• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Artificial neural network modeling of mechanical properties of armor steel under complex loading conditions

    2012-06-21 01:58:08XUZejian許澤建HUANGFenglei黃風(fēng)雷
    關(guān)鍵詞:風(fēng)雷

    XU Ze-jian(許澤建), HUANG Feng-lei(黃風(fēng)雷)

    (State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China)

    Widely used in armor protection systems due to their high strength and toughness,armor steels are often subjected to extreme loading conditions such as crash,impact,or explosion in their service environments.The ballistic resistance performance of armor steel is directly related to its mechanical properties under conditions of high strain rate,high temperature,and large plastic strain.Therefore,a thorough understanding of the plastic behaviors and the constitutive relationship modeling under such conditions are needed for the design of the components in its application.In our previous work[1],mechanical behaviors of the 603armor steel were studied systematically over wide temperature and strain rate ranges.Based on the results,two phenomenological constitutive models,as well as five physically based ones have been established to describe and predict the plastic behaviors of this material.

    In recent years,the artificial neural network(ANN)approach has been introduced into the field of materials science as a powerful mathematical modeling technique and found growing application in materials property determination[2-8].Several studies were conducted[9-12]using ANN to predict flow stress of alloys in hot deformation or hot forging cycles at restricted temperature or strain rate ranges.However,few studies are recordable in scientific literature that utilize ANN to describe material behavior at strain rates ranging from quasi-static to dynamic,with different deformation temperatures.Moreover,the predictive capabilities of the established ANN models were rarely verified.

    In this work,constitutive relationship of the 603armor steel is established over wide ranges of strain rate and temperature,using a three-layer feed-forward ANN with a back-propagation (BP)learning algorithm.Validity of this ANN model is checked by the strain rate jump tests.Descriptive and predictive capabilities of this approach are compared with other constitutive models that were built on the same experimental data.

    1 Material and experimental procedure

    The 603steel was hot rolled and subsequently subjected to recrystallization and annealing.All the cylindrical samples are machined from a baseplate.The samples have a 6mm nominal diameter and 9mm height for quasi-static experiments,while in case of dynamic loading,the samples are 5 mm in diameter and 4mm long.

    The quasi-static compression tests under strain rates of 0.001s-1and 1s-1are performed using an MTS hydraulic testing machine.The dynamic compression tests,with strain rates of 200s-1,2 000s-1,and 4 500s-1,are conducted using the revised split Hopkinson pressure bar(SHPB)technique[13].For both quasi-static and dynamic tests,the elevated temperatures,including 473K,673Kand 873K,are attained with electro-thermal cells.After that,a three-step strain rate jump test is carried out,to assess the validity of the established ANN model.

    2 ANN approach

    An ANN is made up of interconnected computational elements known as nodes or neurons to simulate the processes that occur in the human brain and nervous system during pattern recognition,information filtering and functional control.ANN can learn from example data and construct an input-output mapping,producing reasonable outputs for new inputs.This technique is particularly suitable for modeling non-linear problems involving the manipulation of multiple parameters and interpolation,such as the combined effects of strain rate,temperature,and strain on flow stress.A-mong various ANN approaches that have been proposed,the multi-layer perceptron(MLP)architecture with a BP algorithm has been used most wide-ly.MLP based neural networks are made up of layers of neurons with suitable weighted interconnections,forming a feed-forward topology in the hierarchical structure.The input and output layers consist of different numbers of neurons,depending on the numbers of the input and output variables in the model,respectively.In the feed forward process,the input data are presented to input layer neurons that pass the input values onto the first hidden layer and so on.Each of the hidden layer nodes computes a weighted sum of its input.This sum is then passed through the transfer function and the final results are obtained at the output layer.The outputs are compared with the target results,and the total error energyE(n)at iteration numbernfor all thePneurons in the output layer is calculated by

    wheredj(n)is the target output for neuronjat iterationnandyj(n)is the network output of neuronjat iterationn.The BP algorithm is used to adjust network weights and biases according to the transmitted backward error information to minimize the errors between the predicted and actual outputs.This process is operated iteratively to train the network until a specified convergence is reached.In this study,a three-layer MLP neural network with a BP learning algorithm is used to simulate plastic behaviors of the 603armor steel.The structure of our neural network is schematically shown in Fig.1.The inputs of the ANN model are plastic strain,log strain rate,and deformation temperature,while the output is flow stress.The design and training of the ANN model is performed using the neural network toolbox of the MATLAB software. Here the Levenberg-Maquarolt algorithm is used to train the network for fast optimization.

    Fig.1 Schematic structure of the ANN model

    Experimental data of the 603armor steel obtained from compression tests are used to develop the ANN model.In those tests,the initial temperatureT0ranges from 288Kto 873K (288K,473K,673K,and 873K),the strain rateranges from0.001s-1to4 500s-1(0.001s-1,1s-1,200s-1,2 000s-1,and4 500s-1),andtheplastic strainεrangesfrom0to0.45.Fordynamictests(200-4 500s-1),theadiabatictemperaturerise inthematerialduringplasticdeformationisconsidered,whichiscalculatedby

    whereσisflowstress(MPa),ρisthemassdensity(7.8g/cm3),CVistheheatcapacity(0.48J/(g·K)),andηisthefractionofplasticwork convertedintoheat.Inthepresentstudy,ηis takentobe1.Foreachtestunderdynamicloading,ΔTis firstly calculated for each specific value ofε,andthenthedeformationtemperatureT(=T0+ΔT)isusedinnetworktraining.Totally606datasets(ε,logε·,T,andσ)areemployedfrom thestress-straincurvestodeveloptheANNmodel.Beforenetworktraining,allthedatasetsarenormalizedtotransformthevaluesbetween-1and1toincreasetheefficiencyofthenetworkandto minimizetheeffectsofmagnitudevariationin thedata.

    Todetermineanappropriatehiddenlayer,a seriesofANNmodelshavebeendevelopedwith thehiddenlayerneuronsrangingfrom1to20.Thegeneralizationcapabilityofthetrainednetworksischeckedbymeansquareerror(MSE)and correlationcoefficient(R)basedonthetargetand outputvaluesbytheequations:

    whereNis the total number of the employed datasets,diandyiare target and network output values respectively,Eis the experimental value,Pis the predicted value by the ANN model,andandPare the mean values ofEandPrespectively.From Fig.2it is observed that both MSE andRchange abruptly at first with the increase of the hidden layer neurons.However,when more than 4 neurons are used,MSE andRchange at a much lower rate.After the neuron number exceeds 11,the values of MSE andRreach a comparatively stable state,and improvement in the network performance is not obvious with further increase of neurons.Therefore,11neurons are used in the hidden layer of our ANN model,in consideration of the network performance and the computation cost.The details of network topology and training parameters are shown in Tab.1.

    Fig.2 Network performance variation with neurons in the hidden layer

    3 Results and discussion

    3.1 Model performance

    In network training,both the input and target vectors are randomly divided into 3sets:60%are used for training,20%are used to validate that the network is generalizing and to stop training before overfitting,and the last 20%are used as a completely independent test of network generalization.The performance of the network at each epoch of training is also checked by MSE between experimental data and network output.Fig.3shows the variation of MSE with increasing training epochs.As can be seen,the best performance is achieved at epoch 38,with MSE=0.002 859.The corresponding correlation coefficient at this epoch is 0.994 1.With the trained ANN model,the description of plastic behavior of the 603armor steel at different loading conditions is presented in Fig.4.It is observed that the model prediction can precisely simulate the plastic behaviors of the material at each specific strain rate and temperature level.For dynamic tests,the oscillations of the experimental data are not characterized by this ANN model,which describes the flow stress with comparatively smooth curves.

    Fig.3 Variation of ANN model performance with increasing training epochs

    Fig.4 ANN model description of plastic behavior of the 603armor steel at different loading conditions

    In Fig.5,plastic flow stress for plastic strain levels ranging from 0.02to 0.14at strain rate of 2 000s-1are plotted with the experimental temperature.The adiabatic temperature rise for each strain level is also considered here,which can be observed from the inclination of the experimental data with the increase of plastic strain.With the increase of initial temperature,the plastic flow stress decreases for each plastic strain,with a decreasing rate.As can be seen,the temperature effect of the flow stress can be described quite well by the ANN model,including the lower rate of the decreasing at a higher initial temperature.Variation of plastic flow stress with strain rate at a constant strain level of 0.1for tests performed at different initial temperatures are shown in Fig.6.At the beginning,the flow stress increases slowly with a linear relationship relative to strain rate,and then increases rapidly when the strain rate is above 200s-1.This variation of strain rate sensitivity can also be described successfully by the ANN model for each initial temperature.The correlation between the experimental data and the predicted results is shown in Fig.7,withR=0.994 1.

    3.2 Predictive capability verification

    Fig.5 ANN model description of the temperature effect on plastic flow stress

    Fig.6 ANN model description of the strain rate effect on plastic flow stress

    Fig.7 Correlation between the experimental and ANN predicted values for the training data

    For verification of its predictive capability,the obtained ANN model is used to simulate the strain rate jump tests,which were not included in the development of the neural network.A sample used for quasi-static test was firstly loaded to a plastic strain of 13.6%at 753Kand 0.002s-1,then the initial temperature was decreased to 533Kand the sample was compressed sequentially to plastic strain 23.2%at 0.48s-1.After that,the sample was machined to 4mm both in diameter and length,and then tested using the SHPB technique at 293Kand 4 300s-1,to plastic strain 61.4%.In the model prediction,adiabatic temperature rise ΔTis only considered in the third loading step,while the first two steps are assumed to be under isothermal conditions.Isothermal results are firstly obtained by the ANN model for all the three loading steps,thenΔTis calculated according to the predicted flow stress in the third loading step,and new input datasets are obtained with deformation temperatureT.With the newly generated input vectors,the flow stress of the third loading step is predicted again.Both the isothermal and the final results are shown in Fig.8.The points represent experimental results,while the lines are predicted values by the ANN model withTorT0.

    From Fig.8,the ANN model prediction is in good agreement with the experimental results under the condition of 753Kand 0.002s-1.But for the subsequent loading step,the ANN model gives higher predictions than the measured values.In the third loading step,it is important to note that with consideration of adiabatic temperature rise the predictive capability of the ANN model is evidently improved.By using deformation temperatureT,it gives a much better prediction to the descending trend of the flow stress,which results from generation of a large amount of heat during fast deformation of the material.Therefore,the adiabatic temperature rise in dynamic tests is handled properly both in the developing of the model and in the prediction procedure.The MSE of all the three experimental steps is 0.052 4,andR=0.969.

    In our previous work,the descriptive and predictive capabilities of two phenomenological constitutive models(JC and KHL)[1],and five physically based models(PB,NNL,ZA,VA,and RK)[2]were investigated based on the same experimental data.For comparison,here we also measure the average absolute relative error(AARE)between the ANN model characterization and the experi-mental results by the following relation

    whereσexpandσmodelareflowstressfromexperimentsandANNmodel,respectively.According toEq.(5),thedescriptionerrorsforthetraining dataare1.51%and2.05%,forthequasi-static anddynamicconditionsrespectively.Forthe strainratejumptests,thepredictionerrorateach conditionis13.7%and9.9%,respectively.The descriptiveandpredictiveerrorsareshownin Fig.9,togetherwiththeaveragevalueofthe quasi-staticanddynamictestsforeachconstitutive model.Ascanbeseen,thedescriptiveerrorofthe ANNmodelismuchlowerthanthatofallthe othermodels,forbothoftheloadingconditions.ThisperformanceoftheANNmodelindescribingthetrainingdataindicatesitssuperiorflexibilityinthesimulationofhighlynonlinearthermoviscoplasticresponsesofmaterials.Forthe strainratejumptests,theaveragevalueofthe quasi-staticanddynamicerrorsoftheANNmodelis11.80%.Itspredictivecapabilityisbetter thantheNNL,ZA,RK,andJCmodels,of whichtheaverageerrorsare12.27%,13.30%,14.94%,and14.97%respectively.Fortherest models,theaverageerrorsarePB8.74%,VA9.93%andKHL9.83%.Theresultsshowthata properlytrainedneuralnetworkmayserveasa validandeffectivetooltocharacterizeplasticbehaviorsofthe603steeloverwiderangesoftemperaturesandstrainrates.

    Fig.8 Comparison between the measurement and ANN model prediction for strain rate jump tests

    Fig.9 Comparison of the ANN model performance with other constitutive models

    4 Conclusion

    Athree-layerMLPANNwithaBPlearning algorithmisestablishedtosimulateplasticbehaviorsofthe603armorsteeloverwiderangesof temperaturesandstrainrates.Boththedescriptive andthepredictivecapabilitiesofthedeveloped ANNmodelarechecked,andcomparedwithotherconstitutivemodels.TheANNmodelhasa muchbetterapplicabilitythantheothermodelsin characterizationofthebasicexperimentaldata.Boththetemperatureandthestrainrateeffectson theflowstresscanbedescribedsuccessfullyby thismodel.Inthepredictionoftheflowstressin thestrainratejumptests,theANNmodelexhibitsabetteraccuracythanmostoftheothermodels,withanaverageerrorof11.80%fortheboth loadingconditions.Amajoradvantageofthe ANNmodelistheconvenienceinmodelestablishmentanddataprocessing,besidesitsoutstanding performanceindescriptionofthetrainingdata andaconsiderableprecisioninprediction.There-sultsshowthattheANNmodelthatisdeveloped heremayserveasavalidandeffectivetoolto characterizeplasticbehaviorsofthe603steelundercomplexloadingconditions.

    [1]Xu Z J,Huang F L.Comparison of physically based constitutive models characterizing armor steel over wide temperature and strain rate ranges[J].Modelling and Simulation in Materials Science and Engineering,2012,20:015005.

    [2]Rusinek A,Rodríguez-Martínez J A,Arias A.A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper [J].Int J Mech Sci,2010,52:120-135.

    [3]Rao K P,Prasad Y K D V.Neural network approach to flow stress evaluation in hot deformation[J].J Mater Process Tech,1995,53:552-566.

    [4]Liu Q,Ji Z,Liu M,et al.Acquiring the constitutive relationship for a thermal viscoplastic material using an artificial neural network [J].J Mater Process Tech,1996,62:206-210.

    [5]Hwu Y J,Pan Y T,Lenard J G.A comparative study of artificial neural networks for the prediction of constitutive behaviour of HSLA and carbon steel [J].Steel Res,1996,67:59-66.

    [6]Chun M S,Biglou J,Lenard J G,et al.Using neural networks to predict parameters in the hot working of aluminium alloys[J].J Mater Process Tech,1998,86:245-251.

    [7]Sumantra Mandal,Sivaprasad P V,Venugopal S.Capability of a feed-forward artificial neural network to predict the constitutive flow behavior of as cast 304 stainless steel under hot deformation [J].Trans ASME J Eng Mater Technol,2007,129:242-247.

    [8]Lin Y C,Zhang J,Zhong J.Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel[J].Comput Mater Sci,2008,43:752-758.

    [9]Bariani P F,Bruschi S,Dal Negro T.Prediction of nickel-base superalloys’rheological behaviour under hot forging conditions using artificial neural networks[J].J Mater Process Tech,2004,152:395-400.

    [10]Edwin Raj R,Daniel B S S.Prediction of compressive properties of closed-cell aluminum foam using artificial neural network [J].Comput Mater Sci,2008,43:767-773.

    [11]Sun Y,Zeng W D,Zhao Y Q,et al.Development of constitutive relationship model of Ti600alloy using artificial neural network [J].Comput Mater Sci,2010,48:686-691.

    [12]Ji G,Li F,Li Q,et al.Prediction of the hot deformation beharior for Aermet100steel using an artificial neural network[J].Comput Mater Sci,2010,48:626-632.

    [13]Nemat-Nasser S,Isaacs J B,Starrett J E.Hopkinson techniques for dynamic recovery experiments[J].Proc R Soc Lond,1991,A435:371-391.

    (Edited byWang Yuxia)

    猜你喜歡
    風(fēng)雷
    詠蓮
    城廂區(qū)中學(xué)“四有體育課堂”學(xué)以致用的實(shí)踐研究
    太行之山何崔嵬 巖幽谷隱藏風(fēng)雷——第十八屆《中華詩(shī)詞》青春詩(shī)會(huì)側(cè)記
    A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy*
    “垂直風(fēng)雷”直-8
    郭風(fēng)雷作品
    藝術(shù)家(2018年9期)2018-11-15 01:30:18
    郭風(fēng)雷作品
    藝術(shù)家(2018年5期)2018-08-06 06:28:34
    石油鉆具行業(yè)的排頭兵——北方風(fēng)雷公司發(fā)展紀(jì)實(shí)
    Experimental study on vapor explosion caused by interaction between high temperature molten aluminum and water
    筆下走風(fēng)雷 書中百萬(wàn)兵——讀《平羅縣軍事志》感懷
    軍事歷史(2004年4期)2004-11-22 06:50:06
    色综合欧美亚洲国产小说| 成人永久免费在线观看视频| 啦啦啦在线免费观看视频4| av免费在线观看网站| 飞空精品影院首页| 日本精品一区二区三区蜜桃| 香蕉国产在线看| 国产男女内射视频| 一本综合久久免费| 99久久人妻综合| 在线永久观看黄色视频| 香蕉丝袜av| 视频区图区小说| 夜夜躁狠狠躁天天躁| av免费在线观看网站| 久久精品熟女亚洲av麻豆精品| 亚洲九九香蕉| 久久久久视频综合| 久久久久国产精品人妻aⅴ院 | 69av精品久久久久久| 日本wwww免费看| 免费在线观看日本一区| 亚洲国产欧美日韩在线播放| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 9191精品国产免费久久| 三上悠亚av全集在线观看| 高清视频免费观看一区二区| 国产精华一区二区三区| 9色porny在线观看| 国产精品1区2区在线观看. | 欧美日韩乱码在线| av有码第一页| 亚洲精品自拍成人| 搡老乐熟女国产| 国产乱人伦免费视频| 精品一区二区三卡| 亚洲黑人精品在线| 亚洲欧洲精品一区二区精品久久久| 美女国产高潮福利片在线看| 久久精品国产亚洲av香蕉五月 | 侵犯人妻中文字幕一二三四区| 久久狼人影院| 久久久久国内视频| 精品第一国产精品| 国产精品综合久久久久久久免费 | 身体一侧抽搐| 久久香蕉国产精品| aaaaa片日本免费| 亚洲国产欧美网| 91字幕亚洲| 亚洲精品国产精品久久久不卡| tocl精华| 亚洲中文日韩欧美视频| 村上凉子中文字幕在线| 亚洲一码二码三码区别大吗| 久久ye,这里只有精品| 一级a爱视频在线免费观看| 在线观看免费视频网站a站| 大型av网站在线播放| 欧美另类亚洲清纯唯美| 国产视频一区二区在线看| 他把我摸到了高潮在线观看| 亚洲色图 男人天堂 中文字幕| 黑人欧美特级aaaaaa片| 999久久久国产精品视频| 岛国毛片在线播放| 99久久精品国产亚洲精品| 午夜日韩欧美国产| 日本欧美视频一区| 高清黄色对白视频在线免费看| 久久久久国产一级毛片高清牌| 精品午夜福利视频在线观看一区| 韩国av一区二区三区四区| 十八禁高潮呻吟视频| 午夜福利免费观看在线| 久久精品国产99精品国产亚洲性色 | 一区二区日韩欧美中文字幕| 国产成人影院久久av| 91大片在线观看| 亚洲中文字幕日韩| 人人妻人人爽人人添夜夜欢视频| 如日韩欧美国产精品一区二区三区| 久久久久久久久免费视频了| 自线自在国产av| 色94色欧美一区二区| 99热国产这里只有精品6| 老司机午夜福利在线观看视频| 大香蕉久久成人网| 一边摸一边抽搐一进一出视频| 亚洲自偷自拍图片 自拍| 在线观看66精品国产| 国产一区二区三区视频了| 99国产极品粉嫩在线观看| 国产免费av片在线观看野外av| 日韩三级视频一区二区三区| 性色av乱码一区二区三区2| 国产精品成人在线| 久久久久久亚洲精品国产蜜桃av| 久久久国产一区二区| 午夜免费鲁丝| 国产免费男女视频| 超碰97精品在线观看| 男女午夜视频在线观看| 一进一出好大好爽视频| 精品久久久久久久毛片微露脸| 制服诱惑二区| 老司机午夜福利在线观看视频| 免费一级毛片在线播放高清视频 | 日本一区二区免费在线视频| 69精品国产乱码久久久| 国产人伦9x9x在线观看| 成人精品一区二区免费| 亚洲午夜理论影院| 国产精品乱码一区二三区的特点 | 99久久精品国产亚洲精品| 久久久久精品国产欧美久久久| 免费一级毛片在线播放高清视频 | 18禁裸乳无遮挡动漫免费视频| 91老司机精品| 在线十欧美十亚洲十日本专区| 成人av一区二区三区在线看| av在线播放免费不卡| 在线天堂中文资源库| 亚洲aⅴ乱码一区二区在线播放 | 成年版毛片免费区| 国产免费av片在线观看野外av| 两性夫妻黄色片| 一级毛片精品| 亚洲欧美色中文字幕在线| 男女下面插进去视频免费观看| 亚洲国产中文字幕在线视频| 欧美 日韩 精品 国产| 日韩视频一区二区在线观看| 欧美大码av| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av | 女人久久www免费人成看片| aaaaa片日本免费| 欧美国产精品va在线观看不卡| 国产主播在线观看一区二区| 欧美日韩视频精品一区| av不卡在线播放| 欧美黑人精品巨大| 视频区图区小说| 老司机深夜福利视频在线观看| 成年动漫av网址| 超色免费av| 啦啦啦在线免费观看视频4| 国产亚洲精品第一综合不卡| 免费看十八禁软件| 亚洲精品久久午夜乱码| avwww免费| 亚洲人成电影观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美黑人精品巨大| 99精品久久久久人妻精品| 91在线观看av| 国产精品免费一区二区三区在线 | 日韩中文字幕欧美一区二区| 国产精品自产拍在线观看55亚洲 | 日本精品一区二区三区蜜桃| 大码成人一级视频| ponron亚洲| 极品教师在线免费播放| 老司机午夜福利在线观看视频| 久久香蕉精品热| av有码第一页| 欧美精品av麻豆av| 免费看a级黄色片| 夜夜爽天天搞| 午夜免费鲁丝| 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站| 色老头精品视频在线观看| 美女高潮喷水抽搐中文字幕| 亚洲综合色网址| 日韩中文字幕欧美一区二区| 久久精品国产亚洲av高清一级| 丰满迷人的少妇在线观看| 嫩草影视91久久| 天堂中文最新版在线下载| 夫妻午夜视频| 国产成人欧美| 夜夜爽天天搞| 国产亚洲精品一区二区www | 国产精品久久久久成人av| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 久久久精品国产亚洲av高清涩受| 欧美国产精品va在线观看不卡| 欧美老熟妇乱子伦牲交| 午夜老司机福利片| 亚洲专区国产一区二区| 国产精品av久久久久免费| 夫妻午夜视频| 日韩成人在线观看一区二区三区| 免费在线观看黄色视频的| 色婷婷久久久亚洲欧美| 女性生殖器流出的白浆| aaaaa片日本免费| 一级黄色大片毛片| 日韩欧美免费精品| 窝窝影院91人妻| 女人高潮潮喷娇喘18禁视频| 欧美乱妇无乱码| 美国免费a级毛片| 久久中文看片网| 亚洲免费av在线视频| 九色亚洲精品在线播放| 俄罗斯特黄特色一大片| 免费不卡黄色视频| 日本wwww免费看| 日本精品一区二区三区蜜桃| 国产精品av久久久久免费| 欧美人与性动交α欧美精品济南到| 男女高潮啪啪啪动态图| 不卡av一区二区三区| 自线自在国产av| 欧美激情极品国产一区二区三区| 亚洲五月婷婷丁香| 午夜成年电影在线免费观看| 欧美乱码精品一区二区三区| 男人舔女人的私密视频| 国产精品九九99| 亚洲人成电影免费在线| 黄色a级毛片大全视频| 亚洲欧美激情在线| 他把我摸到了高潮在线观看| av网站免费在线观看视频| 久久久久视频综合| 欧美激情久久久久久爽电影 | 国内毛片毛片毛片毛片毛片| 欧美精品人与动牲交sv欧美| 日韩一卡2卡3卡4卡2021年| 啦啦啦视频在线资源免费观看| 欧美 亚洲 国产 日韩一| 下体分泌物呈黄色| 一a级毛片在线观看| 91成年电影在线观看| 婷婷丁香在线五月| 国产一区二区三区视频了| 女性生殖器流出的白浆| 午夜亚洲福利在线播放| 久久精品aⅴ一区二区三区四区| 国产极品粉嫩免费观看在线| 色94色欧美一区二区| videosex国产| 国产精品一区二区在线观看99| 男女午夜视频在线观看| 亚洲av美国av| 欧美激情高清一区二区三区| 中亚洲国语对白在线视频| 9色porny在线观看| 亚洲国产欧美日韩在线播放| 国产伦人伦偷精品视频| 窝窝影院91人妻| 日韩精品免费视频一区二区三区| 99热网站在线观看| 91字幕亚洲| 一级,二级,三级黄色视频| 中出人妻视频一区二区| 好男人电影高清在线观看| 最近最新免费中文字幕在线| 女性被躁到高潮视频| 亚洲精品美女久久av网站| 亚洲精品国产一区二区精华液| 久久精品国产a三级三级三级| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 美女视频免费永久观看网站| 亚洲,欧美精品.| 一级,二级,三级黄色视频| 狠狠狠狠99中文字幕| 在线观看免费日韩欧美大片| x7x7x7水蜜桃| 亚洲欧美日韩高清在线视频| 757午夜福利合集在线观看| 久久久久久免费高清国产稀缺| 精品人妻1区二区| 精品久久久久久久毛片微露脸| 亚洲人成电影免费在线| 国产亚洲一区二区精品| 日韩视频一区二区在线观看| 熟女少妇亚洲综合色aaa.| 变态另类成人亚洲欧美熟女 | 日韩欧美一区视频在线观看| 宅男免费午夜| 国产精品 国内视频| 男人的好看免费观看在线视频 | 亚洲av日韩在线播放| 欧洲精品卡2卡3卡4卡5卡区| 午夜影院日韩av| 欧美日韩福利视频一区二区| 国产成人欧美| 18禁裸乳无遮挡免费网站照片 | 中文字幕色久视频| 99国产精品99久久久久| 丰满迷人的少妇在线观看| 久久国产精品影院| 欧美黑人精品巨大| 中国美女看黄片| 麻豆av在线久日| 免费不卡黄色视频| 老司机福利观看| 少妇猛男粗大的猛烈进出视频| 香蕉久久夜色| 丝袜在线中文字幕| 视频区欧美日本亚洲| 一边摸一边抽搐一进一小说 | 黄色a级毛片大全视频| 老司机在亚洲福利影院| 水蜜桃什么品种好| 动漫黄色视频在线观看| 大香蕉久久网| 午夜成年电影在线免费观看| 老熟女久久久| 成人手机av| 欧美乱色亚洲激情| 国产又色又爽无遮挡免费看| 麻豆av在线久日| 高清av免费在线| 韩国av一区二区三区四区| 一进一出抽搐gif免费好疼 | 国产一卡二卡三卡精品| 欧美日韩乱码在线| 日韩人妻精品一区2区三区| 极品人妻少妇av视频| 精品国内亚洲2022精品成人 | 黑人巨大精品欧美一区二区mp4| 婷婷成人精品国产| 中文字幕另类日韩欧美亚洲嫩草| 欧美最黄视频在线播放免费 | 欧美性长视频在线观看| www.自偷自拍.com| 久久久久久久国产电影| 亚洲伊人色综图| 乱人伦中国视频| 日韩三级视频一区二区三区| 欧美日韩成人在线一区二区| 操美女的视频在线观看| 一级毛片精品| 亚洲成人免费av在线播放| 91国产中文字幕| 一边摸一边做爽爽视频免费| 亚洲五月婷婷丁香| 丁香六月欧美| 成人国产一区最新在线观看| 亚洲精品美女久久久久99蜜臀| 在线十欧美十亚洲十日本专区| 每晚都被弄得嗷嗷叫到高潮| 热99久久久久精品小说推荐| 十八禁网站免费在线| 亚洲aⅴ乱码一区二区在线播放 | av电影中文网址| 村上凉子中文字幕在线| 久久久精品国产亚洲av高清涩受| 午夜激情av网站| 两个人免费观看高清视频| 少妇裸体淫交视频免费看高清 | 国产欧美亚洲国产| 日本黄色视频三级网站网址 | 国产国语露脸激情在线看| 一本综合久久免费| 久久中文字幕人妻熟女| 高清欧美精品videossex| 视频区欧美日本亚洲| 精品高清国产在线一区| 午夜福利在线免费观看网站| 欧美日韩国产mv在线观看视频| 巨乳人妻的诱惑在线观看| 久久天躁狠狠躁夜夜2o2o| 成人黄色视频免费在线看| 免费久久久久久久精品成人欧美视频| 久久青草综合色| 美女国产高潮福利片在线看| 精品国产一区二区三区四区第35| 69av精品久久久久久| 后天国语完整版免费观看| 欧美一级毛片孕妇| 不卡av一区二区三区| 91字幕亚洲| 18禁黄网站禁片午夜丰满| 一进一出抽搐gif免费好疼 | 午夜成年电影在线免费观看| 女人被躁到高潮嗷嗷叫费观| 女性生殖器流出的白浆| 久久这里只有精品19| 热re99久久国产66热| 99国产精品99久久久久| 9热在线视频观看99| 国产av一区二区精品久久| 岛国毛片在线播放| 老司机午夜福利在线观看视频| 免费在线观看视频国产中文字幕亚洲| 久久精品熟女亚洲av麻豆精品| 99riav亚洲国产免费| 在线国产一区二区在线| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 精品久久久久久久久久免费视频 | 91字幕亚洲| 午夜福利在线免费观看网站| 午夜精品在线福利| 热re99久久国产66热| 国产亚洲欧美在线一区二区| 欧美久久黑人一区二区| 午夜福利欧美成人| 一级片'在线观看视频| 99re在线观看精品视频| 欧美精品av麻豆av| 高清视频免费观看一区二区| 窝窝影院91人妻| videosex国产| 久久久国产一区二区| 又黄又爽又免费观看的视频| 欧美老熟妇乱子伦牲交| 亚洲精品自拍成人| 高潮久久久久久久久久久不卡| 久热爱精品视频在线9| 成人免费观看视频高清| av片东京热男人的天堂| 国产精品一区二区精品视频观看| 亚洲熟妇熟女久久| 国产精品免费大片| 中文字幕制服av| 国产极品粉嫩免费观看在线| av中文乱码字幕在线| 首页视频小说图片口味搜索| 国产淫语在线视频| 如日韩欧美国产精品一区二区三区| 亚洲精品av麻豆狂野| 午夜视频精品福利| 久久人妻福利社区极品人妻图片| 亚洲精品乱久久久久久| 一级黄色大片毛片| 国产男女超爽视频在线观看| 国产97色在线日韩免费| 黄色成人免费大全| 视频区欧美日本亚洲| 欧美另类亚洲清纯唯美| 亚洲成人免费av在线播放| 久久久国产一区二区| 久久狼人影院| 最新在线观看一区二区三区| 国产亚洲av高清不卡| 亚洲第一青青草原| 99香蕉大伊视频| 亚洲av成人一区二区三| 少妇被粗大的猛进出69影院| 免费不卡黄色视频| 国产亚洲一区二区精品| 香蕉丝袜av| 国产aⅴ精品一区二区三区波| 村上凉子中文字幕在线| 超色免费av| 亚洲av片天天在线观看| 久久天堂一区二区三区四区| 亚洲色图综合在线观看| 免费观看人在逋| 啦啦啦视频在线资源免费观看| 99re6热这里在线精品视频| 久久精品亚洲熟妇少妇任你| 亚洲国产欧美一区二区综合| 丰满饥渴人妻一区二区三| 两性夫妻黄色片| www.自偷自拍.com| 国产区一区二久久| 午夜福利欧美成人| av一本久久久久| 精品亚洲成国产av| 成人黄色视频免费在线看| 国产精品1区2区在线观看. | 中文字幕另类日韩欧美亚洲嫩草| 黑人猛操日本美女一级片| 亚洲av成人不卡在线观看播放网| 久久99一区二区三区| 制服人妻中文乱码| 日韩成人在线观看一区二区三区| 视频区图区小说| 妹子高潮喷水视频| 亚洲av熟女| www.熟女人妻精品国产| 国产一区二区三区视频了| 午夜亚洲福利在线播放| 人妻丰满熟妇av一区二区三区 | 亚洲熟妇中文字幕五十中出 | 人妻丰满熟妇av一区二区三区 | 日日夜夜操网爽| 一个人免费在线观看的高清视频| 下体分泌物呈黄色| 免费观看a级毛片全部| 纯流量卡能插随身wifi吗| 日本撒尿小便嘘嘘汇集6| 日韩欧美一区视频在线观看| 国产精品电影一区二区三区 | 老熟妇乱子伦视频在线观看| 啦啦啦 在线观看视频| 国产精品免费大片| 无遮挡黄片免费观看| 欧美日韩亚洲综合一区二区三区_| 久久草成人影院| 成人av一区二区三区在线看| 欧美激情高清一区二区三区| 在线播放国产精品三级| 男人舔女人的私密视频| 青草久久国产| 午夜两性在线视频| 少妇裸体淫交视频免费看高清 | 亚洲国产看品久久| 99久久综合精品五月天人人| 无遮挡黄片免费观看| 午夜老司机福利片| 一级黄色大片毛片| 51午夜福利影视在线观看| 中出人妻视频一区二区| 国产无遮挡羞羞视频在线观看| 国产伦人伦偷精品视频| 久久影院123| 成年版毛片免费区| 露出奶头的视频| 一区二区三区国产精品乱码| 午夜福利欧美成人| 国产精品偷伦视频观看了| 在线国产一区二区在线| 18禁国产床啪视频网站| 免费av中文字幕在线| 成年动漫av网址| 黄色a级毛片大全视频| 日韩视频一区二区在线观看| 成年版毛片免费区| 麻豆av在线久日| 国产亚洲精品久久久久久毛片 | 国产片内射在线| 香蕉久久夜色| 国产不卡一卡二| 在线观看免费午夜福利视频| 在线观看免费高清a一片| 一a级毛片在线观看| 国产成人欧美在线观看 | 欧美日韩成人在线一区二区| 天堂俺去俺来也www色官网| 18禁裸乳无遮挡免费网站照片 | 久久精品国产a三级三级三级| 欧美乱妇无乱码| 韩国av一区二区三区四区| 另类亚洲欧美激情| 一级片'在线观看视频| 精品亚洲成a人片在线观看| 日本撒尿小便嘘嘘汇集6| 精品亚洲成国产av| 国产精品欧美亚洲77777| 精品人妻熟女毛片av久久网站| 欧美国产精品va在线观看不卡| 一区在线观看完整版| 一级a爱片免费观看的视频| 免费在线观看日本一区| 免费高清在线观看日韩| 午夜福利影视在线免费观看| 俄罗斯特黄特色一大片| 午夜91福利影院| 久久国产精品大桥未久av| 久久精品亚洲精品国产色婷小说| 最近最新中文字幕大全免费视频| 国产在视频线精品| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品 国内视频| 精品国产亚洲在线| 国产精品亚洲av一区麻豆| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 亚洲精品中文字幕在线视频| 欧美激情高清一区二区三区| 日日爽夜夜爽网站| 国产一区二区三区综合在线观看| 丰满迷人的少妇在线观看| 亚洲av成人av| 精品国产国语对白av| 国产一区二区三区在线臀色熟女 | 人成视频在线观看免费观看| 成年人午夜在线观看视频| 久久精品人人爽人人爽视色| 国产精品电影一区二区三区 | 国产高清国产精品国产三级| 欧美午夜高清在线| 日日夜夜操网爽| 中文字幕另类日韩欧美亚洲嫩草| 又紧又爽又黄一区二区| 首页视频小说图片口味搜索| 91精品三级在线观看| 色综合婷婷激情| 国产一卡二卡三卡精品| 欧美久久黑人一区二区| 美女高潮喷水抽搐中文字幕| 久久久久久亚洲精品国产蜜桃av| 日本黄色视频三级网站网址 | 午夜福利影视在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 黄色成人免费大全| 国产成人精品久久二区二区91| 怎么达到女性高潮| 日韩制服丝袜自拍偷拍| 国产精华一区二区三区| 久久婷婷成人综合色麻豆| 精品一区二区三区四区五区乱码| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 国产亚洲av高清不卡| 欧美日韩一级在线毛片| 男女午夜视频在线观看| 国产精品永久免费网站| 天堂√8在线中文| 久久国产亚洲av麻豆专区| 在线免费观看的www视频| 黄片播放在线免费|