李奇,華曉萍,鄒雅丹,趙穎,刁騁
(1.沈陽(yáng)醫(yī)學(xué)院基礎(chǔ)醫(yī)學(xué)院2007級(jí)臨床醫(yī)學(xué)6班,遼寧 沈陽(yáng) 110034;2.2007級(jí)臨床醫(yī)學(xué)1班; 3.2007級(jí)臨床醫(yī)學(xué)29班;4.第一學(xué)工辦; 5.免疫學(xué)教研室)
近年來(lái)的許多研究強(qiáng)調(diào)調(diào)節(jié)性細(xì)胞因子在穩(wěn)態(tài)和炎癥以及最小組織損傷條件下控制淋巴細(xì)胞分化和功能方面的重要性。一個(gè)健全的免疫系統(tǒng)通過(guò)對(duì)自身反應(yīng)性T細(xì)胞和共生菌維持免疫耐受來(lái)保持內(nèi)環(huán)境的穩(wěn)定,對(duì)外源性抗原進(jìn)行有效的免疫反應(yīng)來(lái)清除感染,并確保對(duì)活化的T細(xì)胞的控制,使對(duì)宿主的損傷最小化。一旦感染被清除,免疫細(xì)胞和組織會(huì)恢復(fù)到原來(lái)的穩(wěn)定狀態(tài)。轉(zhuǎn)移生長(zhǎng)因子β(transforming growth factor beta,TGF-β)作為免疫系統(tǒng)中重要的調(diào)節(jié)性細(xì)胞因子參與了穩(wěn)定狀態(tài)和感染條件下協(xié)調(diào)復(fù)雜的順序的免疫事件的發(fā)生的工作。
TGF-β由樹(shù)突狀細(xì)胞、巨噬細(xì)胞、T細(xì)胞和NK細(xì)胞合成,T細(xì)胞中主要為T(mén)h3細(xì)胞。TGF-β亞家族至少由6個(gè)結(jié)構(gòu)相關(guān)的分子(TGF-β1、2、3、4、5、6)組成,其中TGF-β1所占比例最高,且活性最強(qiáng)?;钚訲GF-β是由兩個(gè)二硫鍵相連的同源二聚體組成,分子量為25KD。TGF-β以無(wú)活性的前體復(fù)合物形式分泌到細(xì)胞外,此復(fù)合物由TGF-β與潛伏性TGF-β結(jié)合蛋白(longterm bridge performance,LTBP)組成。在細(xì)胞外,TGF-β-LTBP復(fù)合物與凝血酶敏感蛋白1接合,經(jīng)細(xì)胞膜纖維蛋白溶解酶的作用,TGF-β與LTBP解離并釋放有活性的TGF-β。
TGF-β是一種多效性細(xì)胞因子,具有調(diào)節(jié)作用和促炎癥作用[1,2]。TGF-β和IL-2的聯(lián)合作用可促進(jìn)CD4+CD25+T細(xì)胞在胸腺內(nèi)發(fā)育,也可以使CD4+CD25-細(xì)胞轉(zhuǎn)變?yōu)門(mén)h3抑制性細(xì)胞[3]。TGF-β也可以誘導(dǎo)活化的CD4+T細(xì)胞和CD8+T細(xì)胞形成抑制性T細(xì)胞,他們具有相當(dāng)強(qiáng)的免疫抑制活性。TGF-β還可以通過(guò)阻斷細(xì)胞周期使細(xì)胞不能自G1期進(jìn)入S期來(lái)抑制細(xì)胞增殖。TGF-β可以通過(guò)抑制IL-12受體β2鏈的表達(dá)和轉(zhuǎn)錄因子T-bet的表達(dá)來(lái)抑制Th1細(xì)胞的分化[4],也有研究指出TGF-β可以一直轉(zhuǎn)錄因子GATA-3的表達(dá)來(lái)抑制Th2細(xì)胞的分化[5]。
TGF-β在眾多免疫功能中具有的多效性依賴(lài)于細(xì)胞與周?chē)鷥?nèi)環(huán)境的相互作用[6]。TGF-β結(jié)合TGF-β受體Ⅱ(TGF-βRⅡ),激活受體胞漿段功能區(qū)的激酶活性,激酶再反過(guò)來(lái)激活TGF-β受體I(TGF-βR I),被激活的受體復(fù)合物使Smad分子轉(zhuǎn)位到細(xì)胞核啟動(dòng)目的基因的轉(zhuǎn)錄[6]。TGF-β在T細(xì)胞活化的調(diào)節(jié)作用在TGF-β1敲除小鼠和T細(xì)胞特異性TGF-βRⅡ敲除小鼠中被很好地證明[7-9]。此外,通過(guò)特異性阻斷小鼠T細(xì)胞的TGF-β信號(hào)轉(zhuǎn)導(dǎo),證實(shí)了在胸腺內(nèi)自然殺傷性T細(xì)胞(NKT)、自然調(diào)節(jié)性T細(xì)胞(nTreg)和CD8+T細(xì)胞的發(fā)育是依靠TGF-β信號(hào)[7,8]。
TGF-β的調(diào)節(jié)作用和誘導(dǎo)外周耐受廣為人知。由于不完全的自身抗原的提呈導(dǎo)致自身反應(yīng)的T細(xì)胞未被陰性選擇清除而在外周存在。外周調(diào)節(jié)機(jī)制保證了這些自身反應(yīng)的T細(xì)胞不會(huì)引起自身免疫[10]。然而,選擇后的胸腺細(xì)胞也保留了一定的自身反應(yīng)活性,這對(duì)初始T細(xì)胞的存活很重要,因?yàn)樗枰猅CR信號(hào)和諸如IL-7的細(xì)胞因子維持存活[8]。由于完整的外周免疫耐受機(jī)制,這種自身的反應(yīng)活性往往還不足以引起自身免疫反應(yīng)。因此,在外周TGF-β對(duì)初始T細(xì)胞的存活很有必要,它也可以通過(guò)抑制自身活化的CD4+和CD8+T細(xì)胞的增殖和分化來(lái)維持外周耐受性[2,6]。TGF-β敲除鼠在無(wú)菌環(huán)境中依然能夠發(fā)展成自身免疫癥狀,充分地證明了TGF-β可以阻止自身反應(yīng)性T細(xì)胞引起自身免疫性疾病的保護(hù)作用[12]。維持自然出現(xiàn)的調(diào)節(jié)性T細(xì)胞的存活是TGF-β能夠維持外周耐受的一種機(jī)制[7,8]。此外,TGF-β聯(lián)合IL-2和視黃酸(retinoic acid,RA)能夠促進(jìn)Treg細(xì)胞的分化[13-16]。有趣的是,近來(lái)研究表明這是由于RA的間接作用,通過(guò)降低CD4+CD44hi細(xì)胞產(chǎn)生IL-4,IL-21和IFN-γ,從而通過(guò)TGF-β誘導(dǎo)的Foxp3的表達(dá)來(lái)產(chǎn)生抑制作用[14]。
TGF-β在炎癥條件下也具有重要作用。TGF-β在IL-6存在下可促進(jìn)Th17細(xì)胞的分化,Th17可以進(jìn)一步促進(jìn)炎癥反應(yīng)和增強(qiáng)自身免疫條件[18]。TGF-β通過(guò)濃度依賴(lài)方式來(lái)協(xié)調(diào)Treg和Th17細(xì)胞的分化[19]。此外,TGF-β聯(lián)合IL-4可以促進(jìn)產(chǎn)生IL-9和IL-10的T細(xì)胞的分化,此細(xì)胞缺乏免疫抑制作用,但具有促進(jìn)組織炎癥反應(yīng)作用[20,21]。TGF-β在炎癥條件下對(duì)效應(yīng)性和記憶性CD8+T的生物學(xué)作用還不清楚。近期研究發(fā)現(xiàn),與對(duì)抗原特異性的記憶CD8+T細(xì)胞的影響相比,TGF-β對(duì)初始T細(xì)胞有強(qiáng)大的相反作用[22]。體外培養(yǎng)發(fā)現(xiàn),TGF-β阻止初始CD8+T細(xì)胞活化和IFN-γ的產(chǎn)生,卻可增強(qiáng)記憶CD8+T細(xì)胞的存活以及提高IL-17和IFN-γ的產(chǎn)生[22]。
TGF-β在抑制固有免疫細(xì)胞上也起著重要的作用。與TGF-β信號(hào)轉(zhuǎn)導(dǎo)在T細(xì)胞中被阻斷不同,在NK細(xì)胞和樹(shù)突狀細(xì)胞(dendritic cells, DCs)中TGF-β信號(hào)轉(zhuǎn)導(dǎo)被阻斷不引起自發(fā)疾病。然而,在對(duì)利什曼原蟲(chóng)感染反應(yīng)時(shí),如果TGF-β信號(hào)轉(zhuǎn)導(dǎo)在NK細(xì)胞被阻斷會(huì)引起大量NK細(xì)胞聚集并分泌大量IFN-γ,結(jié)果造成大量CD4+Th0細(xì)胞分化為T(mén)h1細(xì)胞[20]。在DCs中阻斷TGF-β的信號(hào)轉(zhuǎn)導(dǎo)與抗髓鞘少突膠質(zhì)細(xì)胞糖蛋白(myelin oligodendrocyte glycoprotein,MOG) TCR轉(zhuǎn)基因T細(xì)胞聯(lián)合可引起自發(fā)的類(lèi)實(shí)驗(yàn)性自身免疫性腦脊髓炎(experimental autoimmune encephalomyelitis,EAE)疾病[24]。此外,在Tg2576阿爾茨海默病模型小鼠中完全阻斷TGF-β-Smad2/3的固有免疫信號(hào)轉(zhuǎn)導(dǎo)可以完全緩解Tg2576相關(guān)的超敏反應(yīng)和部分緩解空間工作記憶缺陷[25]??偟膩?lái)說(shuō),這些研究表明TGF-β對(duì)固有免疫細(xì)胞產(chǎn)生的控制可以引起嚴(yán)重的病理后果。
目前科學(xué)家們把TGF -β作為治療目標(biāo)具有極大興趣,特別是對(duì)癌癥的治療[26]。與大多數(shù)其他細(xì)胞因子不同,TGF-β是由許多免疫和非免疫細(xì)胞產(chǎn)生的,這種多效性細(xì)胞因子對(duì)幾乎所有類(lèi)型的細(xì)胞都可反生作用[6]。許多抗TGF-β化合物已被開(kāi)發(fā)出來(lái),其功效已在許多動(dòng)物模型中得到了驗(yàn)證。然而,進(jìn)一步了解TGF-β與其他免疫調(diào)節(jié)分子的相互作用本質(zhì),以及對(duì)其作用的靶細(xì)胞的分化狀態(tài)的進(jìn)一步的認(rèn)識(shí),將大大有助于發(fā)展新的免疫療法,用以廣泛地治療炎癥、自身免疫性疾病和腫瘤,甚至老年癡呆癥。
參考文獻(xiàn):
[1]Li Mo, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10[J]. Immunity,2008, 28: 468-467.
[2]Li Mo, Flavell RA. TGF-beta: a master of all T cell trades[J]. Cell, 2008, 134: 392-404.
[3]Thompson C, Powrie F. Regulatory T cells [J]. Curr Opin in Pharmacol, 2004,4(4):408-414.
[4]Gorelik L, Constant S, Flavell RA. Mechanism of transforming Growth Factor β-induced inhibition of T helper type 1 differentiation [J]. J Exp Med,2002,195(11):1499-1505.
[5]Gorelik L, Fields PE, Flavell RA. Cutting edge: TGF-β inhibits Th type 2 development through inhibition of GATA-3 expresion [J].J Immunol,2000,165(8):4773-4777.
[6]Li Mo, Wan YY, Sanjabi S, et al. Transforming growth factor-beta regulation of immune response[J]. Annu Rev Immunol ,2006,24: 99-146.
[7]Li Mo, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and-independent mechanisms[J]. Immunity, 2006, 25: 455-471.
[8]Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor[J]. Immunity, 2006, 25: 441-454.
[9]Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease[J].Nature,1992,359: 693-699.
[10]Kronenberg M, Rudensky A.Regulation of immunity by self-reactive T cells[J].Nature,2005, 435: 598-604.
[11]Surh CD, Sprent J. Homeostasis of naive an memory T cells[J]. Immunity,2008, 29: 848-862.
[12]Boivin GP, Ormsby I, Jones-Carson J, et al. Germ-free and barrier-raised TGF beta 1-deficient mice have similar inflammatory lesions[J]. Transgenic Res, 1997,6: 197-202.
[13]Davidson TS, Dipaolo RJ, Andersson J, et al. Cutting Edge: IL-12 is essential for TGF-beta-mediated induction of Foxp3+T regulatory cells[J]. J Immunol ,2007,178: 4022-4026.
[14]Zheng SG, Wang J, Wang P, et al. IL-2 is essential for TGF-beta to convert naive CD4+CD25-cells to CD25+Foxp3+regulatory T cells and for expansion of these cells[J]. J Immunol, 2007,178: 2018-2027.
[15]Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid[J]. J Exp Med, 2007,204: 1775-1785.
[16]Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+DCs induces Foxp3+regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism[J]. J Exp Med, 2007, 204: 1757-1764.
[17]Hill JA, Hall JA, Sun CM, et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hiCells[J]. Immunity, 2008, 29: 758-770.
[18]Korn T, Bettelli E, Oukka M,et al. IL-17 and Th17 cells[J]. Annu Rev Immunol, 2009, 27: 485-517.
[19]Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing ROR gammat function[J]. Nature, 2008, 453: 236-240.
[20]Dardalhon V, Awasthi A, Kwon H, et al. IL-4 inhibits TGF-beta-induced Foxp3+T cells and , together with TGF-beta, generates IL-9+IL-10+Foxp3(-) effector T cells[J]. Nat Immunol, 2008, 9: 1347-1355.
[21]Veldhoen M, Uyttenhove C, van Sinck J, et al. Transforming growth factor-beta ‘repograms’ the differentiation of T helper 2 cells and promotes and interleukin 9-producing subset[J]. Nat Immunol, 2008, 9: 1341-1346.
[22]Filippi CM, Juedes AE, Oldham JE, et al. Transforming growth factor-beta suppresses the activation of CD8+T-cells when naive byt promotes their survival and function once antigen experienced: a two-faced impact on autoimmunity[J]. Diabetes, 2008, 57: 2684-2692.
[23]Laouar Y, Sutterwala FS, Gorelik L, et al. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma[J]. Nat Immunol, 2005,6: 600-607.
[24]Laouar Y, Town T, Jeng D, et al. TGF-beta signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis[J]. Proc Natl Acad Sci USA ,2008, 105: 10865-10870.
[25]Town T, Laouar Y, Pittenger C, et al. Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology[J]. Nat Med,2008,14: 681-687.
[26]Massague J. TGF beta in cancer[J]. Cell, 2008, 134: 215-330.