久久久一区二区三区| 肉色欧美久久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 三级国产精品欧美在线观看| 午夜日本视频在线| 国产极品天堂在线| 男女边摸边吃奶| 91午夜精品亚洲一区二区三区| 在线看a的网站| 国产女主播在线喷水免费视频网站| 亚洲av中文av极速乱| www.色视频.com| 亚州av有码| 日韩强制内射视频| 免费观看性生交大片5| 国产色婷婷99| 91精品国产九色| 久热久热在线精品观看| 国产爽快片一区二区三区| 亚洲图色成人| 久久精品熟女亚洲av麻豆精品| 色5月婷婷丁香| 久久久久久久久久久免费av| 午夜福利网站1000一区二区三区| 狠狠婷婷综合久久久久久88av| 国产 一区精品| 国产成人91sexporn| 一级片'在线观看视频| 精品久久久久久久久av| 黑人欧美特级aaaaaa片| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品国产色婷婷电影| 久久97久久精品| 亚洲国产色片| 特大巨黑吊av在线直播| 久久久欧美国产精品| 欧美精品一区二区大全| 国产午夜精品久久久久久一区二区三区| 成人国语在线视频| 97在线视频观看| 亚洲成人手机| 国产视频内射| 新久久久久国产一级毛片| 少妇精品久久久久久久| 黄色配什么色好看| 欧美精品一区二区免费开放| 欧美少妇被猛烈插入视频| 国产成人免费无遮挡视频| 人妻人人澡人人爽人人| 欧美xxxx性猛交bbbb| 丝袜在线中文字幕| 久久狼人影院| 国产男女超爽视频在线观看| 亚洲精品亚洲一区二区| 一区二区av电影网| 9色porny在线观看| 亚洲欧美一区二区三区国产| av线在线观看网站| 国产成人午夜福利电影在线观看| 国产伦理片在线播放av一区| 狠狠精品人妻久久久久久综合| videos熟女内射| 热99久久久久精品小说推荐| 免费看光身美女| 汤姆久久久久久久影院中文字幕| 亚洲国产精品专区欧美| 久久影院123| 久久久久精品性色| 一个人免费看片子| 尾随美女入室| 国产成人精品在线电影| 国产精品偷伦视频观看了| 成人国语在线视频| 最近中文字幕高清免费大全6| 欧美日韩国产mv在线观看视频| 免费观看的影片在线观看| 精品人妻熟女av久视频| 纯流量卡能插随身wifi吗| 亚洲国产毛片av蜜桃av| 一级毛片aaaaaa免费看小| 高清午夜精品一区二区三区| 国产精品无大码| 精品午夜福利在线看| 黄色毛片三级朝国网站| 啦啦啦啦在线视频资源| 乱码一卡2卡4卡精品| 亚洲精华国产精华液的使用体验| 免费看光身美女| av网站免费在线观看视频| 国产精品一国产av| 自拍欧美九色日韩亚洲蝌蚪91| 黄色毛片三级朝国网站| 国产黄色视频一区二区在线观看| 91成人精品电影| 大香蕉久久网| 视频在线观看一区二区三区| 国产一区二区在线观看av| 久久青草综合色| 日韩一区二区三区影片| 国产日韩欧美在线精品| 国产精品一区二区三区四区免费观看| 精品人妻偷拍中文字幕| 日本午夜av视频| 激情五月婷婷亚洲| 亚洲精品国产av成人精品| 丝袜在线中文字幕| 在线播放无遮挡| 亚洲欧美一区二区三区黑人 | 卡戴珊不雅视频在线播放| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av天美| 亚洲性久久影院| 国产免费福利视频在线观看| 免费播放大片免费观看视频在线观看| 18禁在线播放成人免费| 成人无遮挡网站| 欧美成人精品欧美一级黄| 亚洲无线观看免费| 亚洲精品亚洲一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 成人亚洲欧美一区二区av| 日本色播在线视频| 最后的刺客免费高清国语| h视频一区二区三区| 视频在线观看一区二区三区| 一本—道久久a久久精品蜜桃钙片| av国产精品久久久久影院| 国产精品一二三区在线看| 大又大粗又爽又黄少妇毛片口| av.在线天堂| 日本午夜av视频| 9色porny在线观看| 精品人妻熟女av久视频| 在线观看免费视频网站a站| 在线天堂最新版资源| 哪个播放器可以免费观看大片| 丰满乱子伦码专区| 最近2019中文字幕mv第一页| 青春草视频在线免费观看| 亚洲第一区二区三区不卡| 日日撸夜夜添| 2021少妇久久久久久久久久久| 精品99又大又爽又粗少妇毛片| 免费大片黄手机在线观看| 18在线观看网站| 2018国产大陆天天弄谢| 热re99久久国产66热| 亚洲精品456在线播放app| 日日摸夜夜添夜夜添av毛片| 蜜臀久久99精品久久宅男| 丰满乱子伦码专区| 亚洲欧美日韩另类电影网站| 国产成人精品一,二区| 午夜福利在线观看免费完整高清在| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| 亚洲人成网站在线播| 在线精品无人区一区二区三| 日韩一本色道免费dvd| 成人国产av品久久久| 欧美亚洲日本最大视频资源| 美女中出高潮动态图| 色94色欧美一区二区| 少妇丰满av| 一级毛片我不卡| 伊人久久国产一区二区| 一级毛片黄色毛片免费观看视频| 亚洲精品乱久久久久久| 男男h啪啪无遮挡| 日本黄色片子视频| 日韩在线高清观看一区二区三区| 日韩一本色道免费dvd| 色吧在线观看| 午夜福利影视在线免费观看| 国产高清三级在线| 亚洲成人av在线免费| 一级毛片 在线播放| 午夜91福利影院| 一个人免费看片子| 亚洲第一区二区三区不卡| 亚洲国产精品专区欧美| 久久精品久久精品一区二区三区| 人妻少妇偷人精品九色| 久久精品熟女亚洲av麻豆精品| 人体艺术视频欧美日本| 国产伦精品一区二区三区视频9| 免费观看性生交大片5| 99热这里只有精品一区| 免费高清在线观看日韩| 亚洲精品乱久久久久久| 日韩亚洲欧美综合| 日韩精品免费视频一区二区三区 | 韩国高清视频一区二区三区| 欧美人与善性xxx| 18在线观看网站| 国产男女内射视频| 免费观看的影片在线观看| 国产欧美日韩一区二区三区在线 | 女人精品久久久久毛片| 国产在视频线精品| 久久这里有精品视频免费| 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 久久久精品免费免费高清| 日韩精品有码人妻一区| 我要看黄色一级片免费的| 欧美老熟妇乱子伦牲交| 久久久久久久久大av| 欧美精品亚洲一区二区| 亚洲成色77777| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 成人毛片a级毛片在线播放| 久久人人爽av亚洲精品天堂| av线在线观看网站| 男的添女的下面高潮视频| 啦啦啦视频在线资源免费观看| 少妇的逼水好多| av免费观看日本| 亚洲av免费高清在线观看| 久久亚洲国产成人精品v| av免费在线看不卡| 另类精品久久| 国产精品一区二区在线观看99| 亚州av有码| 在线观看www视频免费| 国产精品久久久久久久电影| 亚洲国产精品一区三区| 在线观看一区二区三区激情| 国产一区二区三区av在线| 能在线免费看毛片的网站| 热99久久久久精品小说推荐| 我的女老师完整版在线观看| 少妇人妻精品综合一区二区| 伦精品一区二区三区| 日日撸夜夜添| 欧美 日韩 精品 国产| 制服丝袜香蕉在线| 黑人猛操日本美女一级片| 国产精品蜜桃在线观看| 国产男女超爽视频在线观看| 国国产精品蜜臀av免费| 精品99又大又爽又粗少妇毛片| 亚洲av日韩在线播放| 青青草视频在线视频观看| 欧美精品高潮呻吟av久久| 亚洲精品,欧美精品| 最近手机中文字幕大全| 在线精品无人区一区二区三| 成人国语在线视频| 国产69精品久久久久777片| 欧美xxⅹ黑人| 国产综合精华液| 免费大片18禁| 天天影视国产精品| 日韩精品有码人妻一区| 国产黄色视频一区二区在线观看| 九草在线视频观看| 少妇的逼好多水| 午夜精品国产一区二区电影| 22中文网久久字幕| av在线播放精品| 80岁老熟妇乱子伦牲交| 桃花免费在线播放| 国产日韩欧美视频二区| 亚洲人成77777在线视频| 一区二区av电影网| 亚洲人与动物交配视频| 国产精品.久久久| 亚洲欧洲精品一区二区精品久久久 | 日韩欧美精品免费久久| 亚洲欧美成人精品一区二区| 视频区图区小说| 久久久久精品性色| 亚洲av二区三区四区| 欧美少妇被猛烈插入视频| 涩涩av久久男人的天堂| 最新的欧美精品一区二区| 日韩欧美精品免费久久| 伦精品一区二区三区| 啦啦啦在线观看免费高清www| 新久久久久国产一级毛片| 视频区图区小说| 欧美3d第一页| 亚洲精品久久久久久婷婷小说| 国产免费一区二区三区四区乱码| 亚洲,欧美,日韩| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久久人人人人人人| 久久ye,这里只有精品| 国产亚洲精品第一综合不卡 | 亚洲av中文av极速乱| 最近手机中文字幕大全| 色5月婷婷丁香| 亚洲内射少妇av| 丝袜喷水一区| 久久久久久久久大av| 亚洲精品乱码久久久v下载方式| 久久免费观看电影| 午夜91福利影院| 高清视频免费观看一区二区| 亚洲内射少妇av| 久久精品国产a三级三级三级| 久久99精品国语久久久| 日本欧美国产在线视频| 性高湖久久久久久久久免费观看| 中文字幕最新亚洲高清| 久久精品熟女亚洲av麻豆精品| 搡女人真爽免费视频火全软件| 日本黄色片子视频| 午夜日本视频在线| 少妇人妻精品综合一区二区| av.在线天堂| 国模一区二区三区四区视频| 99re6热这里在线精品视频| 午夜久久久在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区三区av在线| 在线观看www视频免费| 成人毛片a级毛片在线播放| 精品国产国语对白av| 十八禁网站网址无遮挡| 9色porny在线观看| 免费人成在线观看视频色| 色婷婷av一区二区三区视频| 丰满饥渴人妻一区二区三| 视频在线观看一区二区三区| 最近手机中文字幕大全| 国产探花极品一区二区| 九色成人免费人妻av| 免费黄频网站在线观看国产| 人人妻人人澡人人看| 欧美丝袜亚洲另类| av在线观看视频网站免费| 午夜激情av网站| 全区人妻精品视频| 91在线精品国自产拍蜜月| 久久狼人影院| 爱豆传媒免费全集在线观看| 成年av动漫网址| 国产熟女午夜一区二区三区 | 伊人久久精品亚洲午夜| 国产精品一区二区在线不卡| 精品久久久噜噜| 色吧在线观看| 97在线人人人人妻| 99热国产这里只有精品6| 久久久久国产精品人妻一区二区| 男女免费视频国产| 精品久久久精品久久久| 大香蕉久久网| 91在线精品国自产拍蜜月| 免费看光身美女| 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 成人漫画全彩无遮挡| 热99久久久久精品小说推荐| 少妇的逼好多水| 在线观看一区二区三区激情| 亚洲av.av天堂| 97在线人人人人妻| 色婷婷av一区二区三区视频| 亚洲美女搞黄在线观看| 免费播放大片免费观看视频在线观看| 亚洲成人一二三区av| 制服诱惑二区| 人妻系列 视频| 国产女主播在线喷水免费视频网站| 性色avwww在线观看| 欧美激情国产日韩精品一区| 欧美性感艳星| 欧美激情 高清一区二区三区| 男女国产视频网站| 亚洲欧美成人精品一区二区| 狂野欧美激情性xxxx在线观看| 少妇的逼水好多| 久久ye,这里只有精品| 另类亚洲欧美激情| 丰满乱子伦码专区| 成人午夜精彩视频在线观看| 精品久久国产蜜桃| 成年女人在线观看亚洲视频| 亚洲内射少妇av| 日韩欧美一区视频在线观看| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| 亚洲精品国产色婷婷电影| 午夜免费男女啪啪视频观看| 成人影院久久| 80岁老熟妇乱子伦牲交| 伦理电影免费视频| 在线播放无遮挡| 在线观看美女被高潮喷水网站| 日韩强制内射视频| 日本欧美视频一区| 自拍欧美九色日韩亚洲蝌蚪91| 少妇被粗大的猛进出69影院 | 99国产综合亚洲精品| 日韩欧美精品免费久久| 人体艺术视频欧美日本| 午夜老司机福利剧场| 插逼视频在线观看| 中文天堂在线官网| 国产老妇伦熟女老妇高清| 久久热精品热| 99热6这里只有精品| 日产精品乱码卡一卡2卡三| 在线观看www视频免费| 国产一区二区三区av在线| 飞空精品影院首页| 亚洲欧美成人综合另类久久久| 丝瓜视频免费看黄片| 99热网站在线观看| 在线观看一区二区三区激情| √禁漫天堂资源中文www| 在线播放无遮挡| 啦啦啦中文免费视频观看日本| 亚洲av二区三区四区| 美女cb高潮喷水在线观看| 满18在线观看网站|