• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Regularization Method for a Parameter Identification Problem in a Non-linear Partial Differential Equation

    2023-09-23 12:04:36NAIRThambanandROYSampritaDas

    NAIR M.Thamban and ROY Samprita Das

    1 Department of Mathematics,BITS Pilani,K K Birla Goa Campus,Zuarinager,Goa 403726,India.

    2 Department of Mathematics and Statistics,IISER Kokota,Nadia,West Bengal 741246,India.

    Abstract. We consider a parameter identification problem associated with a quasilinear elliptic Neumann boundary value problem involving a parameter function a(·) and the solution u(·),where the problem is to identify a(·) on an interval I:=g(Γ) from the knowledge of the solution u(·) as g on Γ,where Γ is a given curve on the boundary of the domain Ω?R3 of the problem and g is a continuous function.The inverse problem is formulated as a problem of solving an operator equation involving a compact operator depending on the data,and for obtaining stable approximate solutions under noisy data,a new regularization method is considered.The derived error estimates are similar to,and in certain cases better than,the classical Tikhonov regularization considered in the literature in recent past.

    Key Words: Ill-posed;regularization;parameter identification.

    1 Introduction

    Let Ω be a bounded domain in R3withC1,1boundary.Consider the problem of finding a weak solutionu∈H1(Ω) of the partial differential equation

    with boundary condition

    wherea∈H1(R) andj∈L2(?Ω).One can come across this type of problems in the steady state heat transfer problem withubeing the temperature,athe thermal conductivity which is a function of the temperature,andjthe heat flux applied to the surface.In this regard,the following result is known (see[1-3]):

    Theorem 1.1.Let a≥κ0>0a.e.for some constant κ0andThen there exists u∈H1(Ω)such that(1.1)and(1.2)are satisfied.If,in addition,with p>3,then u ∈

    In view of the above theorem,we assume that,

    Supposeγ:[0,1]→?Ω is aC1-curve on?Ω andg:?!鶵 such thatg?γ∈C1([0,1]),where Γ is the range ofγ.One of the inverse problems associated with (1.1)-(1.2) is:

    Problem (P):To identify an a∈H1(R)on I:=g(Γ)such that the corresponding u satisfies(1.1)-(1.2)along with the requirement

    In the following we shall use the same notation fora∈H1(R) and for its restriction onIas a function inH1(I).

    We shall see that the Problem (P) is ill-posed,in the sense that the solutiona|Idoes not depend continuously on the datagandj(see Section 2).To obtain a stable approximate solution for the Problem (P),we use a new regularization method which is different from some of the standard ones in the literature.We discuss this method in Section 3.

    The existence and uniqueness of solution for the Problem (P) is known under some additional conditions onγandg,as specified in Section 2 (see,e.g.,[3,4]).In [2] and[3] the problem of finding a stable approximate solution of the problem is studied by employing Tikhonov regularization with noisy data.In [2],with the noisy datagδ,in place ofg,satisfying‖g-gδ‖L2(Γ)≤δ,convergence rateis obtained whenevera∈H4(I) and its trace is Lipschitz on?Ω,whereaδis the approximate solution obtained via Tikhonov regularization.In [3],the rateis obtained without the additional assumption ona,where noise injas well asgis also considered as

    It is stated in[3]that“the rateis possible with respect toH1-norm,provided some additional smoothness conditions are satisfied”;however,the details of the analysis is missing.

    Under our newly introduced method,we obtain the above type of error estimates using appropriate smoothness assumptions.In particular we prove that,ifg0∈R is such thatI=[g0,g1]and ifa(g0) is known or is approximately known,and the perturbed datajδandgδbelong toW1-1/p,p(?Ω) forp>3 andC1(Γ),respectively,satisfying (1.5),then the convergence rate iswith respect toL2-norm.With additional assumption that the exact solution is inH3(I) we obtain a convergence rateO(δ2/3) with respect toL2-norm.Again,in particular,ifg?γis inH4([0,1]),the rateO(δ2/3) with respect toL2-norm is obtained under a weaker condition on perturbed datagδ,namely,gδ∈L2(Γ) with‖g-gδ‖L2(Γ)≤δ.Also,in the new method we do not need the assumption ongδmade in [3] which isgδ(Γ)?g(Γ).Thus some of the estimates obtained in this paper are improvements over the known estimates,and are also better than the expected best possible estimate,namelyO(δ3/5),in the context of Tikhonov regularization,as mentioned in[3].

    The paper is organized as follows:In Section 2 we present a theorem which characterize the solution of the inverse Problem (P) in terms of the solution of the Laplace equation with an appropriate Neumann condition.Also,the inverse problem is represented as the problem of solving a linear operator equation,where the operator is written as a composition of three injective bounded operators,one of which is a compact operator,and prove some properties of these operators.The new regularization method is defined in Section 3,and error estimates with noisy as well as exact data are derived.In Section 4 we present error analysis with some relaxed conditions on the perturbed data.In Section 5 a procedure is described to relax a condition on the exact data and corresponding error estimate is derived.In Section 6 we illustrate the procedure of obtaining a stable approximate solution to the Problem (P).

    2 Operator theoretic formulation

    Throughout the paper we denote the range of the functiong:?!鶵 asI:=[g0,g1],that isg0andg1are the left and right end-points of the closed intervalg(γ([0,1])).

    The following theorem,proved in[4],helps us to identify the solution of the Problem (P).

    Theorem 2.1.The Problem (P) has a unique solution,and it is the unique a∈H1(I)such that

    where M is a constant andsatisfies

    It is known that ifj ∈W1-1/p,p(?Ω) forp>3,thenvsatisfying (2.2)-(2.3) belongs toW2,p(Ω),and

    for some constantC>0(see Theorems 2.3.3.2 and 2.4.2.7 in[5]).

    In view of Theorem 2.1,the inverse Problem (P) can be restated as follows:Givenjandgas in the Problem (P),letsatisfy (2.2) and (2.3) along with the condition

    Then,a∈H1(I) is the solution of the Problem (P) if and only if

    The above equation can be represented as an operator equation

    wherevjis the solution of (2.2)-(2.5) and the operatorT:L2(I)→L2[0,1]is defined by

    Theorem 2.2.The operator T:L2(I)→L2[0,1]defined in(2.7)is an injective compact operator of infinite rank.

    Proof.Note that for everyw∈L2(I) and for everys,τ ∈[0,1],we have

    Sinceg?γis continuous,the set{Tw:‖w‖L2(I)≤1}is equicontinuous and uniformly bounded inC[0,1].Hence,Tis a compact operator fromL2(I) toC[0,1].Since,the inclusionC[0,1]?L2[0,1]is continuous,it follows thatT:L2(I)→L2[0,1]is also a compact operator.We note thatTis injective.Hence,Tis of infinite rank.

    It is to be observed that the compact operatorTdefined in (2.7) depends on theg.Thus,problem of solving the operator equation (2.6) based on the data (g,j) is non-linear as well as ill-posed.In order to propose a new regularization method for obtaining stable approximate solutions,we represent the operatorTas a composition of three operators,that is,

    where,forr∈{0,1},

    are defined as follows:

    Clearly,T1,T2,T3are linear operators and

    Here,we used the convention thatH0(I):=L2(I).

    By the above representation ofT,the operator equation (2.6) can be split into three equations:

    To prove some properties of the operatorsT1,T2,T3,we specify the requirements onj,gandγ,namely the following.

    Assumption 2.1.Let j∈W(1-1/p),p(?Ω)with p>3and=0.Let γ:[0,1]→?Ωbe a C1-curve on ?Ωand g:Γ→Rbe such that g∈C1(Γ),

    for some positive constants Cγ,,Cg and.

    Next we state a result from analysis which will be used in the next result and also in many other results that follow.

    Lemma 2.1.Let h1and h2be two continuous functions on intervals J1and J2respectively,such that h2(J2)=J1.Also,letbe continuous with.Then,

    We shall also make use of the following proposition.

    Proposition 2.1.Let Cg,Cγ,be as in Assumption2.1.Then for any w∈L2(I),

    Proof.By Lemma 2.1 and the inequalities (2.14) and (2.15) in Assumption 2.1,we have

    From the above,we obtain the required inequalities in (2.16).

    Theorem 2.3.Let r∈{0,1},and let

    be defined as in(2.8),(2.9)and(2.10),respectively.Then,T2is a compact operator,and for every w∈L2(I),

    In particular,T1and T3are bounded operators with bounded inverse from their ranges.

    Proof.SinceH1(I) andH2(I) are compactly embedded inL2(I) (see,e.g.,[6]),T2is a compact operator of infinite rank.Now,letw∈H1(I) andτ ∈I.Then

    Hence,using the fact that (T1(w))′=wand (T1(w))′′=w′,we have

    Thus,(2.17) is proved.By the inequalities in (2.16) we obtain

    for everyw ∈L2(I).The inequalities in (2.17) and (2.19) also show thatT1andT3are bounded operator with bounded inverse from their ranges.

    3 The new regularization

    We know that the Problem (P) is ill-posed.We may also recall that the operator equation (2.6) is equivalent to the system of operator equations (2.11)-(2.13),wherein Eq.(2.12) is ill-posed,sinceT2is a compact operator of infinite rank.Thus,in order to regularize (2.6),we shall replace Eq.(2.12) by a regularized form of it using a family of bounded operators,α>0.

    Note thatT2:H2(I)→L2(I) is defined by

    for eachα>0.

    Theorem 3.1.For α>0,let:H2(I)→L2(I)be defined as in(3.1)Then,

    In particular,is a bounded operator with.Further,

    Proof.We observe that,for anyw∈H2(I),

    In order to define a regularization family forT2,we introduce the space

    Note that,forw∈H2(I),w∈Wif and only if

    for someξ ∈H1(I) satisfyingξ(g1)=0.

    Now,we prove some results associated withW.

    Proposition 3.1.The space W defined in(3.2)is a closed subspace of H2(I)and

    where Q:H2(I)→H2(I)is the orthogonal projection onto W.

    Proof.Let (wn) inWbe such thatwn →w0inH2(I) for somew0∈H2(I).By a Sobolev imbedding Theorem [6],H2(I) is continuously imbedded in the spaceC1(I) withC1-norm.Therefore,w0∈C1(I),and

    Thus,sincewn ∈W,in particular

    Hencew0∈W.ThusWis closed.Now,letQ:H2(I)→H2(I) be the orthogonal projection ontoW.Then,fory∈L2(I) andw∈Wwe have,

    Proposition 3.2.Let α>0.Let L:H2(I)→H2(I)be defined by

    for every x∈H2(I),t∈I.Then we have the following.

    (i) For anyx∈H2(I),Lx∈C∞(I)?H2(I),α(Lx)′′=Lxand.

    (ii)Lis a bounded linear operator.

    (iii) The mapid-Lis a projection ontoW,whereidis the identity map onH2(I).

    Proof.Clearly,Lis a linear operator,and for anyx ∈H2(I),we haveLx ∈C∞(I)?H2(I) andα(Lx)′′=Lx.To show thatLis continuous,let (xn) be a sequence inH2(I) such that‖xn-x‖H2(I)→0 for somex∈H2(I).By a Sobolev imbedding Theorem[6],H2(I) is continuously imbedded in the spaceC1(I) withC1-norm,and so we have|xn(g0)-x(g0)|→0 and|x′n(g1)-x′(g1)|→0 asn→∞.Using this,it can be shown thatLis continuous.Now again by definition ofL,for anyx∈H2(I) we have

    so that (id-L)(x-Lx)=x-Lx-L(x-Lx)=x-Lx.Hence,using the definition of the spaceW,we haveid-Lis a projection ontoW.

    We shall use the notation

    whereLis the bounded operator as in Proposition 3.2.

    Theorem 3.2.Let0<α<1.Then,for every w∈W,

    Proof.First we observe,by integration by parts,that forw1,w2∈W,Hence,for everyw∈W,

    Since 0<α<1,for everyw∈W,

    This completes the proof.

    At this point let us note that,by (3.4),is bounded below onW.Henceforth,we shall use the same notation forand its restriction toW,that is,

    and the adjoint of this operator will be denoted.The following lemma is used to prove some important properties of,which plays an important role in formulating the new regularization method.Its proof follows from properties of closed range operators,using some standard tools of functional analysis (e.g.,for (3.7) below,see Theorem 11.1.10 in[7]).

    Lemma 3.1.Let H1and H2be Hilbert spaces and let S:H1→H2be a bounded linear operator with closed range.Then,

    Suppose,in addition,that there exist c>0such that‖Sx‖≥c‖x‖for all x∈H1.Then

    Further,if‖·‖0is any norm on H1and if c0>0is such that‖Sx‖≥c0‖x‖0for all x∈H1,then

    where S?:=(S*S)-1S*,the generalized inverse of S.Here,R(S)and N(S)respectively,denote the range and null space of the operator S.

    Corollary 3.1.Let0<α<1andbe as in(3.6).Then for every y∈L2(I),

    Proof.TakingH1=WandH2=L2(I) in Lemma 3.1,the inequalities in (3.10) and (3.11) follow from (3.9) by taking the norm‖·‖0as‖·‖H2(I)and‖·‖H1(I)respectively,onWand by using (3.4) and (3.5),respectively.

    LetRα:L2(I)→Wforα>0 be defined by

    We note that,by Corollary 3.1,Rαis a bounded operator fromL2(I) toW(with respect to the norm‖·‖H2(I)),for eachα>0.Since,we have

    Next,we prove that{Rα}α>0,defined as in (3.12),is a regularization family forT2:W →L2(I).Towards this aim,we first prove the following theorem.

    Theorem 3.3.For α>0,let Rα be as in(3.12),and let CL be as in(3.3).Then the following results hold.

    Proof.(i) Letw∈W.By (3.13),we have

    Hence,using (3.10),

    Thus,‖RαT2w‖H2(I)≤2‖w‖H2(I)for everyw∈W.

    (ii) Letw∈W∩H4(I).Let us note thatw′′is in the domain ofT2and hence is inH2(I)(may not be inW).By Proposition 3.2,w′′-Lw′′∈Wand.Thus,using the above fact,along with the fact thatis in the domain ofT2,by (3.13) and (i) above,we have

    we obtain the required inequality.

    (iii) Forw∈W,using (3.11),we have.Thus,the proof is complete.

    Lemma 3.2.The space W ∩H4(I)is dense in W.

    Proof.Letw ∈W.SinceH4(I) is dense inH2(I) as a subspace ofH2(I) (see,e.g.,[6]),there exists a sequence (wn) inH4(I) such that

    Now,defineP:H2(I)→Wby

    SinceH2(I) is continuously imbedded inC1(I)[6],(3.14) implies that|wn(g0)-w(g0)|→0 andasn→0.Thus,asIis bounded we have

    Again by definition ofPandWwe havePwn∈W∩H4(I) andPw=w.Hence from (3.14) and (3.15) we have the proof.

    Theorem 3.4.Let w∈W,and let{Rα}α>0be as in(3.12).Then

    In particular,{Rα}α>0is a regularization family for T2.

    Proof.By Theorem 3.3,(RαT2) is a uniformly bounded family of operators fromWtoWand‖RαT2w-w‖H2(I)→0 asα→∞for everyx ∈W ∩H4(I).SinceW ∩H4(I) is dense inW(see Lemma 3.2),by a result in functional analysis (see Theorem 3.11 in[7]),we obtain‖RαT2w-w‖H2(I)→0 asα→∞for everyw∈W.Thus{Rα}α>0is a regularization family forT2.

    Throughout,we assume thata0∈H1(I) is the unique solution of the Problem (P).Thus,Eqs.(2.11)-(2.13) have solutions namely,ζ0,b0anda0,respectively.That is,

    Having obtained the regularization family{Rα}α>0forT2as in (3.12),we may replace the solutionb0of Eq.(2.12) by

    The regularized solutionaαfor the Problem (P) is defined along the following lines:

    Sincebα ∈W ?R(T1),each of the above equations has unique solution.In fact,ζ0=T2b0withb0=T1a0,wherea0is the unique solution of (2.6).Note that,the operator equation (3.20) has a unique solution,becauseis bounded below,and (3.21) has a unique solution asT1is injective with rangeW,andbα ∈W.Hence we have,aα(g1)=0.Thus to obtain convergence of{aα}toa0asα→0,it is necessary thata0(g1)=0.Therefore,in this section,we assume that,

    We shall relax this condition in Section 5,by appropriately redefining regularized solutions.

    3.1 Error estimates under exact data

    Forα>0,letaαbe defined via Eqs.(3.19)-(3.21).Also,Leta0be the unique solution to the Problem (P) satisfying (3.22).Then,we look at the estimates for the error term (a0-aα) in bothL2(I) andH1(I) norms in the following theorem.

    Theorem 3.5.The following results hold.

    3.If a0∈H3(I),then with CL is as in(3.3),

    Proof.By our assumption,a0(g1)=0.Therefore,by definition ofT1and the spaceW,we haveb0=T1(a0)∈W.Now let us first observe that,by the definition ofbα

    Hence,by the inequality (2.17),forr∈{0,1},we have,

    and hence,by Theorem 3.4,‖a0-aα‖H1(I)→0 asα→0.Thus we have proved (1).

    Also,sinceb0∈W,from (3.23) and Theorem 3.3(iii),we have

    which proves (2).Now,leta0∈H3(I).Thenb0∈H4(I).Sinceb0∈W,we haveb0∈W ∩H4(I).Hence proof of (3) follows from (3.23) and Theorem 3.3(ii).

    3.2 Error estimates under noisy data

    In practical situations the observations of the datajandgmay not be known accurately and we may have some noisy data instead.In this section we assume that the noisy datagεandjδare such that

    for some known noise levelεandδ,respectively.At this point,let us note that a weaker condition on perturbed datajδ,for examplejδ ∈L2(?Ω),is not very feasible to work with.This is because,in that case the corresponding solutionvjδof (2.3)-(2.5) withjδin place ofj,is not continuous and hence its restriction on Γ does not make sense.In practical situations,if such a perturbed data arise,one may work with an appropriate approximation which is inW1-1/p,p(?Ω) withp>3.For the perturbed datagε,in the next section we consider the case when it is in a more general space which isL2(Γ).

    Corresponding to the dataj,jδas above,we denote

    Lemma 3.3.Let γ0be a C1curve onR2and letΓ0={(x,γ0(x))∈R2:d0≤x ≤d1} for some d0,d1inRwith d0<d1.Then

    Proof.Let.Then,using H¨older’s inequality we have

    Lemma 3.4.Let w∈H1(?Ω)and γ be a curve on ?Ωsuch that|γ′(t)|is bounded away from0as in(2.14).Then there exists C0>0such that

    Proof.Letw∈H1(?Ω).Since Ω is withC1boundary,

    for some elementsω1,···,ωm ∈H1(R2)(see,e.g.,[5,6]).Also,there exists a set{σ1,···,σm}of diffeomorphisms from some neighbourhoods in?Ω to R2,which satisfies

    For anyi ∈{1,···,m},sinceσiis a diffeomorphismσi?γis a curve in R2.Asis compact andσiis one-one there exists constantCσ>0 such thatfor allx ∈γ([0,1]) and 1≤i ≤m.Hence,by Lemma 2.1,(3.30) and property ofγalong with (2.14),we obtain

    Hence,using (3.28) and (3.29),we get

    This completes the proof.

    Proposition 3.3.Let.Let(Ω)be the solution of(2.3)-(2.5)within place of j,such that it satisfies(2.1).Then there existssuch that

    Proof.Sinceis inW1-1/p,p(?Ω),we know thatand

    for some constantC5>0 (see inequality (2.4)).By trace theorem for Sobolev spaces[5],and by continuous imbedding ofW(2-1/p),p(?Ω) intoW1,p(?Ω),we haveW2-1/p,p(?Ω)?W1,p(?Ω) and

    for some constantsC6,C7>0.

    Thus,using (3.31),(3.32) and withvin place ofwin Lemma 3.4,we have,

    Corollary 3.2.Let j be as in Assumption2.1and jδ satisfy(3.24)and(3.26).Let f and fδ be as in(3.27).Then

    whereis as in Proposition3.3.

    Proof.By Proposition 3.3 we have

    Lemma 3.5.For ε>0,

    where Cg andare as in(2.15).In particular,if0<ε≤Cg/2then

    Proof.For anysin[0,1],we have

    by (2.15),we obtain (3.34).The relations in (3.35) are obvious by the assumption onε.

    Remark 3.1.Since,γ′satisfies (2.14),and,(gε)′satisfies (3.35) forε<Cg/2,it follows thatgε(Γ) is a non-degenerate closed interval,that is,Iε:=gε(Γ)=for somewith.

    The following lemma will help us in showing thatI∩Iεis a closed and bounded (nondegenerate) interval.

    Lemma 3.6.Let ?1,?2be in C([ξ1,ξ2])for some ξ1and ξ2inR,and let η>0be such that

    Let I1:=?1([ξ1,ξ2])=[a1,b1]and I2:=?2([ξ1,ξ2])=[a2,b2]for some a1,b1,a2and b2inR.If a1<b1and a2<b2and η>0is such that

    and I1∩I2=[a,b]is a non-degenerate interval,that is,a<b.

    Proof.Supposea1<b1anda2<b2.Since,for some,and since,we obtain

    Thus,(3.38) is proved.

    To prove the remaining,let us first consider the casea1≤a2.Then,,where=min{b2,b1}.Note that,by (3.37) and (3.39),we have

    Thus,b1>a2,and also,asb2>a2we have,

    Next,leta1>a2.In this case,,where.Note,again by (3.37) and (3.39),that

    Thus,b2>a1,and also,asb1>a1we have,

    Hence,combining both the cases,we have the proof.

    Remark 3.2.Lets1ands0in [0,1] be such thatg0=g(γ(s0)) andg1=g(γ(s1)).Let us recall thatI:=[g0,g1]andIε:=.Sincegandgεare inC1(Γ),we haveg?γandgε?γare inC1([0,1]).Also,

    Thus,by Lemma 3.6,we have

    Hence,takingε<(g1-g0)/4,we have

    and thus,2ε<min{(g1-g0),.Hence by Lemma 3.6,I∩Iεis a closed and bounded non-degenerate interval.Let us denote this interval by.Thus,

    Next,we shall make use of the following lemma which can be proved using the Sobolev imbeding theorem[6].

    Lemma 3.7.There exists a constant C>0such that for any closed interval J,

    where CJ:=Cmax{4,(2|J|+1)}.In particular,for any interval J0such that J0?J,

    Ify∈W1,∞(J1) then using (3.42) we obtain

    and additionally ify′′∈L∞(J1),then

    Lemma 3.8.Let J1and J2be closed intervals such that J2?J1and let CJ1be as in Lemma3.7.Let y∈H2(J1),then we have the following.

    Proof.LetJ1=[a,b]andJ2=[c,d]for somea≤bandc≤d.IfJ1=J2thenJ1J2=?,and in that case the result holds trivially.So let us consider the cases when eithera<cord<b,or both holds.Without loss of generality let us assume thata<candd<b.Lety∈H2(J1).Then by (3.42)yandy′are inL∞(J1).Thus takingJ0=[a,c]in (3.43) we have

    and takingJ0=[d,b]in (3.43) we have

    Hence we have (i).Next,additionally if,y′′∈L∞(J1),havingJ0=[a,c]in (3.44) we obtain

    and havingJ0=[d,b]in (3.44) we obtain

    Hence we have (ii).

    Lemma 3.9.Let ?1,?2,I1,I2and η be as in Lemma3.6satisfying all the assumptions there.Then,for any interval I3?I1∩I2and y∈C1(I1)

    Assume,further,that ?1,?2∈C1([ξ1,ξ2])satisfyingfor some constants C?1,C?2>0.Then,for y∈H2(I1)

    withand CI is as in Lemma3.7.

    Proof.By Lemma 3.6,we haveI1∩I2to be a closed non-degenerate interval.LetI3be an interval inI1∩I2.Then fory∈C1(I1) using fundamental theorem of calculus and H¨older’s inequality we have

    Hence,using (3.42) we have (3.46).

    Now,additionally letε ≤Cg/2.Then,by (2.14) and (3.35)gεandγare bijective,and so (gε?γ)-1is continuous.Thusis a closed non-degenerate interval.In other words

    Theorem 3.6.Letbe as defined in(3.52).Then,for ζ ∈W,

    Proof.Letζ ∈W.For anys∈[0,1],by (2.14) and (2.15),we have

    By (3.50) and (3.51),we have

    respectively.Nowζ ∈W ?H2(I).Then,by definition ofT3and,we have

    Hence,taking?1asg?γand?2asgε?γin Lemma 3.9,we have

    This completes the proof.

    Theorem 3.7.The map,defined as in(3.52),is bounded linear and bounded below.In fact,for every,

    where Cγ,and Cg,are as in(2.14)and(2.15),respectively.

    Proof.Clearly,is a linear map.Since (2.14) and (3.35) hold,using Lemma 2.1,and (3.52) we obtain

    Hence we have the proof.

    Now,by Theorem 3.7,we know thatis a bounded linear operator which is bounded below.Thus using Lemma 3.1,the operator

    is a bounded linear operator and is the generalized inverse of.The following theorem,which also follows from Lemma 3.1,shows that the family

    is in fact uniformly bounded.

    Theorem 3.8.For every ζ ∈L2([0,1]),

    whereare as in(2.14)and(2.15).

    In order to obtain an approximate solution of (2.6) under the nosy data (jδ,gε) satisfying (3.25) and (3.26),we adopt the following operator procedure:First we consider the following operator equation

    belongs toL2(I).Next,we consider the operator equation

    Letbα,ε,δbe the unique solution of Eq.(3.56).Thus by solving the operator equations (3.55) and (3.56) we obtainbα,ε,δ.Sincebα,ε,δ∈W ?R(T1),is the solution of the equation

    We show thataα,ε,δis a candidate for an approximate solution to the Problem (P).

    Lemma 3.10.Under the assumptions in Assumption2.1on(j,g),let a0∈H1(I)be the solution of T(a)=fj.Assume further that a0(g1)=0.For ζ ∈L2(I),let bα,ζ ∈H2(I)be such that

    and let.Then

    where Cα>0is such that Cα →0as α→0.In addition,if a0∈H3(I),then

    Here CL is as(3.3).

    Proof.Letb0=T1(a0).Then,asa0(g1)=0,we haveb0∈W.Now,by definition ofaα,ζand,H1(I) andH2(I) norms,forr∈{0,1}

    Hence,forr∈{0,1},

    By Theorem 3.4 we have

    Also,by Theorem 3.3-(iii) we have

    Again,using (3.10) and (3.11),we have

    Thus combining (3.61),(3.62) and (3.64) we have (3.57) with

    and combining (3.61),(3.63) and (3.65) we have (3.58).

    Next,leta0∈H3(I),b0=T1(a0)∈W ∩H4(I).Then,using theorem 3.3-(ii) we have,forr∈{0,1},

    Thus combining (3.61),(3.64) and (3.66) we have (3.59),and combining (3.61),(3.65) and (3.66) we have (3.60).

    Now,we prove one of the main theorems of this paper.

    Theorem 3.9.Let ε <min{(g1-g0)/4,Cg/2}.Let a0,g and j be as in Lemma3.10.Let gε ∈C1(Γ),jδ ∈W1-1/p,p(?Ω)with p>3,ζε,δ be the solution of(3.55),andwhere bα,ε,δ is the solution of(3.56).Also,let gε and jδ satisfy(3.25)and(3.26),respectively.Then

    where Cα>0is such that Cα →0as α→0.

    In addition if a0∈H3(I),then

    Now by definition,bα,ε,δis the unique solution of Eq.(3.56).Thus,withζε,δin place ofζin Lemma 3.10,we have the proof.

    Remark 3.3.Leta0andaα,ε,δbe as defined in Theorem 3.9.Then (3.67) and (3.68) take the forms

    respectively,whereCα>0 is such thatCα→0 asα→0,and if,in addition,a0∈H3(I),then (3.69) and (3.70) take the forms

    respectively,whereK1,K2,K3,K4are positive constants independent ofα,ε,δandCL ≥‖id-L‖,whereLis the bounded operator as in Proposition 3.2.Then,choosingandε=δin (3.67) we have

    Thus using the new regularization method we obtain a result better than the orderO(1) in[3]obtained using Tikhonov regularization.On choosingα=δ=εin (3.68) we have

    which is same as the estimate obtained in[3].Next,under the source conditiona0∈H3(I) and forandε=δ,(3.69) gives the order as

    This estimate is similar to a result obtained in [2] with source conditiona0∈H4(I) and trace ofa0being Lipschitz which is stronger than the source condition needed in our result,whereas under the same source conditiona0∈H3(I),the choice ofα=δ2/3andε=δin (3.70) gives the rate as

    This is better than the rateO(δ3/5) mentioned in[3]as the best possible estimate underL2(I) norm (under realistic boundary condition) using Tikhonov regularization.

    4 Relaxation of assumption on perturbed data

    In the previous section we have carried out our analysis assuming that the perturbed datagεis inC1(Γ),along with (3.25).This assumption can turn out to be too strong for implementation in practical problems.Hence,here we consider a weaker and practically relevant assumption on our perturbed datagε,namelygε ∈L2(Γ) with

    What we essentially used in our analysis in Section 3 to derive the error estimates is thatgε?γis close tog?γin appropriate norms.Here,we considerin place ofgε?γ,where Πh:L2([0,1])→L2([0,1]) is the orthogonal projection onto a subspace ofW1,∞([0,1]),and we show thatis close tog?γin appropriate norms,and then obtain associated error estimates.For this purpose,we shall also assume more regularity ong?γ,namely,g?γ∈H4([0,1]).

    Let Πh:L2([0,1])→L2([0,1]) be the orthogonal projection onto the spaceLhwhich is the space of all continuous real valued piecewise linear functionswon[0,1]defined on a uniform partition 0=t0<t1<···tN=1 of mesh sizeh,that is,ti:=(i-1)hfori=1,···(N+1) andh=1/N.Thus,w ∈Lhif and only ifw ∈C[0,1] such thatw|[ti-1,ti]is a polynomial of degree at most 1.Let.

    In the following,forw ∈L2([0,1]) andτh ∈Th,we use the notationandwheneverw|τhbelong toHm(τh) andWm,∞(τh),respectively.As a particular case of inverse inequality stated in Lemma 4.5.3 in[8],form∈{0,1},we have

    whereis a positive constant.

    Proposition 4.1.Let w ∈L2([0,1]),m ∈N∪{0} and τh ∈Th.Then the following inequalities hold.

    where C0:=2C[0,1]with C[0,1]as in(3.42)andis as in(4.2).

    Proof.Iffor somej∈N∪{0},then using (3.42) and the fact thatτhis of lengthh,we obtain

    whereI0:=[0,1].Hence,we have

    Thus,takingC0=2CI0,we have (4.3).

    By repeatedly using (3.42) and then by (4.3),we obtain

    As we have takenC0=2CI0,we have the proof of (4.4).

    Since Πhis an orthogonal projection,from (4.2) we obtain,

    and,by repeatedly using (4.3) we have

    Hence we have the proof of (4.5).

    For simplifying the notation,we shall denote

    Theorem 4.1.Let τh ∈Th and(4.6)be satisfied.Then,the following inequalities hold.

    Proof.Using triangle inequality we have

    Assumption (2.14),Lemma 2.1 and (4.1) imply

    so that,using (4.2) and the fact that Πhis an orthogonal projection,we have

    By (4.4) and (4.5),

    Thus,using (4.7),(4.10) and (4.12),and taking,we have (i).By (4.4) and (4.5),

    Hence,using (4.8) and (4.11),and takingwe have (ii).

    To prove (iii) and (iv),lets∈[0,1].Note that

    Using (2.14) and (2.15) the above implies

    Hence using (ii) we have (iii) and (iv).

    From (iii) and (iv) in Theorem 4.1 we obtain the following corollary.

    Corollary 4.1.Let h be such that

    Hence,combining (4.26) and (4.27) we have (4.21),and combining (4.26) and (4.28) we have (4.22).Hence,is bounded linear and bounded below.Since,satisfies (4.21) and (4.22),from Lemma 3.1,we obtain (4.23).

    Using the fact that Πhis a projection,and Lemma 2.1 and (2.14),we obtain,

    and,using the fact that Πhis an orthogonal projection,and (4.5),

    Now,ζ ∈Wimplies.Hence,taking?1and?2asandrespectively,in the first part of Lemma 3.9,(3.42) and (4.31),we have,

    Now,by (3.42),ζ ∈Wimpliesζ ∈W1,∞(I).Hence,as (4.33) and (4.34) hold,by Lemma 3.8-(i) and then by (3.42),we have

    Thus,from (4.35) we have (4.24).

    Ifζ ∈H3(I),then,since (4.33) and (4.34) hold,by Lemma 3.8-(ii) and then by (3.42),

    Thus,from (4.35) we have (4.25).

    Proposition 4.3.Let a0and g be as defined in Lemma3.10.Let h and ε satisfy the relations in(4.13)and(4.16).Let gε ∈L2(I)be such that(4.1)is satisfied.Then,b0=T1(a0)satisfies,

    and,in addition,if a0∈H2(I),then,

    Proof.Since,handεsatisfy (4.13),for anyτh ∈Th,as (4.17) holds,by Lemma 3.8-(i) and then by (3.42),we have

    and,ifa0∈H2(I),b0∈H3(I) and so,by Lemma 3.8-(ii) and then by (3.42),

    Theorem 4.3.Let a0,g and j be as in Lemma3.10.Let gε∈L2(I),jδ∈W1-1/p,p(?Ω)with p>3.Also,let gε and jδ satisfy(3.26)and(4.1),respectively,and h and ε satisfy the relations in(4.13)and(4.16),and.Then the following results hold.

    In the above Cα>0is such that Cα →0as α→0,b0=T1(a0),

    and C0,CL,Cγ are constants as defined in(2.14), (2.15), (3.42), (4.3),Proposition3.2,Theorem4.1-(ii) respectively.

    Proof.By definition ofζε,δ,h,

    Hence,from (4.46) and (4.47) we have

    Thus,from (4.38),(4.45) and (4.48) we have

    Ifa0∈H2(I) thenb0∈H3(I),and thus from (4.39),(4.45) and (4.48) we have,

    Our aim is to find an estimate for the error term (a0-aα,ε,δ,h) inL2(I) andH1(I) norms.Nowbα,ε,δ,his the unique solution of equation (4.37).Thus,by Lemma 3.10 we need an estimate of‖ζε,δ,h-b0‖L2(I)in order to find our required estimates.Inequalities (4.49) and (5.19) give us estimates of‖ζε,δ,h-b0‖L2(I)under different conditions onb0.Hence,takingζε,δ,hin place ofζin Lemma 3.10 we have the proof.

    Remark 4.1.Suppose

    Then,forε=δandh=δ1/2,(4.13) and (4.16) are satisfied.Hence,by Theorem 4.3,we have the following:

    2.Ifa0∈H3(I) andα=δ2/3,then

    3.Choosingα=δ,we have

    4.Ifa0∈H2(I),then

    Resultsin (1) and (2) above are analogous to the corresponding results fora0-aα,ε,δin Remark 3.3.The estimate in (4) is same as the corresponding estimate in Remark 3.3,except for the fact that here we need an additional condition thata0∈H2(I).

    5 With exact solution having non-zero value at g1

    In the previous two sections we have considered the exact solution with assumption thata0(g1)=0.Here we consider the case whenbut is assumed to be known.Leta0(g1)=c.Sincea0is the solution to the Problem (P),by (2.6) we havefj=T(a0) which implies

    Now by definition ofTwe have

    Thus,combining (5.1) and (5.2) we have

    Hencea0-cis the solution of the following operator equation,

    where clearlyfj-c(gγ-g0)∈L2([0,1]).Also,(a0-c)(g1)=0.Now,let us define

    Thenb0,c ∈W.Thus,the analysis of the previous two sections can be applied here to obtain a stable approximate solution of Eq.(5.4).Let,wherebc,αis the solution to the following equation.

    whereζcis the solution of the equation

    Now,letgεandjδbe the perturbed data as defined in Theorem 4.3.Also,letgbe such thatg?γ∈H4([0,1]).Letbe the solution of the following equation

    Then we have the following theorem.

    Theorem 5.1.Let a0,c and b0,c be as defined in the beginning of the section.Let g and j be as defined in Lemma3.10,and gγ∈H4([0,1]).Let h and ε satisfy(4.13)and(4.16),respectively.Also,let gε ∈L2(Γ),jδ ∈W1-1/p,p(?Ω)with p>3,and gε and jδ satisfy(3.26)and(4.1)respectively.Let,and let

    where Cα>0is such that Cα →0as α→0.Further,we have the following.

    Ifa0,c ∈H2(I),from (4.39),(5.14) and (5.17) we have,

    By definition,bc,α,ε,δ,his the unique solution of Eq.(5.8).Also,a0,c ∈H2(I)∩Wimpliesb0,c ∈H3(I)∩W.Thus,puttingζc,ε,δ,hin place ofζin Lemma 3.10,we have the proof using (4.49) and (5.19).

    From Theorem 5.1,we see thatc+ac,α,ε,δ,his a stable approximate solution of the Problem (P),with error estimates obtained from Theorem 5.1.

    Remark 5.1.Let us relax the assumption on the exact solutiona0even more.Let us assume thata0(g1) is not equal to the known numbercbut is known to be“close”to it,i.e,

    Thus,using similar arguments as in the proof of Theorem 5.1,we obtain estimates for

    Using the fact that

    we obtain (ac,α,ε,δ,h+c) as a stable approximate solution to the Problem (P),and obtain the corresponding error estimates.

    6 Illustration of the procedure

    In order to find a stable approximate solution of the Problem (P) using the new regularization method we have to undertake the following.

    Letjδ ∈W1-1/p,p(?Ω) withp>3,gε ∈L2(?Ω) be the perturbed data satisfying (3.26) and (4.1) respectively,and letAlso let us assumeg?γ ∈H4([0,1]).Then,by the following steps we obtain the regularized solutionaα,ε,δ.

    Acknowledgement

    The work on this paper was completed while the authors were at Department of Mathematics,I.I.T.Madras.The authors thank the referee (s) for positive comments and for many useful suggestions which helped to improve the presentation of the first draft of the paper.

    中文精品一卡2卡3卡4更新| 亚洲色图av天堂| 成人午夜精彩视频在线观看| 一个人看的www免费观看视频| 日韩国内少妇激情av| 人体艺术视频欧美日本| 久久99精品国语久久久| 在线观看一区二区三区| 国产视频首页在线观看| 毛片女人毛片| 中文字幕制服av| 欧美一级a爱片免费观看看| a级一级毛片免费在线观看| 免费av观看视频| 成人免费观看视频高清| 日产精品乱码卡一卡2卡三| 又大又黄又爽视频免费| 一级二级三级毛片免费看| 插阴视频在线观看视频| 成人亚洲精品av一区二区| 午夜精品一区二区三区免费看| 国产精品人妻久久久久久| 国产精品一区二区在线观看99| 日韩av不卡免费在线播放| 国产爱豆传媒在线观看| 国产真实伦视频高清在线观看| 少妇人妻 视频| av国产免费在线观看| 黑人高潮一二区| 色视频在线一区二区三区| 国产精品嫩草影院av在线观看| 久久精品国产亚洲网站| 别揉我奶头 嗯啊视频| 80岁老熟妇乱子伦牲交| 亚洲成色77777| 精品人妻偷拍中文字幕| 最近最新中文字幕免费大全7| 亚洲最大成人av| 国产精品久久久久久av不卡| 三级国产精品片| 国产91av在线免费观看| 久久亚洲国产成人精品v| 国产高清不卡午夜福利| 亚洲熟女精品中文字幕| 成人特级av手机在线观看| 91在线精品国自产拍蜜月| 老司机影院成人| 久热久热在线精品观看| 亚洲av中文字字幕乱码综合| 日本-黄色视频高清免费观看| 国产极品天堂在线| 自拍欧美九色日韩亚洲蝌蚪91 | 夜夜爽夜夜爽视频| 国产一区二区三区综合在线观看 | 最新中文字幕久久久久| 久久影院123| 国产亚洲av嫩草精品影院| 国产精品久久久久久精品古装| 欧美97在线视频| 看免费成人av毛片| 久久99精品国语久久久| 最近最新中文字幕免费大全7| 午夜亚洲福利在线播放| 色视频www国产| 联通29元200g的流量卡| 熟女电影av网| 亚洲伊人久久精品综合| 亚洲,一卡二卡三卡| 熟女人妻精品中文字幕| 久久精品国产亚洲av天美| 国产又色又爽无遮挡免| 国产男女超爽视频在线观看| 亚洲精品一二三| 日日摸夜夜添夜夜爱| 神马国产精品三级电影在线观看| 中国美白少妇内射xxxbb| 欧美潮喷喷水| 又爽又黄a免费视频| a级一级毛片免费在线观看| 美女脱内裤让男人舔精品视频| 亚洲自拍偷在线| 国产av不卡久久| av国产久精品久网站免费入址| 建设人人有责人人尽责人人享有的 | 人人妻人人看人人澡| 人体艺术视频欧美日本| 九九久久精品国产亚洲av麻豆| 国产精品精品国产色婷婷| 国语对白做爰xxxⅹ性视频网站| 啦啦啦啦在线视频资源| 大又大粗又爽又黄少妇毛片口| 黄色配什么色好看| av播播在线观看一区| 久久人人爽人人爽人人片va| 国产精品嫩草影院av在线观看| 中文字幕免费在线视频6| 国产伦精品一区二区三区四那| 国产高清不卡午夜福利| 亚洲国产av新网站| 六月丁香七月| 伊人久久国产一区二区| 亚洲成人av在线免费| 91久久精品电影网| 久久人人爽人人爽人人片va| 在线免费十八禁| 欧美3d第一页| 日日摸夜夜添夜夜添av毛片| 国产极品天堂在线| 国产精品女同一区二区软件| 久久久久性生活片| 少妇的逼水好多| 精品熟女少妇av免费看| 欧美精品国产亚洲| 日韩亚洲欧美综合| 亚洲天堂国产精品一区在线| 日本-黄色视频高清免费观看| 大话2 男鬼变身卡| 国产精品一及| 亚洲精品国产av成人精品| 日本三级黄在线观看| 一个人看视频在线观看www免费| 亚洲精品视频女| 久久人人爽人人爽人人片va| 水蜜桃什么品种好| 波多野结衣巨乳人妻| 国产精品一区二区性色av| 久久久久久伊人网av| 久久影院123| 狂野欧美激情性bbbbbb| 波多野结衣巨乳人妻| 亚洲av日韩在线播放| 成人国产av品久久久| 狂野欧美激情性xxxx在线观看| 欧美性猛交╳xxx乱大交人| 五月天丁香电影| 精品人妻一区二区三区麻豆| 亚洲国产日韩一区二区| 亚洲欧美日韩无卡精品| 国产亚洲最大av| 丝袜脚勾引网站| 免费黄频网站在线观看国产| 天堂中文最新版在线下载 | 最近中文字幕高清免费大全6| 51国产日韩欧美| 丝袜喷水一区| 成年版毛片免费区| 自拍偷自拍亚洲精品老妇| 亚洲av.av天堂| 国产综合精华液| a级毛色黄片| 日日摸夜夜添夜夜添av毛片| 国产午夜精品久久久久久一区二区三区| 搡老乐熟女国产| 男人和女人高潮做爰伦理| 国产亚洲av片在线观看秒播厂| .国产精品久久| 日韩不卡一区二区三区视频在线| 午夜福利视频精品| 亚洲天堂国产精品一区在线| 永久免费av网站大全| 97超视频在线观看视频| 国内精品宾馆在线| 精品久久久久久久人妻蜜臀av| .国产精品久久| 国产伦精品一区二区三区视频9| 成人漫画全彩无遮挡| 一级黄片播放器| 日本一本二区三区精品| 大话2 男鬼变身卡| a级毛片免费高清观看在线播放| 麻豆成人午夜福利视频| 91精品一卡2卡3卡4卡| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 能在线免费看毛片的网站| 国产爽快片一区二区三区| 人妻制服诱惑在线中文字幕| 亚洲av成人精品一二三区| 一个人观看的视频www高清免费观看| 内地一区二区视频在线| 成年女人看的毛片在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品嫩草影院av在线观看| av在线亚洲专区| 亚洲欧洲国产日韩| 一级黄片播放器| 亚洲经典国产精华液单| 亚洲欧洲日产国产| 中文字幕人妻熟人妻熟丝袜美| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生| av黄色大香蕉| 97人妻精品一区二区三区麻豆| 精品久久久精品久久久| 亚洲,欧美,日韩| 久久久久久久久大av| 人妻少妇偷人精品九色| h日本视频在线播放| 色哟哟·www| 特大巨黑吊av在线直播| 日日啪夜夜撸| 毛片女人毛片| 久久女婷五月综合色啪小说 | 乱系列少妇在线播放| 国产探花在线观看一区二区| 寂寞人妻少妇视频99o| 亚洲国产欧美在线一区| 在线免费十八禁| 80岁老熟妇乱子伦牲交| 日本午夜av视频| 毛片一级片免费看久久久久| 丝瓜视频免费看黄片| 成人亚洲欧美一区二区av| 国产精品国产三级国产av玫瑰| 国产精品伦人一区二区| h日本视频在线播放| 国产精品久久久久久精品电影| 18禁裸乳无遮挡免费网站照片| 国产高清三级在线| 一区二区三区精品91| 综合色丁香网| 精品人妻一区二区三区麻豆| 午夜日本视频在线| 丝袜美腿在线中文| 日韩视频在线欧美| 亚洲自拍偷在线| 免费观看性生交大片5| 国产91av在线免费观看| 日本黄大片高清| 欧美少妇被猛烈插入视频| 欧美3d第一页| 亚洲av二区三区四区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本三级黄在线观看| 麻豆成人av视频| 看非洲黑人一级黄片| 一级毛片我不卡| 欧美一级a爱片免费观看看| 天堂中文最新版在线下载 | 精品人妻熟女av久视频| 尾随美女入室| av在线观看视频网站免费| 91久久精品国产一区二区三区| 少妇人妻精品综合一区二区| 精品酒店卫生间| 高清日韩中文字幕在线| 国产精品熟女久久久久浪| 另类亚洲欧美激情| freevideosex欧美| 国精品久久久久久国模美| 国产精品蜜桃在线观看| 国产免费福利视频在线观看| 久久久久久伊人网av| 久久久久精品性色| 日韩国内少妇激情av| 免费av毛片视频| 午夜爱爱视频在线播放| 99re6热这里在线精品视频| 久久精品久久久久久噜噜老黄| 亚洲va在线va天堂va国产| 国产探花在线观看一区二区| 久久99蜜桃精品久久| 免费观看无遮挡的男女| 精品人妻一区二区三区麻豆| 精品熟女少妇av免费看| 丰满乱子伦码专区| 一级av片app| 免费观看在线日韩| 免费大片18禁| 男女那种视频在线观看| 22中文网久久字幕| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 99re6热这里在线精品视频| 国产精品一及| 成人鲁丝片一二三区免费| av在线亚洲专区| av免费观看日本| 一本久久精品| 日韩成人伦理影院| 日韩制服骚丝袜av| 简卡轻食公司| 国产欧美亚洲国产| 五月玫瑰六月丁香| 丝袜脚勾引网站| 免费黄频网站在线观看国产| 日本与韩国留学比较| 国产精品久久久久久av不卡| kizo精华| 亚州av有码| 国产精品一二三区在线看| 波野结衣二区三区在线| 国产一区二区亚洲精品在线观看| 欧美高清性xxxxhd video| 在线看a的网站| 精品少妇久久久久久888优播| 真实男女啪啪啪动态图| 只有这里有精品99| 嫩草影院入口| 国产成人午夜福利电影在线观看| 日韩中字成人| 国产精品久久久久久精品电影小说 | 伊人久久国产一区二区| 国产永久视频网站| 嫩草影院新地址| videos熟女内射| 国产精品国产三级国产av玫瑰| 一二三四中文在线观看免费高清| 日本色播在线视频| 欧美日韩在线观看h| 日韩av免费高清视频| 男插女下体视频免费在线播放| 熟女人妻精品中文字幕| 免费人成在线观看视频色| 亚洲电影在线观看av| freevideosex欧美| av在线天堂中文字幕| 男人和女人高潮做爰伦理| videos熟女内射| 肉色欧美久久久久久久蜜桃 | 丝袜美腿在线中文| 日本黄色片子视频| 成人综合一区亚洲| 人体艺术视频欧美日本| 亚洲欧美精品专区久久| 日韩强制内射视频| 熟女人妻精品中文字幕| 一级毛片aaaaaa免费看小| 熟女电影av网| 亚洲精品色激情综合| 99久久精品国产国产毛片| 高清在线视频一区二区三区| 黄色日韩在线| 日韩不卡一区二区三区视频在线| 卡戴珊不雅视频在线播放| 色视频www国产| 国产伦在线观看视频一区| 国产极品天堂在线| 国产精品女同一区二区软件| 亚洲精品一区蜜桃| 婷婷色麻豆天堂久久| 亚洲婷婷狠狠爱综合网| 精品少妇黑人巨大在线播放| 国产成人福利小说| 亚洲不卡免费看| 男女边摸边吃奶| 性色avwww在线观看| 久久久久久久久久成人| 天美传媒精品一区二区| 欧美激情久久久久久爽电影| 尤物成人国产欧美一区二区三区| 夫妻性生交免费视频一级片| 日日摸夜夜添夜夜爱| 亚洲,欧美,日韩| 偷拍熟女少妇极品色| 小蜜桃在线观看免费完整版高清| 激情 狠狠 欧美| 国产精品人妻久久久久久| 精品一区在线观看国产| av在线亚洲专区| 欧美性感艳星| 国产成人freesex在线| 超碰av人人做人人爽久久| 18+在线观看网站| 欧美另类一区| 国产伦理片在线播放av一区| 18禁在线播放成人免费| 天天一区二区日本电影三级| 国产黄片视频在线免费观看| 国产探花在线观看一区二区| 99久久精品热视频| 亚洲不卡免费看| 亚洲av成人精品一二三区| 99热这里只有精品一区| 久久久久久伊人网av| 中文字幕亚洲精品专区| 永久网站在线| 日韩免费高清中文字幕av| 熟女电影av网| 六月丁香七月| 欧美激情国产日韩精品一区| 搡老乐熟女国产| 尾随美女入室| 亚洲色图综合在线观看| 亚洲成色77777| 欧美xxxx黑人xx丫x性爽| 三级男女做爰猛烈吃奶摸视频| 一区二区三区免费毛片| 高清午夜精品一区二区三区| 99久久精品国产国产毛片| 亚洲欧美一区二区三区黑人 | 国产精品精品国产色婷婷| 尾随美女入室| 久久97久久精品| 成年版毛片免费区| 插阴视频在线观看视频| 国产午夜福利久久久久久| 日韩亚洲欧美综合| 永久免费av网站大全| 精品人妻熟女av久视频| 国产黄频视频在线观看| 在线亚洲精品国产二区图片欧美 | 国产免费又黄又爽又色| 亚洲内射少妇av| 欧美一区二区亚洲| www.av在线官网国产| 丝袜美腿在线中文| 国产av码专区亚洲av| 最后的刺客免费高清国语| 夜夜看夜夜爽夜夜摸| 男人和女人高潮做爰伦理| 国产高潮美女av| 日本欧美国产在线视频| 亚洲精品自拍成人| 久久精品久久久久久久性| 日本色播在线视频| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| 观看免费一级毛片| 亚洲欧洲日产国产| 伦精品一区二区三区| 综合色丁香网| 黄色日韩在线| 国产精品熟女久久久久浪| 亚洲av欧美aⅴ国产| 国产中年淑女户外野战色| 久久久午夜欧美精品| 天堂俺去俺来也www色官网| 国产 一区精品| 99热这里只有精品一区| 亚州av有码| 秋霞伦理黄片| 午夜亚洲福利在线播放| .国产精品久久| 春色校园在线视频观看| 成人毛片a级毛片在线播放| 乱系列少妇在线播放| 欧美亚洲 丝袜 人妻 在线| 免费看日本二区| 国产精品av视频在线免费观看| 国产在线一区二区三区精| 亚洲av男天堂| 午夜免费观看性视频| 美女xxoo啪啪120秒动态图| 人妻制服诱惑在线中文字幕| 久久久久九九精品影院| 日韩一本色道免费dvd| 麻豆乱淫一区二区| 久久精品久久久久久噜噜老黄| 中文字幕人妻熟人妻熟丝袜美| 中文精品一卡2卡3卡4更新| 波多野结衣巨乳人妻| 在线观看美女被高潮喷水网站| 国产精品.久久久| 日韩欧美精品免费久久| 国产永久视频网站| 国产一级毛片在线| 精品一区二区免费观看| 可以在线观看毛片的网站| 美女xxoo啪啪120秒动态图| 少妇高潮的动态图| 亚洲av免费高清在线观看| 男女啪啪激烈高潮av片| 香蕉精品网在线| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品50| 精品一区在线观看国产| 少妇高潮的动态图| 一级a做视频免费观看| 久久久欧美国产精品| 在线观看美女被高潮喷水网站| 三级经典国产精品| 一本一本综合久久| 亚洲欧美精品专区久久| 精品人妻一区二区三区麻豆| 色哟哟·www| 搞女人的毛片| 国产在视频线精品| 久久久午夜欧美精品| 亚洲国产成人一精品久久久| 少妇丰满av| 国产亚洲一区二区精品| 成人免费观看视频高清| 国产成人freesex在线| 2018国产大陆天天弄谢| 18禁动态无遮挡网站| 一级毛片黄色毛片免费观看视频| 久久久精品欧美日韩精品| 国产高清三级在线| 亚洲伊人久久精品综合| 狠狠精品人妻久久久久久综合| 久久99精品国语久久久| 狂野欧美白嫩少妇大欣赏| 在线看a的网站| 2021少妇久久久久久久久久久| 国产一区二区三区综合在线观看 | 全区人妻精品视频| 亚洲国产最新在线播放| 成人免费观看视频高清| 国产成人免费无遮挡视频| 黄色配什么色好看| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 精品久久久噜噜| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲高清免费不卡视频| 精品人妻偷拍中文字幕| 国产v大片淫在线免费观看| 99热网站在线观看| 80岁老熟妇乱子伦牲交| 国产精品久久久久久av不卡| 在线观看av片永久免费下载| 蜜桃亚洲精品一区二区三区| 日本色播在线视频| 国产欧美日韩一区二区三区在线 | 男人狂女人下面高潮的视频| 搡女人真爽免费视频火全软件| 黄色欧美视频在线观看| 嫩草影院新地址| 国产成人精品久久久久久| 青春草国产在线视频| 99热网站在线观看| 中文资源天堂在线| 国产免费一区二区三区四区乱码| 国内精品美女久久久久久| 热re99久久精品国产66热6| 少妇人妻久久综合中文| 午夜免费男女啪啪视频观看| av国产久精品久网站免费入址| 亚洲精品乱码久久久久久按摩| 欧美成人午夜免费资源| 男女国产视频网站| 久久久久久久久久人人人人人人| 最近2019中文字幕mv第一页| 亚洲欧洲国产日韩| 久久这里有精品视频免费| 丝袜美腿在线中文| 久久久亚洲精品成人影院| 亚洲美女搞黄在线观看| 欧美另类一区| 国产高清不卡午夜福利| 青春草国产在线视频| 我的女老师完整版在线观看| kizo精华| 成人无遮挡网站| 国产乱人视频| 99热这里只有精品一区| a级毛片免费高清观看在线播放| 黄色日韩在线| 麻豆乱淫一区二区| 丰满人妻一区二区三区视频av| 亚洲性久久影院| 亚洲va在线va天堂va国产| 亚洲精品日韩在线中文字幕| 国产一级毛片在线| 七月丁香在线播放| 国产成人一区二区在线| 一本一本综合久久| 在线观看一区二区三区| 欧美变态另类bdsm刘玥| 精品久久久久久久末码| 神马国产精品三级电影在线观看| 国产大屁股一区二区在线视频| 在线观看国产h片| 免费观看av网站的网址| 欧美日韩亚洲高清精品| 少妇的逼好多水| 成人亚洲精品一区在线观看 | 如何舔出高潮| 精品久久国产蜜桃| 亚洲av二区三区四区| 人妻系列 视频| 亚洲av免费在线观看| 人妻一区二区av| 国产老妇伦熟女老妇高清| 久久久久精品久久久久真实原创| 成人午夜精彩视频在线观看| 欧美日韩国产mv在线观看视频 | 久久人人爽av亚洲精品天堂 | 亚洲av免费在线观看| 久久鲁丝午夜福利片| 简卡轻食公司| 亚洲国产精品专区欧美| 国产精品99久久久久久久久| 在线免费十八禁| 26uuu在线亚洲综合色| 午夜免费男女啪啪视频观看| 男插女下体视频免费在线播放| 深夜a级毛片| 一级爰片在线观看| 丝袜美腿在线中文| 亚洲激情五月婷婷啪啪| av在线app专区| 久久99热这里只频精品6学生| 1000部很黄的大片| 国产亚洲av片在线观看秒播厂| 亚洲精品久久午夜乱码| 日韩欧美 国产精品| 日日啪夜夜爽| 视频中文字幕在线观看| 天堂中文最新版在线下载 | 国产午夜精品久久久久久一区二区三区| 又黄又爽又刺激的免费视频.| 精品少妇久久久久久888优播| 精品人妻偷拍中文字幕| 在线观看人妻少妇| 国产黄片视频在线免费观看| 日韩欧美 国产精品| 极品少妇高潮喷水抽搐| 日本爱情动作片www.在线观看| 成人毛片a级毛片在线播放| av黄色大香蕉| 亚洲色图综合在线观看| 午夜福利在线在线|