• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organfibrosis inhibited by blocking transforming growth factor-β signaling via peroxisome proliferator-activated receptor γ agonists

    2012-06-11 08:05:50

    Chengdu,China

    Introduction

    Organfibrosis has been viewed as one of the major medical problems,which can lead to progressive dysfunction of the liver,lung,kidney,skin,heart,and eventually the death of patients.[1-6]No effective treatment is available at present.Fibrosis is initiated by a variety of pathological,physiological,biochemical and physical factors.Except the different etiologies of the disease,there is a common pathogenetic process:excessive activation of the key profibrotic cytokine,transforming growth factor-β(TGF-β),which increases the synthesis of extracellular matrix (ECM) proteins and decreases the degradation associated with a gradual destruction of normal tissue and function (Fig.1).[2-6]Furthermore,TGF-β signaling plays an important role in the epithelial-tomesenchymal transition (EMT).Although there is a normal development process,EMT can be induced by excessive activation of TGF-β in various epithelial cells after organ injury,with loss of epithelial characteristics and presence of mesenchymal features (Fig.2).[7-9]Thus lots of ECM proteins were synthesized in the liver,lung,kidney and heart.[8-11]The TGF-β signal transduction pathway therefore has become an effective target for the treatment offibrotic diseases.

    Many studies have shown that on activation by two important classes of ligands:natural ligand (15d-PGJ2)or synthetic ligand (TZDs),peroxisome proliferatoractivated receptor γ (PPARγ) can block the TGF-β signaling pathway and then suppress tissue and organfibrosis.PPARγ,ubiquitously expressed throughout the body,belongs to ligand-activated transcription factors of the nuclear receptor superfamily.[12,13]Through the formation of a heterodimer with retinoid X receptor α(RXRα),PPARγ subsequently binds to the peroxisome proliferating response element (PPRE),known as a specific DNA sequence in the promoter region of PPARγ target genes,to turn on or turn off the transcription of different genes including glucose and lipid metabolism,in flammation,fibrosis and cancer.[14-16]Here we review the recent advances in understanding how PPARγ agonists inhibit TGF-β-induced profibrotic effects in the liver,lung,kidney,skin,heart and other organs,with particular emphasis on the main antifibrotic mechanism.

    Fig.1.The central role of TGF-β infibrosis.A variety of pathology,physiology,biochemistry and physical factors stimulate TGF-β expression,ultimately resulting infibrosis.Ang II:angiotensin II;TX:thromboxane; ROS:reactive oxygen species.

    TGF-β and organfibrosis

    TGF-β contributes to the pathologicalfibrosis in most organs,especially the liver,kidney,lung and skin,a topic that has been the subject of numerous studies (Table 1).Moreover,excessive TGF-β can induce EMT in various epithelial cells,which also involved in organfibrosis(Table 2).

    Liverfibrosis

    Liverfibrosis is the common pathological process in chronic liver diseases caused by various factors.[37-39]After liver injury,the activated TGF-β signaling promotes the activation and proliferation of hepatic stellate cells (HSCs) known as the major source of ECM,thereby inducing excessive ECM deposition.[38-42]High levels of TGF-β1 are often found in liverfibrosis,and there may be a significantly positive correlation between the elevated TGF-β1 mRNA level andfibrogenic activity.[17-19]For example,the expression of TGF-β1 mRNA increases 12-fold in HSCs fromfibrotic rat livers over that in normal HSCs.[19]

    Fig.2.Epithelial-mesenchymal transition (EMT).

    Table 1.Diseases characterized by excessive expression of TGF-β

    Table 2.Role of TGF-β-induced EMT in variousfibrotic diseases

    Increasing evidence supports that TGF-β1-induced EMT plays a potentially crucial role in liver fibrogenesis,[43-46]resulting in accumulation of activatedfibroblasts associated with significant deposition of ECM.[28,29,42]Conversely,the inhibition of TGF-β1-induced EMT may be a target for further therapeutic intervention in liverfibrosis.The blockade of TGF-β1 signaling with bone morphogenetic protein-7 (BMP-7)significantly eliminates EMT-derivedfibroblasts and hence attenuates liverfibrosis in mice.[29]Similarly,mouse hepatocytes Smad7 expression can improve CCl4-provoked liver damage andfibrosis scores by inhibiting TGF-β1-induced EMT.[47]

    Pulmonaryfibrosis

    Failure to restore the alveolar epithelial cell properties after injury is an important feature of pulmonaryfibrosis.Therefore,lungfibroblasts are used to replace the damaged cell or tissue and differentiate into myofibroblasts via EMT associated with excessive ECM accumulation in the interstitium,which progressively disrupts lung function and ultimately leads to respiratory failure.[48-51]TGF-β,a key mediator in pulmonaryfibrosis,has received much attention.[52-54]Significantly high levels of TGF-β1 are detected in patients with pulmonary disease andfibrosis.[20,21]It was reported that levels of TGF-β1 and TGF-β3 mRNAs were significantly higher in lung biopsies from Iranian victims of chemical gases.[20]And lung biopsies from patients with idiopathic pulmonaryfibrosis showed that the mean TGF-β1 levels were also significantly un-regulated.[21]

    In addition,TGF-β induces the activation and proliferation of lungfibroblasts by EMT.[30-32]It is well known that alpha-smooth muscle actin (α-SMA) is a key marker of myofibroblast differentiation.And in vitro,this protein can be significantly induced through the activation of TGF-β1/Smad3 signaling pathways.[31,32]On the other hand,TGF-β induces EMT in alveolar epithelial cells (AECs) in vitro and in vivo,[30-32]making AECs a source of myofibroblasts,promoting the expression of ECM proteins and connective tissue growth factor(CTGF).[33,34]

    Renalfibrosis

    Renalfibrosis,characterized by an abnormal deposition of ECM,is the common end-stage of most progressive kidney diseases.[55,56]This pathology usually involves in the activation of multiple signaling molecules,such as TGF-β and angiotensin II.[55-57]Among them,TGF-β is considered as the most powerful profibrotic cytokine.[58-61]TGF-β1 level is positively correlated with the grade of renal tubular injury and renal interstitialfibrosis in IgA nephropathy.[22]Caletti et al[24]found that TGF-β1 excretion is significantly higher in patients with D-plus hemolytic uremic syndrome than in the healthy controls.In vivo,transgenic mice overexpressing TGF-β1 in renal tubules significantly contribute to renal tubulefibrosis.[25]

    TGF-β1-induced EMT can also occur in tubular epithelial cells,which induce myofibroblast differentiation and accumulation followed by the excessive ECM deposition in the interstitium,leading to progressive renalfibrosis and ultimately renal failure.Hence,inhibition of TGF-β1-induced EMT may be a novel route for attenuating renalfibrosis.[35,36,62,63]For example,lefty or BMP-7,known to antagonize the actions of TGF-β1,has been shown to attenuate renal dysfunction by reversing the TGF-β1-induced EMT.[35,36]

    Keloids

    Keloids formation is a proliferative response to dermal injury such as trauma,surgery,burns and in flammation,leading to continuous synthesis of collagen in the dermis and subcutaneous tissues.[64,65]The precise pathogenesis of keloid formation is unknown,but presumably TGF-β is a key factor in keloids formation after injury,which induces the migration of mesenchymal cells into the wound and stimulates their proliferation,thereby resulting in excessive ECM synthesis.[66,67]Keloidfibroblasts are extremely sensitive to TGF-β.[68,69]Elevated levels of TGF-β1 and its receptors have often been found in keloidfibroblasts.[26,27]Treatment with TGF-β1 results in the overproduction of collagen in keloidfibroblasts.Conversely,intervention of TGF-β1 signal shows a potential therapeutic effect for keloid.[70-72]

    Inhibition of TGF-β-induced organfibrosis by PPARγ agonists

    PPARγ-mediated regulation of gene expression can be divided into two classes:direct regulation and indirect regulation.The former is the classical and main regulation,in which activation of PPARγ binds to a PPRE sequence,directly inducing target gene transcription.Indirect regulation,which does not require DNA binding by PPARγ.PPARγ directly interacts with another protein,or competes with other nuclear receptors for a common RXRα partner to prevent some regulators such as AP-1,NF-κβ,TGF-β or STAT from binding to their own response elements,regulating the gene expression.[73]In addition,the high expression of PPARγ has been found throughout the body.Thus,the activation of PPARγ may show antifibrotic properties in many organs,which has been confirmed by numerous studies.And these studies found that the main antifibrotic effect is blockade offibrogenic TGF-β signaling by PPARγ agonists (Table 3,Fig.3).

    Liver

    The activation and proliferation of HSCs are the central event in liver fibrosis.In activated HSCs,there is an antagonistic relationship between PPARγ activation and TGF-β signaling.Activation of PPARγ suppresses the TGF-β signaling pathway,whereas exogenous TGF-β1 can inhibit the expression of PPARγ.[91]In vitro,exogenous TGF-β1 induces excessive ECM proteins accumulation in human adipocytic HSCs by a timeand dose-dependent up-regulation of plasminogen activator inhibitor type I (PAI-I) expression,which is eliminated by decreasing transcription of the PAI-I gene promoter by PPARγ agonist GW7845 without any cytotoxicity.[74]It is known that CTGF is an important downstream mediator of TGF-β-inducedfibrosis,[92]and overexpression of CTGF greatly facilitates the process of tissue and organfibrosis.In cultured rat HSCs,PPARγ activated by 15d-PGJ2 or GW7845 binds to a sequence of the CTGF promoter,dramatically suppressing TGF-β1-induced CTGF expression at both the mRNA and protein levels.But pretreatment with the PPARγ antagonist GW9662 shows the reversed inhibitory effect,further suggesting that the inhibition is indeed mediated by PPARγ.[74]

    Fig.3.Regulation of TGF-β-induced profibrotic effects by PPARγ.The activation of PPARγ by agonists disrupts the TGF-β/Smad signal transduction,showing antifibrotic properties in many organs and tissues.The PPARγ antagonist GW9662 abrogates this effect.

    Lung

    The differentiation and persistence of myofibroblasts in the lung are considered to be important in the development and progression of pulmonaryfibrosis.Fibroblasts can differentiate into myofibroblasts in vitro on exposure to TGF-β.When exposed to PPARγ agonists such as 15d-PGJ2,ciglitazone and rosiglitazone,TGF-β1-driven myofibroblast differentiation is significantly inhibited and followed by reduction of collagen production.[32,76]Similarly,the novel PPARγ ligand,2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid attenuate the up-regulation of α-SMA,FN and collagen by inhibition of the differentiation of TGF-β1-stimulated myofibroblasts.[77]Interestingly,Lin et al[78]reported that rosiglitazone treatment can reduce the migration distance of lungfibroblasts stimulated by fetal bovine serum and TGF-β1 in vitro.Moreover,the effects of PPARγ agonists are not limited tofibroblasts; they also inhibit TGF-β1-induced EMT in AECs.Rosiglitazone and ciglitazone inhibit the reduction of E-cadherin and the elevation of N-cadherin and collagen I induced by TGF-β1 in A549 cells,but show no effects on elongatedfibroblast-like cells.[79]To identify the potential interactions of PPARγ and TGF-β in pulmonaryfibroblasts and AECs will provide further understanding of the antifibrotic properties of PPARγ agonists.

    Kidney

    PPARγ agonists also exert potentially antifibrotic actions in renalfibrosis by blocking TGF-β signal transduction.In vitro exogenous TGF-β1 stimulation promotes the mRNA and protein expression of ECM components in both human and mouse glomerular mesangial cells (particularly FN),whereas pioglitazone reverses this effect.[80,81]It has been reported that the cyclic AMP-responsive element binding protein (CREB)and the TGF-β/Smads signaling pathway cooperate to mediate TGF-β1-induced glomerulosclerosis,suggesting a tight interaction between the TGF-β/Smads and the PKA/CREB signal pathway,[93]which is important for the glomerulosclerosis.The PPARγ agonist troglitazone or telmisartan efficiently suppresses TGF-β/PKA signaling followed by the inhibition of rat mesangial cells activation and ECM synthesis.And the inhibitory effect can be abolished by pre-incubation with GW9662.[82]Besides mesangial cells,a similar phenomenon has also been reported in rat renal interstitialfibroblasts(NRK/49F) in vitro.[83]More direct evidence is that the administration of exogenous TZDs attenuates the obstructed kidneyfibrosis in C57BL/6J mice through the reduction of TGF-β expression.[84]

    In addition,the relationship between Angiotensin II and TGF-β in the kidney has also aroused much interest.[94]Angiotensin II increases TGF-β mRNA expression in cultured mesangial cells,whereas blocking TGF-β signaling eliminates the stimulatory effect of Angiotensin II on matrix protein synthesis.[95,96]In view of these results,we speculate that PPARγ agonists reduce kidneyfibrosis by suppressing the Angiotensin II-TGF-β axis.Recently,klotho,a single-pass transmembrane protein expressed in renal tubular epithelial cells,whose soluble form has been found to directly bind to TβR II and inhibit TGF-β1 signaling,thereby suppressing TGF-β1-induced EMT and renalfibrosis.[97]Interestingly,PPARγ agonists augment klotho expression in the kidney through two upstream non-canonical PPARγ binding sites in the klotho gene,[98,99]suggesting that PPARγ agonists can also indirectly inhibit TGF-β-induced renalfibrosis by increasing the activity of klotho.

    Heart

    As well as in the kidney,there is a causal relationship between Angiotensin II and TGF-β1 in cardiacfibrosis.[100]In wild-type mice,absence of the TGF-β1 gene fully prevents the development of cardiac hypertrophy induced by excessive Angiotensin II.[101]Furthermore,Angiotensin II can stimulate TGF-β1 mRNA expression by subsequent activation of downstream signaling molecules NAD(P)H oxidase,protein kinase C,p38-MAP kinase,and nuclear AP-1 in cardiomyocytes,ultimately leading to myocyte hypertrophy and cardiacfibrosis (Fig.4),[102]indicating the importance of Angiotensin II-TGF-β axis in cardiacfibrosis.Without doubt,PPARγ is also functionally expressed in the heart.And it has been reported[103]that PPARγ agonists rosiglitazone and 15d-PGJ2 attenuate cardiacfibrosis through interrupting Angiotensin II-induced TGF-β1 expression.

    Fig.4.Role of Ang II-TGF-β axis in cardiac fibrosis.AT1R:Ang II type 1 receptor; AP-1:nuclear activating protein-1; βAR:β-adrenergic receptor.

    Keloids

    As mentioned above,TGF-β1 is a key profibrotic mediator in Keloid formation.It is,therefore,important to identify the mechanism that represses the TGF-β1 signaling pathway.One such mechanism is the induction of Smad2/Smad3,an endogenous negative feedback to terminate TGF-β1 responses.[27,104,105]And in both normal and keloidfibroblasts,PPARγ agonists can repress TGF-β1 responses by inducing the expression of Smad2/Smad3,subsequently limiting TGF-β1 signaling transduction.However,the TGF-β1/Smad2/3 signaling pathway may partly contribute to the inhibition of ECM by PPARγ agonists.[85,86]Other mechanisms may also be involved.For example,TGF-β1 can mediate the activation of mitogen-activated protein kinase,which has been shown to be important in regulating collagen metabolism.[80]

    Furthermore,skin and lung biopsies from patients with systemic sclerosis show markedly diminished levels of PPARγ,associated with aberrant repair in these tissues.[106]And excessive TGF-β activity in systemic sclerosis impairs PPARγ function,which triggers afibrotic response,indicating that enhanced sensitivity to exogenous PPARγ agonists may represent a novel treatment strategy for dermalfibrosis,such as hypertrophic scar,keloid,and systemic sclerosis.

    PPARγ-independent activities of PPARγ agonists

    Whether the effects of PPARγ agonists are really mediated by activating the transcription factor needs careful evaluation,because PPARγ has at least three possible ways to regulate gene expression.[73]While many of the studies in the liver,kidney,lung and skin cited above are descriptive,the similarity of findings suggests that the antifibrotic activity of PPARγ agonists by suppressing the TGF-β signaling pathway is in fact PPARγ-dependent.However,apart from these PPARγ-dependent effects,many effects of PPARγ agonists are not related to PPARγ activation (PPARγ-independent).[80,83]Fox example,15d-PGJ2 inhibitsfibrosis-related gene expression not only by interference with the TGF-β/Smads signaling pathway,but also by directly suppressing the activation of AP-1 and NF-κβ transcription factors,[107,108]suggesting that the inhibitory effects of 15d-PGJ2 are mediated by both PPARγ-dependent and independent mechanisms.

    Conclusion and perspectives

    It is not surprising that PPARγ agonists exhibit a wide range of antifibrotic effects by inhibiting the TGF-β signaling pathway because of the widespread tissue distribution and complicated functions of PPARγ.Besides the major organs described above,PPARγ agonists also potentially exert antifibrotic activity in other organs and tissues by blocking the TGF-β signaling pathway,such as the pancreas,[87]peritoneal cavity,[88]nose[89]and aorta.[90]In summary,overwhelming evidence has demonstrated that TGF-β is a key mediator offibrotic tissues,and overexpression of TGF-β correlates significantly withfibrogenic activity in various organs and tissues.PPARγ agonists markedly inhibit TGF-β signal transduction and are effective antifibrogenic agents.

    Although there are huge advances in PPARγ study,further investigations are needed on action of PPARγ and to know how PPARγ participates in this antifibrotic mechanism since limitations exist in the current clinical use of PPARγ agonists.Especially TZDs,synthetic PPARγ agonists,may actually dominate our decisions on the clinical use of PPARγ agonists because of a widely used therapy for type 2 diabetes.However,TZDs act primarily as effective insulin sensitizers,and inevitably cause side-effects including weight gain,fluid retention,congestive heart failure,and bone fractures.Since such side-effects have become more evident,the use of these drugs has become controversial.[109]In addition,TGF-β1 not only acts as the key profibrotic cytokine,but also plays many essential roles in multiple developmental processes,such as immune regulation,cell differentiation and wound healing,and TGF-β1/Smads signaling forms cross-talk networks with other signal pathways,indicating that blockade of TGF-β by PPARγ agonists certainly affects these cytokine networks and causes unwanted side-effects.In view of these facts,anti-TGF-β therapies with PPARγ agonists may have to be carefully tailored to be tissue- and target gene-specific to minimize side-effects,which is a great challenge to the medical research at present.

    Contributors:DYL and CNS contributed to study concept and design,DYL and XXZ to data acquisition,and DYL to drafting of the paper.DYL,XXZ and CNS made critical revision of the paper.CNS and XXZ were the supervisors of the study.

    Funding:None.

    Ethical approval:Not needed.

    Competing interest:No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    1 Wynn TA.Cellular and molecular mechanisms offibrosis.J Pathol 2008;214:199-210.

    2 Branton MH,Kopp JB.TGF-beta andfibrosis.Microbes Infect 1999;1:1349-1365.

    3 Mauviel A.Transforming growth factor-beta:a key mediator offibrosis.Methods Mol Med 2005;117:69-80.

    4 Prud'homme GJ.Pathobiology of transforming growth factor beta in cancer,fibrosis and immunologic disease,and therapeutic considerations.Lab Invest 2007;87:1077-1091.

    5 Blobe GC,Schiemann WP,Lodish HF.Role of transforming growth factor beta in human disease.N Engl J Med 2000;342:1350-1358.

    6 Gordon KJ,Blobe GC.Role of transforming growth factorbeta superfamily signaling pathways in human disease.Biochim Biophys Acta 2008;1782:197-228.

    7 Kalluri R,Weinberg RA.The basics of epithelial-mesenchymal transition.J Clin Invest 2009;119:1420-1428.

    8 Zavadil J,B?ttinger EP.TGF-beta and epithelial-to-mesenchymal transitions.Oncogene 2005;24:5764-5774.

    9 Xu J,Lamouille S,Derynck R.TGF-beta-induced epithelial to mesenchymal transition.Cell Res 2009;19:156-172.

    10 Acloque H,Adams MS,Fishwick K,Bronner-Fraser M,Nieto MA.Epithelial-mesenchymal transitions:the importance of changing cell state in development and disease.J Clin Invest 2009;119:1438-1449.

    11 Guarino M,Tosoni A,Nebuloni M.Direct contribution of epithelium to organfibrosis:epithelial-mesenchymal transition.Hum Pathol 2009;40:1365-1376.

    12 Michalik L,Wahli W.Peroxisome proliferator-activated receptors:three isotypes for a multitude of functions.Curr Opin Biotechnol 1999;10:564-570.

    13 Escher P,Wahli W.Peroxisome proliferator-activated receptors:insight into multiple cellular functions.Mutat Res 2000;448:121-138.

    14 Chandra V,Huang P,Hamuro Y,Raghuram S,Wang Y,Burris TP,et al.Structure of the intact PPAR-gamma-RXR-nuclear receptor complex on DNA.Nature 2008;456:350-356.

    15 Kota BP,Huang TH,Roufogalis BD.An overview on biological mechanisms of PPARs.Pharmacol Res 2005;51:85-94.

    16 Costa V,Gallo MA,Letizia F,Aprile M,Casamassimi A,Ciccodicola A.PPARG:Gene Expression Regulation and Next-Generation Sequencing for Unsolved Issues.PPAR Res 2010;2010.

    17 Chen WX,Li YM,Yu CH,Cai WM,Zheng M,Chen F.Quantitative analysis of transforming growth factor beta 1 mRNA in patients with alcoholic liver disease.World J Gastroenterol 2002;8:379-381.

    18 Gabriel A,Ziólkowski A,Radlowski P,Tomaszek K,Dziambor A.Hepatocyte steatosis in HCV patients promotesfibrosis by enhancing TGF-beta liver expression.Hepatol Res 2008;38:141-146.

    19 De Bleser PJ,Niki T,Rogiers V,Geerts A.Transforming growth factor-beta gene expression in normal andfibrotic rat liver.J Hepatol 1997;26:886-893.

    20 Zarin AA,Behmanesh M,Tavallaei M,Shohrati M,Ghanei M.Overexpression of transforming growth factor (TGF)-beta1 and TGF-beta3 genes in lung of toxic-inhaled patients.Exp Lung Res 2010;36:284-291.

    21 Molina-Molina M,Lario S,Luburich P,Ramírez J,Carrión MT,Xaubet A.Quantifying plasma levels of transforming growth factor beta1 in idiopathic pulmonaryfibrosis.Arch Bronconeumol 2006;42:380-383.

    22 Wu W,Jiang XY,Zhang QL,Mo Y,Sun LZ,Chen SM.Expression and significance of TGF-beta1/Smad signaling pathway in children with IgA nephropathy.World J Pediatr 2009;5:211-215.

    23 Lee SB,Kanasaki K,Kalluri R.Circulating TGF-beta1 as a reliable biomarker for chronic kidney disease progression in the African-American population.Kidney Int 2009;76:10-12.

    24 Caletti MG,Balestracci A,Roy AH.Levels of urinary transforming growth factor beta-1 in children with D+hemolytic uremic syndrome.Pediatr Nephrol 2010;25:1177-1180.

    25 Koesters R,Kaissling B,Lehir M,Picard N,Theilig F,Gebhardt R,et al.Tubular overexpression of transforming growth factor-beta1 induces autophagy andfibrosis but not mesenchymal transition of renal epithelial cells.Am J Pathol 2010;177:632-643.

    26 Wang R,Ghahary A,Shen Q,Scott PG,Roy K,Tredget EE.Hypertrophic scar tissues andfibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells.Wound Repair Regen 2000;8:128-137.

    27 Chin GS,Liu W,Peled Z,Lee TY,Steinbrech DS,Hsu M,et al.Differential expression of transforming growth factorbeta receptors I and II and activation of Smad 3 in keloidfibroblasts.Plast Reconstr Surg 2001;108:423-429.

    28 Kaimori A,Potter J,Kaimori JY,Wang C,Mezey E,Koteish A.Transforming growth factor-beta1 induces an epithelial-tomesenchymal transition state in mouse hepatocytes in vitro.J Biol Chem 2007;282:22089-22101.

    29 Zeisberg M,Yang C,Martino M,Duncan MB,Rieder F,Tanjore H,et al.Fibroblasts derive from hepatocytes in liverfibrosis via epithelial to mesenchymal transition.J Biol Chem 2007;282:23337-23347.

    30 Sime PJ,Xing Z,Graham FL,Csaky KG,Gauldie J.Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severefibrosis in rat lung.J Clin Invest 1997;100:768-776.

    31 Gu L,Zhu YJ,Yang X,Guo ZJ,Xu WB,Tian XL.Effect of TGF-beta/Smad signaling pathway on lung myofibroblast differentiation.Acta Pharmacol Sin 2007;28:382-391.

    32 Burgess HA,Daugherty LE,Thatcher TH,Lakatos HF,Ray DM,Redonnet M,et al.PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production:implications for therapy of lungfibrosis.Am J Physiol Lung Cell Mol Physiol 2005;288:L1146-1153.

    33 Kim JH,Jang YS,Eom KS,Hwang YI,Kang HR,Jang SH,et al.Transforming growth factor beta1 induces epithelialto-mesenchymal transition of A549 cells.J Korean Med Sci 2007;22:898-904.

    34 Kasai H,Allen JT,Mason RM,Kamimura T,Zhang Z.TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT).Respir Res 2005;6:56.

    35 Mariasegaram M,Tesch GH,Verhardt S,Hurst L,Lan HY,Nikolic-Paterson DJ.Lefty antagonises TGF-beta1 induced epithelial-mesenchymal transition in tubular epithelial cells.Biochem Biophys Res Commun 2010;393:855-859.

    36 Xu Y,Wan J,Jiang D,Wu X.BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition in human renal proximal tubular epithelial cells.J Nephrol 2009;22:403-410.

    37 Friedman SL.Preface.Hepaticfibrosis:pathogenesis,diagnosis,and emerging therapies.Clin Liver Dis 2008;12:xiii-xiv.

    38 Hernandez-Gea V,Friedman SL.Pathogenesis of liverfibrosis.Annu Rev Pathol 2011;6:425-456.

    39 Jiao J,Friedman SL,Aloman C.Hepaticfibrosis.Curr Opin Gastroenterol 2009;25:223-229.

    40 Moreira RK.Hepatic stellate cells and liverfibrosis.Arch Pathol Lab Med 2007;131:1728-1734.

    41 Gressner AM,Weiskirchen R.Modern pathogenetic concepts of liverfibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets.J Cell Mol Med 2006;10:76-99.

    42 Meindl-Beinker NM,Dooley S.Transforming growth factorbeta and hepatocyte transdifferentiation in liverfibrogenesis.J Gastroenterol Hepatol 2008;23:S122-127.

    43 Choi SS,Diehl AM.Epithelial-to-mesenchymal transitions in the liver.Hepatology 2009;50:2007-2013.

    44 Ikegami T,Zhang Y,Matsuzaki Y.Liverfibrosis:possible involvement of EMT.Cells Tissues Organs 2007;185:213-221.

    45 Rygiel KA,Robertson H,Marshall HL,Pekalski M,Zhao L,Booth TA,et al.Epithelial-mesenchymal transition contributes to portal tractfibrogenesis during human chronic liver disease.Lab Invest 2008;88:112-123.

    46 Nitta T,Kim JS,Mohuczy D,Behrns KE.Murine cirrhosis induces hepatocyte epithelial mesenchymal transition and alterations in survival signaling pathways.Hepatology 2008;48:909-919.

    47 Dooley S,Hamzavi J,Ciuclan L,Godoy P,Ilkavets I,Ehnert S,et al.Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediatedfibrogenesis and protects against liver damage.Gastroenterology 2008;135:642-659.

    48 Strieter RM,Mehrad B.New mechanisms of pulmonaryfibrosis.Chest 2009;136:1364-1370.

    49 Scotton CJ,Chambers RC.Molecular targets in pulmonaryfibrosis:the myofibroblast in focus.Chest 2007;132:1311-1321.

    50 Wilson MS,Wynn TA.Pulmonaryfibrosis:pathogenesis,etiology and regulation.Mucosal Immunol 2009;2:103-121.

    51 Sime PJ.The antifibrogenic potential of PPARgamma ligands in pulmonaryfibrosis.J Investig Med 2008;56:534-538.

    52 Koli K,Myll?rniemi M,Keski-Oja J,Kinnula VL.Transforming growth factor-beta activation in the lung:focus onfibrosis and reactive oxygen species.Antioxid Redox Signal 2008;10:333-342.

    53 Goodwin A,Jenkins G.Role of integrin-mediated TGFbeta activation in the pathogenesis of pulmonaryfibrosis.Biochem Soc Trans 2009;37:849-854.

    54 Gharaee-Kermani M,Hu B,Phan SH,Gyetko MR.Recent advances in molecular targets and treatment of idiopathic pulmonaryfibrosis:focus on TGFbeta signaling and the myofibroblast.Curr Med Chem 2009;16:1400-1417.

    55 Boor P,Ostendorf T,Floege J.Renalfibrosis:novel insights into mechanisms and therapeutic targets.Nat Rev Nephrol 2010;6:643-656.

    56 Cho MH.Renalfibrosis.Korean J Pediatr 2010;53:735-740.

    57 Liu Y.New insights into epithelial-mesenchymal transition in kidneyfibrosis.J Am Soc Nephrol 2010;21:212-222.

    58 García-Sánchez O,López-Hernández FJ,López-Novoa JM.An integrative view on the role of TGF-beta in the progressive tubular deletion associated with chronic kidney disease.Kidney Int 2010;77:950-955.

    59 Lee HS.Pathogenic role of TGF-β in the progression of podocyte diseases.Histol Histopathol 2011;26:107-116.

    60 B?ttinger EP.TGF-beta in renal injury and disease.Semin Nephrol 2007;27:309-320.

    61 Schnaper HW,Jandeska S,Runyan CE,Hubchak SC,Basu RK,Curley JF,et al.TGF-beta signal transduction in chronic kidney disease.Front Biosci 2009;14:2448-2465.

    62 Fan JM,Ng YY,Hill PA,Nikolic-Paterson DJ,Mu W,Atkins RC,et al.Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro.Kidney Int 1999;56:1455-1467.

    63 Hills CE,Squires PE.TGF-beta1-induced epithelial-tomesenchymal transition and therapeutic intervention in diabetic nephropathy.Am J Nephrol 2010;31:68-74.

    64 Robles DT,Berg D.Abnormal wound healing:keloids.Clin Dermatol 2007;25:26-32.

    65 Shih B,Garside E,McGrouther DA,Bayat A.Molecular dissection of abnormal wound healing processes resulting in keloid disease.Wound Repair Regen 2010;18:139-153.

    66 Jagadeesan J,Bayat A.Transforming growth factor beta(TGFbeta) and keloid disease.Int J Surg 2007;5:278-285.

    67 Klass BR,Grobbelaar AO,Rolfe KJ.Transforming growth factor beta1 signalling,wound healing and repair:a multifunctional cytokine with clinical implications for wound repair,a delicate balance.Postgrad Med J 2009;85:9-14.

    68 Bock O,Yu H,Zitron S,Bayat A,Ferguson MW,Mrowietz U.Studies of transforming growth factors beta 1-3 and their receptors I and II infibroblast of keloids and hypertrophic scars.Acta Derm Venereol 2005;85:216-220.

    69 Bran GM,Goessler UR,Baftiri A,Hormann K,Riedel F,Sadick H.Effect of transforming growth factor-beta1 antisense oligonucleotides on matrix metalloproteinases and their inhibitors in keloidfibroblasts.Otolaryngol Head Neck Surg 2010;143:66-71.

    70 Hsu YC,Chen MJ,Yu YM,Ko SY,Chang CC.Suppression of TGF-β1/SMAD pathway and extracellular matrix production in primary keloidfibroblasts by curcuminoids:its potential therapeutic use in the chemoprevention of keloid.Arch Dermatol Res 2010;302:717-724.

    71 Zhang Z,Garron TM,Li XJ,Liu Y,Zhang X,Li YY,et al.Recombinant human decorin inhibits TGF-beta1-induced contraction of collagen lattice by hypertrophic scarfibroblasts.Burns 2009;35:527-537.

    72 Sandulache VC,Parekh A,Li-Korotky H,Dohar JE,Hebda PA.Prostaglandin E2 inhibition of keloidfibroblast migration,contraction,and transforming growth factor (TGF)-beta1-induced collagen synthesis.Wound Repair Regen 2007;15:122-133.

    73 Greene ME,Pitts J,McCarville MA,Wang XS,Newport JA,Edelstein C,et al.PPARgamma:observations in the hematopoietic system.Prostaglandins Other Lipid Mediat 2000;62:45-73.

    74 Zhao C,Chen W,Yang L,Chen L,Stimpson SA,Diehl AM.PPARgamma agonists prevent TGFbeta1/Smad3-signaling in human hepatic stellate cells.Biochem Biophys Res Commun 2006;350:385-391.

    75 Sun K,Wang Q,Huang XH.PPAR gamma inhibits growth of rat hepatic stellate cells and TGF beta-induced connective tissue growth factor expression.Acta Pharmacol Sin 2006;27:715-723.

    76 Milam JE,Keshamouni VG,Phan SH,Hu B,Gangireddy SR,Hogaboam CM,et al.PPAR-gamma agonists inhibit profibrotic phenotypes in human lungfibroblasts and bleomycin-induced pulmonaryfibrosis.Am J Physiol Lung Cell Mol Physiol 2008;294:L891-901.

    77 Ferguson HE,Kulkarni A,Lehmann GM,Garcia-Bates TM,Thatcher TH,Huxlin KR,et al.Electrophilic peroxisome proliferator-activated receptor-gamma ligands have potent antifibrotic effects in human lungfibroblasts.Am J Respir Cell Mol Biol 2009;41:722-730.

    78 Lin Q,Fang LP,Zhou WW,Liu XM.Rosiglitazone inhibits migration,proliferation,and phenotypic differentiation in cultured human lungfibroblasts.Exp Lung Res 2010;36:120-128.

    79 Tan X,Dagher H,Hutton CA,Bourke JE.Effects of PPAR gamma ligands on TGF-beta1-induced epithelial-mesenchymal transition in alveolar epithelial cells.Respir Res 2010;11:21.

    80 Guo B,Koya D,Isono M,Sugimoto T,Kashiwagi A,Haneda M.Peroxisome proliferator-activated receptor-gamma ligands inhibit TGF-beta 1-inducedfibronectin expression in glomerular mesangial cells.Diabetes 2004;53:200-208.

    81 Maeda A,Horikoshi S,Gohda T,Tsuge T,Maeda K,Tomino Y.Pioglitazone attenuates TGF-beta(1)-induction offibronectin synthesis and its splicing variant in human mesangial cells via activation of peroxisome proliferator-activated receptor(PPAR)gamma.Cell Biol Int 2005;29:422-428.

    82 Zou R,Xu G,Liu XC,Han M,Jiang JJ,Huang Q,et al.PPARgamma agonists inhibit TGF-beta-PKA signaling in glomerulosclerosis.Acta Pharmacol Sin 2010;31:43-50.

    83 Wang W,Liu F,Chen N.Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists attenuate the profibrotic response induced by TGF-beta1 in renal interstitialfibroblasts.Mediators In flamm 2007;2007:62641.

    84 Kawai T,Masaki T,Doi S,Arakawa T,Yokoyama Y,Doi T,et al.PPAR-gamma agonist attenuates renal interstitialfibrosis and in flammation through reduction of TGF-beta.Lab Invest 2009;89:47-58.

    85 Ghosh AK,Bhattacharyya S,Lakos G,Chen SJ,Mori Y,Varga J.Disruption of transforming growth factor beta signaling and profibrotic responses in normal skinfibroblasts by peroxisome proliferator-activated receptor gamma.Arthritis Rheum 2004;50:1305-1318.

    86 Zhang GY,Yi CG,Li X,Ma B,Li ZJ,Chen XL,et al.Troglitazone suppresses transforming growth factor-beta1-induced collagen type I expression in keloidfibroblasts.Br J Dermatol 2009;160:762-770.

    87 van Westerloo DJ,Florquin S,de Boer AM,Daalhuisen J,de Vos AF,Bruno MJ,et al.Therapeutic effects of troglitazone in experimental chronic pancreatitis in mice.Am J Pathol 2005;166:721-728.

    88 Peng Y,Liu H,Liu F,Liu Y,Li J,Chen X.Troglitazone inhibits synthesis of transforming growth factor-beta1 and reduces matrix production in human peritoneal mesothelial cells.Nephrology (Carlton) 2006;11:516-523.

    89 Lee HM,Kang HJ,Park HH,Hong SC,Kim JK,Cho JH.Effect of peroxisome proliferator-activated receptor gamma agonists on myofibroblast differentiation and collagen production in nasal polyp-derivedfibroblasts.Ann Otol Rhinol Laryngol 2009;118:721-727.

    90 Fu M,Zhang J,Zhu X,Myles DE,Willson TM,Liu X,et al.Peroxisome proliferator-activated receptor gamma inhibits transforming growth factor beta-induced connective tissue growth factor expression in human aortic smooth muscle cells by interfering with Smad3.J Biol Chem 2001;276:45888-45894.

    91 Zheng S,Chen A.Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells.Am J Physiol Gastrointest Liver Physiol 2007;292:G113-123.

    92 Ihn H.Pathogenesis offibrosis:role of TGF-beta and CTGF.Curr Opin Rheumatol 2002;14:681-685.

    93 Liu G,Ding W,Neiman J,Mulder KM.Requirement of Smad3 and CREB-1 in mediating transforming growth factor-beta (TGF beta) induction of TGF beta 3 secretion.J Biol Chem 2006;281:29479-29490.

    94 Wolf G.Link between angiotensin II and TGF-beta in the kidney.Miner Electrolyte Metab 1998;24:174-180.

    95 Wolf G,Mueller E,Stahl RA,Ziyadeh FN.Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta.J Clin Invest 1993;92:1366-1372.

    96 Kagami S,Border WA,Miller DE,Noble NA.Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells.J Clin Invest 1994;93:2431-2437.

    97 Doi S,Zou Y,Togao O,Pastor JV,John GB,Wang L,et al.Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renalfibrosis and cancer metastasis in mice.J Biol Chem 2011;286:8655-8665.

    98 Zhang H,Li Y,Fan Y,Wu J,Zhao B,Guan Y,et al.Klotho is a target gene of PPAR-gamma.Kidney Int 2008;74:732-739.

    99 Yamagishi T,Saito Y,Nakamura T,Takeda S,Kanai H,Sumino H,et al.Troglitazone improves endothelial function and augments renal klotho mRNA expression in Otsuka Long-Evans Tokushima Fatty (OLETF) rats with multiple atherogenic risk factors.Hypertens Res 2001;24:705-709.

    100 Schultz Jel J,Witt SA,Glascock BJ,Nieman ML,Reiser PJ,Nix SL,et al.TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II.J Clin Invest 2002;109:787-796.

    101 Rosenkranz S.TGF-beta1 and angiotensin networking in cardiac remodeling.Cardiovasc Res 2004;63:423-432.

    102 Wenzel S,Taimor G,Piper HM,Schlüter KD.Redoxsensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation,AP-1 binding activity,and TGF-beta expression in adult ventricular cardiomyocytes.FASEB J 2001;15:2291-2293.

    103 Hao GH,Niu XL,Gao DF,Wei J,Wang NP.Agonists at PPAR-gamma suppress angiotensin II-induced production of plasminogen activator inhibitor-1 and extracellular matrix in rat cardiacfibroblasts.Br J Pharmacol 2008;153:1409-1419.

    104 Verrecchia F,Mauviel A.Transforming growth factor-beta signaling through the Smad pathway:role in extracellular matrix gene expression and regulation.J Invest Dermatol 2002;118:211-215.

    105 Mori Y,Chen SJ,Varga J.Modulation of endogenous Smad expression in normal skinfibroblasts by transforming growth factor-beta.Exp Cell Res 2000;258:374-383.

    106 Wei J,Ghosh AK,Sargent JL,Komura K,Wu M,Huang QQ,et al.PPARγ downregulation by TGFβ infibroblast and impaired expression and function in systemic sclerosis:a novel mechanism for progressivefibrogenesis.PLoS One 2010;5:e13778.

    107 Straus DS,Pascual G,Li M,Welch JS,Ricote M,Hsiang CH,et al.15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway.ProcNatl Acad Sci U S A 2000;97:4844-4849.

    108 Prasad R,Giri S,Singh AK,Singh I.15-deoxy-delta12,14-prostaglandin J2 attenuates endothelial-monocyte interaction:implication for in flammatory diseases.J In flamm (Lond)2008;5:14.

    109 Kahn BB,McGraw TE.Rosiglitazone,PPARγ,and type 2 diabetes.N Engl J Med 2010;363:2667-2669.

    精品久久久噜噜| 听说在线观看完整版免费高清| 三级经典国产精品| 国产久久久一区二区三区| av卡一久久| 五月玫瑰六月丁香| 2022亚洲国产成人精品| 少妇熟女aⅴ在线视频| 午夜免费激情av| 亚洲精品色激情综合| 午夜福利在线观看免费完整高清在| 亚洲在线观看片| 美女高潮的动态| 日韩三级伦理在线观看| 日日啪夜夜撸| 九草在线视频观看| 亚洲av不卡在线观看| 亚洲欧美一区二区三区国产| 国产亚洲最大av| 亚洲乱码一区二区免费版| 成人亚洲欧美一区二区av| 午夜久久久久精精品| av女优亚洲男人天堂| 国产精品人妻久久久影院| 亚洲欧美日韩东京热| 最近最新中文字幕大全电影3| 一夜夜www| 亚洲伊人久久精品综合| 麻豆久久精品国产亚洲av| 色5月婷婷丁香| 免费黄网站久久成人精品| 一区二区三区免费毛片| 精品久久国产蜜桃| 久久精品久久久久久噜噜老黄| 大香蕉久久网| 中文资源天堂在线| 亚洲天堂国产精品一区在线| 日韩亚洲欧美综合| 床上黄色一级片| 亚洲欧美日韩无卡精品| 久久久久久久久中文| 久久精品夜色国产| 一级a做视频免费观看| 亚洲欧美日韩无卡精品| 亚洲色图av天堂| 成人欧美大片| 国产v大片淫在线免费观看| 嫩草影院入口| 一级毛片电影观看| 免费播放大片免费观看视频在线观看| 国产精品综合久久久久久久免费| 天天一区二区日本电影三级| 嘟嘟电影网在线观看| 一本一本综合久久| 久久人人爽人人爽人人片va| 亚洲av日韩在线播放| 国内精品一区二区在线观看| 欧美 日韩 精品 国产| 国产av国产精品国产| 美女黄网站色视频| 人人妻人人澡欧美一区二区| 高清视频免费观看一区二区 | 亚洲av成人精品一区久久| 男人和女人高潮做爰伦理| 国产一区亚洲一区在线观看| 欧美日韩综合久久久久久| 亚洲天堂国产精品一区在线| 毛片女人毛片| 天堂√8在线中文| 国产av在哪里看| 中文字幕av在线有码专区| 亚洲精品影视一区二区三区av| 国产精品久久久久久精品电影| 欧美xxⅹ黑人| 国产又色又爽无遮挡免| 成人美女网站在线观看视频| 亚洲av电影不卡..在线观看| 国产精品嫩草影院av在线观看| 青春草亚洲视频在线观看| 特级一级黄色大片| 久久久久性生活片| 狂野欧美激情性xxxx在线观看| 亚州av有码| 日本色播在线视频| 国产极品天堂在线| 国产免费一级a男人的天堂| 国产午夜精品一二区理论片| 国产一区有黄有色的免费视频 | 亚洲av在线观看美女高潮| 国产精品一区www在线观看| 大片免费播放器 马上看| 日韩av免费高清视频| 亚洲一级一片aⅴ在线观看| 婷婷色综合大香蕉| 国产免费一级a男人的天堂| 国产爱豆传媒在线观看| av在线蜜桃| 日韩欧美 国产精品| 国产精品一区二区性色av| 亚洲av日韩在线播放| 九草在线视频观看| 亚洲欧美成人精品一区二区| 成人美女网站在线观看视频| 国产 一区 欧美 日韩| 中文字幕亚洲精品专区| 日本黄色片子视频| 国产淫片久久久久久久久| 亚洲国产精品成人综合色| 色哟哟·www| 精品久久久久久久久av| 亚洲欧美日韩无卡精品| 成人二区视频| 亚洲欧美中文字幕日韩二区| 日韩欧美精品免费久久| 一二三四中文在线观看免费高清| 一边亲一边摸免费视频| 搡女人真爽免费视频火全软件| 日韩av不卡免费在线播放| 久久久久久久久久久免费av| 国产免费又黄又爽又色| 精品一区二区三区视频在线| 久久久精品94久久精品| 国产男人的电影天堂91| 日本与韩国留学比较| 亚洲精品亚洲一区二区| 九草在线视频观看| 人体艺术视频欧美日本| 国产伦理片在线播放av一区| 大又大粗又爽又黄少妇毛片口| 中文字幕制服av| 久久久久久久大尺度免费视频| 韩国高清视频一区二区三区| 久久久久网色| 免费观看的影片在线观看| 精品久久久久久久末码| 18禁在线播放成人免费| 美女黄网站色视频| 日韩欧美三级三区| 男人舔女人下体高潮全视频| 日韩在线高清观看一区二区三区| 91精品国产九色| 亚洲av不卡在线观看| 久久久久久久大尺度免费视频| 久久99热6这里只有精品| 乱系列少妇在线播放| 亚洲国产色片| 国产片特级美女逼逼视频| 能在线免费观看的黄片| 男人和女人高潮做爰伦理| 欧美成人一区二区免费高清观看| 两个人视频免费观看高清| 久久精品久久精品一区二区三区| 成人漫画全彩无遮挡| 夫妻午夜视频| 久久人人爽人人爽人人片va| 国产一区亚洲一区在线观看| 亚洲综合色惰| 国产精品国产三级国产av玫瑰| 黄片wwwwww| 成年女人看的毛片在线观看| 一级毛片黄色毛片免费观看视频| 免费大片黄手机在线观看| 成人高潮视频无遮挡免费网站| 久久久久免费精品人妻一区二区| 亚洲人成网站在线观看播放| 可以在线观看毛片的网站| 少妇熟女欧美另类| 亚洲国产色片| 水蜜桃什么品种好| 亚洲精品成人av观看孕妇| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久午夜乱码| 老司机影院毛片| 人妻制服诱惑在线中文字幕| 搞女人的毛片| 国产精品人妻久久久久久| 熟妇人妻不卡中文字幕| 成人二区视频| 啦啦啦啦在线视频资源| 亚洲最大成人手机在线| 青青草视频在线视频观看| 国产亚洲最大av| 又粗又硬又长又爽又黄的视频| 婷婷六月久久综合丁香| 久久久成人免费电影| 黄片wwwwww| 婷婷六月久久综合丁香| 欧美bdsm另类| 免费电影在线观看免费观看| www.色视频.com| av免费在线看不卡| 国产黄频视频在线观看| 日日啪夜夜撸| 亚洲av国产av综合av卡| 国产精品一区二区性色av| ponron亚洲| 男人舔奶头视频| 久久久亚洲精品成人影院| 永久免费av网站大全| 午夜福利网站1000一区二区三区| 两个人的视频大全免费| 寂寞人妻少妇视频99o| 亚洲精品视频女| 久久精品人妻少妇| 亚洲欧美精品专区久久| 99久久人妻综合| 久久97久久精品| 欧美成人a在线观看| 久久综合国产亚洲精品| 欧美成人a在线观看| 亚洲va在线va天堂va国产| 亚洲四区av| 三级毛片av免费| 蜜桃久久精品国产亚洲av| 最近最新中文字幕大全电影3| 亚洲国产日韩欧美精品在线观看| 免费av观看视频| 免费av不卡在线播放| 国产有黄有色有爽视频| 日韩欧美 国产精品| 久久久亚洲精品成人影院| 亚洲激情五月婷婷啪啪| 99久久精品热视频| 美女国产视频在线观看| 日本猛色少妇xxxxx猛交久久| 丝袜美腿在线中文| 六月丁香七月| 好男人在线观看高清免费视频| 国产精品国产三级国产专区5o| 夜夜爽夜夜爽视频| 天天一区二区日本电影三级| 国产毛片a区久久久久| 欧美人与善性xxx| 九草在线视频观看| 高清午夜精品一区二区三区| 日韩av不卡免费在线播放| eeuss影院久久| 99久久中文字幕三级久久日本| 又粗又硬又长又爽又黄的视频| 国产av不卡久久| 国产av不卡久久| 色综合色国产| 看十八女毛片水多多多| 国产亚洲精品av在线| 秋霞伦理黄片| 国产成人一区二区在线| av福利片在线观看| 九九在线视频观看精品| 精品人妻偷拍中文字幕| 亚洲精品亚洲一区二区| 搡女人真爽免费视频火全软件| 九色成人免费人妻av| 成人特级av手机在线观看| 亚洲va在线va天堂va国产| 午夜精品国产一区二区电影 | 国产成人免费观看mmmm| 日本猛色少妇xxxxx猛交久久| 啦啦啦中文免费视频观看日本| 嫩草影院入口| 国内精品宾馆在线| 伊人久久国产一区二区| 免费av观看视频| 亚洲欧美一区二区三区黑人 | 久久精品久久久久久久性| 久久精品国产鲁丝片午夜精品| 日本一本二区三区精品| 国产伦一二天堂av在线观看| 欧美xxⅹ黑人| 国产三级在线视频| 欧美另类一区| 久久久久精品性色| 蜜桃亚洲精品一区二区三区| 十八禁国产超污无遮挡网站| 人妻制服诱惑在线中文字幕| 久久99精品国语久久久| 国产精品一区二区三区四区久久| 久久午夜福利片| 国产久久久一区二区三区| 久久久久久久久久成人| freevideosex欧美| 国产成人福利小说| 亚洲精品日本国产第一区| 久久久久久久久久久丰满| 精品少妇黑人巨大在线播放| 日韩av在线免费看完整版不卡| 亚洲精品乱久久久久久| 日日干狠狠操夜夜爽| 亚洲精品成人av观看孕妇| 国产综合懂色| 国产精品一区二区三区四区免费观看| 街头女战士在线观看网站| 麻豆国产97在线/欧美| 国内精品宾馆在线| 丝袜喷水一区| 一级毛片黄色毛片免费观看视频| 3wmmmm亚洲av在线观看| 嫩草影院新地址| 免费看日本二区| 国产伦在线观看视频一区| 免费高清在线观看视频在线观看| 精品久久国产蜜桃| videossex国产| 亚洲久久久久久中文字幕| 日本熟妇午夜| 2021天堂中文幕一二区在线观| 成人特级av手机在线观看| 久久久久网色| 夜夜爽夜夜爽视频| av.在线天堂| 九九久久精品国产亚洲av麻豆| 搡老妇女老女人老熟妇| 亚洲精品456在线播放app| 欧美人与善性xxx| 男人狂女人下面高潮的视频| 天堂av国产一区二区熟女人妻| 寂寞人妻少妇视频99o| 免费电影在线观看免费观看| 国产精品久久久久久av不卡| 久热久热在线精品观看| 尾随美女入室| 国产精品福利在线免费观看| 一级毛片久久久久久久久女| 免费看美女性在线毛片视频| 欧美xxxx性猛交bbbb| 免费观看精品视频网站| 在线天堂最新版资源| 一级毛片 在线播放| 丰满少妇做爰视频| 国产 一区 欧美 日韩| 一级毛片黄色毛片免费观看视频| 亚洲国产av新网站| 午夜福利在线观看吧| 直男gayav资源| 欧美日韩综合久久久久久| 久久久久精品久久久久真实原创| 女人十人毛片免费观看3o分钟| 91精品国产九色| 看免费成人av毛片| 少妇丰满av| 欧美成人a在线观看| 亚洲天堂国产精品一区在线| 亚洲经典国产精华液单| 又大又黄又爽视频免费| 免费观看无遮挡的男女| 国产在线一区二区三区精| 网址你懂的国产日韩在线| 国产精品久久久久久精品电影| 精品久久久精品久久久| 国产一区有黄有色的免费视频 | 免费看a级黄色片| 超碰av人人做人人爽久久| 国产单亲对白刺激| 黄色配什么色好看| 九九久久精品国产亚洲av麻豆| 能在线免费看毛片的网站| 色尼玛亚洲综合影院| 国产白丝娇喘喷水9色精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲婷婷狠狠爱综合网| 极品少妇高潮喷水抽搐| 国产女主播在线喷水免费视频网站 | 日韩精品有码人妻一区| 天天躁日日操中文字幕| 真实男女啪啪啪动态图| 边亲边吃奶的免费视频| 国产精品日韩av在线免费观看| 久久草成人影院| 99视频精品全部免费 在线| 久久久国产一区二区| 亚洲人与动物交配视频| 亚洲精华国产精华液的使用体验| 亚洲精品日韩在线中文字幕| 偷拍熟女少妇极品色| 成年av动漫网址| 成人亚洲欧美一区二区av| 日韩三级伦理在线观看| 午夜精品在线福利| 国产探花在线观看一区二区| 亚洲激情五月婷婷啪啪| 日韩成人av中文字幕在线观看| 一级av片app| 国产成人精品福利久久| 亚洲国产av新网站| 精品久久久精品久久久| 大又大粗又爽又黄少妇毛片口| 亚洲精品自拍成人| 亚洲精品久久午夜乱码| 精品亚洲乱码少妇综合久久| 大话2 男鬼变身卡| 偷拍熟女少妇极品色| 成年av动漫网址| 在线天堂最新版资源| 国产精品日韩av在线免费观看| 久久99热6这里只有精品| 日韩,欧美,国产一区二区三区| 久久久久精品久久久久真实原创| videossex国产| 免费人成在线观看视频色| 亚洲欧美精品专区久久| 天天躁日日操中文字幕| 亚洲在线自拍视频| 亚洲精品乱码久久久久久按摩| 狂野欧美激情性xxxx在线观看| 蜜桃亚洲精品一区二区三区| 在线a可以看的网站| 亚洲国产欧美人成| 男人狂女人下面高潮的视频| 美女脱内裤让男人舔精品视频| 亚洲熟妇中文字幕五十中出| 国产乱来视频区| 成人亚洲精品一区在线观看 | 一本久久精品| 国产伦精品一区二区三区四那| 国产精品无大码| 国模一区二区三区四区视频| 一级毛片aaaaaa免费看小| 亚洲成人精品中文字幕电影| 亚洲婷婷狠狠爱综合网| 可以在线观看毛片的网站| 免费看a级黄色片| 91精品伊人久久大香线蕉| 成人美女网站在线观看视频| 日韩人妻高清精品专区| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 男人舔奶头视频| 国产精品久久视频播放| av专区在线播放| 哪个播放器可以免费观看大片| 日本一二三区视频观看| 国产在线男女| 久久精品国产自在天天线| 老司机影院成人| 黄色一级大片看看| 亚洲熟妇中文字幕五十中出| 又爽又黄无遮挡网站| 你懂的网址亚洲精品在线观看| 日韩av免费高清视频| 亚洲国产成人一精品久久久| 91久久精品电影网| 一区二区三区四区激情视频| 国产免费又黄又爽又色| 亚洲熟女精品中文字幕| 精品欧美国产一区二区三| 伊人久久精品亚洲午夜| 97超视频在线观看视频| 欧美丝袜亚洲另类| 老司机影院毛片| 男女国产视频网站| 成人毛片60女人毛片免费| 亚洲精品色激情综合| 韩国高清视频一区二区三区| 九九在线视频观看精品| 乱人视频在线观看| 老女人水多毛片| 中文欧美无线码| 亚洲四区av| 伊人久久精品亚洲午夜| 久久久国产一区二区| 特大巨黑吊av在线直播| 国产女主播在线喷水免费视频网站 | 国产精品一及| 搡老妇女老女人老熟妇| 国产精品麻豆人妻色哟哟久久 | 亚洲国产色片| 久久鲁丝午夜福利片| 国产精品一区二区三区四区久久| 免费看日本二区| 人妻夜夜爽99麻豆av| 成人午夜高清在线视频| 成人欧美大片| 免费av毛片视频| 麻豆av噜噜一区二区三区| 免费观看在线日韩| 日本av手机在线免费观看| 国产欧美日韩精品一区二区| 精品国产三级普通话版| 青春草国产在线视频| 两个人的视频大全免费| 亚洲aⅴ乱码一区二区在线播放| 免费人成在线观看视频色| 久久久久精品久久久久真实原创| 久99久视频精品免费| 国产毛片a区久久久久| 男女国产视频网站| 中文在线观看免费www的网站| 亚洲国产精品sss在线观看| 亚洲欧美中文字幕日韩二区| 波野结衣二区三区在线| 久久综合国产亚洲精品| 久久精品熟女亚洲av麻豆精品 | 午夜亚洲福利在线播放| 欧美潮喷喷水| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品在线观看| 国产成人精品久久久久久| 69人妻影院| 国产精品人妻久久久久久| 日韩三级伦理在线观看| 午夜福利成人在线免费观看| 男女啪啪激烈高潮av片| 一级毛片我不卡| 日本熟妇午夜| 淫秽高清视频在线观看| 国产色婷婷99| 国产精品av视频在线免费观看| 国产乱来视频区| 亚洲欧美一区二区三区黑人 | 身体一侧抽搐| 欧美成人一区二区免费高清观看| 不卡视频在线观看欧美| 男女国产视频网站| 日韩视频在线欧美| 亚洲av男天堂| 亚洲久久久久久中文字幕| 日本午夜av视频| 亚洲成人一二三区av| 久久精品人妻少妇| 好男人在线观看高清免费视频| 一个人看的www免费观看视频| 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验| 少妇的逼好多水| 免费黄频网站在线观看国产| 成人国产麻豆网| 一级av片app| 亚洲真实伦在线观看| 成人av在线播放网站| 人人妻人人澡人人爽人人夜夜 | 成人av在线播放网站| 亚洲国产高清在线一区二区三| 一二三四中文在线观看免费高清| 日日摸夜夜添夜夜添av毛片| 男女边吃奶边做爰视频| 亚洲在线自拍视频| 久久久久久伊人网av| 狠狠精品人妻久久久久久综合| av播播在线观看一区| 日韩一区二区三区影片| 日韩人妻高清精品专区| 国产精品嫩草影院av在线观看| 九九在线视频观看精品| 一个人观看的视频www高清免费观看| 国产成人freesex在线| 深爱激情五月婷婷| 午夜免费观看性视频| 国产亚洲午夜精品一区二区久久 | 亚洲av电影不卡..在线观看| 中文欧美无线码| 色视频www国产| 日本与韩国留学比较| 麻豆av噜噜一区二区三区| 国产极品天堂在线| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 久久久久精品性色| 边亲边吃奶的免费视频| 精品欧美国产一区二区三| 成年女人看的毛片在线观看| 亚洲国产最新在线播放| .国产精品久久| 好男人视频免费观看在线| 精品酒店卫生间| 亚洲精品久久午夜乱码| 久久久久久久久久成人| 欧美性猛交╳xxx乱大交人| 亚洲欧美成人精品一区二区| 男女国产视频网站| 日韩电影二区| 男女边吃奶边做爰视频| 日韩电影二区| 国产国拍精品亚洲av在线观看| 亚洲在线自拍视频| 爱豆传媒免费全集在线观看| 国产 一区 欧美 日韩| 免费电影在线观看免费观看| 精品人妻一区二区三区麻豆| 国产精品久久久久久精品电影| 日本三级黄在线观看| 日韩制服骚丝袜av| av黄色大香蕉| 国产成人免费观看mmmm| 久久久a久久爽久久v久久| 高清日韩中文字幕在线| 极品少妇高潮喷水抽搐| 丰满人妻一区二区三区视频av| 亚洲在线自拍视频| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 精品久久国产蜜桃| 欧美潮喷喷水| 亚洲国产欧美在线一区| 国产色婷婷99| 麻豆国产97在线/欧美| 久久精品熟女亚洲av麻豆精品 | 午夜老司机福利剧场| 99视频精品全部免费 在线| 美女高潮的动态| 国产亚洲5aaaaa淫片| 久久精品国产亚洲网站| 国产一区二区在线观看日韩| 免费黄频网站在线观看国产| 麻豆国产97在线/欧美| 午夜免费男女啪啪视频观看| 舔av片在线| 久久精品国产亚洲av涩爱| 国产高清有码在线观看视频| 日韩成人伦理影院| 在线观看美女被高潮喷水网站| 日韩,欧美,国产一区二区三区| 日日摸夜夜添夜夜爱| 欧美最新免费一区二区三区| 一区二区三区乱码不卡18| 亚洲电影在线观看av| 国产精品久久久久久精品电影小说 |