• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability-driven Structure Evolution: Exploring the Intrinsic Similarity Between Gas-Solid and Gas-Liquid Systems*

    2012-03-22 10:10:34CHENJianhua陳建華YANGNing楊寧GEWei葛蔚andLIJinghai李靜海
    關(guān)鍵詞:陳建華楊寧靜海

    CHEN Jianhua (陳建華), YANG Ning (楊寧)**, GE Wei (葛蔚) and LI Jinghai (李靜海)

    1 State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

    2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

    1 INTRODUCTION

    Regime transition is always an important issue in the study of two-phase flow systems. In the earlier studies of fluidization systems, the terminologies of“particulate fluidization” and “aggregative fluidization”were proposed to demarcate two distinct two-phase structures of fluidization states [1, 2]. Mainly due to the density ratio between the continuous phase and dispersed phase, liquid-solid systems are generally considered particulate while gas-solid and gas-liquid systems are aggregative. Compared to the particulate fluidization, more heterogeneous structure emerges in the aggregative fluidization, such as emulsion phase surrounding bubbles (bubbling fluidization) or particlerich clusters and gas-rich dilute broth (fast fluidization).Similarly, more complex structure appears in the heterogeneous (churn) regime of gas-liquid bubbly flow,such as bubble wakes, liquid vortices and coalescence or breakup of bubbles in contrast to the homogeneous regime.

    The similarity between gas-solid and gas-liquid flow has been recognized by many researchers [3-6].With increasing gas velocities, gas-solid systems evolve sequentially from uniform expansion, bubbling and turbulent fluidization to fast fluidization and finally dilute transport [7]. These regimes can find their counterpart in gas-liquid systems: dispersed bubbly, coalescing bubbly, churn-turbulent, annular and mist [6],as shown in Fig. 1. If the diameter of apparatus is relatively small, slug flow may be observed between bubbling and turbulent flow. Since design parameters such as pressure drop, heat and mass transfer coefficients are dependent on different flow patterns, a large number of regime maps have been proposed based on experiments and theoretical analysis [8-10]. Bi and Grace [6] found that some empirical approaches or correlations developed for gas-solid fluidization could be used to predict the corresponding transitions between different regimes in gas-liquid bubbly flows.Ellenberger and Krishna [5] proposed a unified approach to scale-up gas-solid fluidized bed or gas-liquid bubble column reactors by analyzing the analogy between these two systems. Analogous to the distinction of dense and dilute phases in bubbling fluidization, the fast-rising bubbles in bubble columns were identified as the dilute phase whereas the liquid phase containing entrained small bubbles as the dense phase. However,these studies have to rely on some empirical correlations, and a more fundamental explanation behind these similarities is still lacking.

    Li et al. [11, 12] proposed that the gas-solid fluidized systems belong to a typical dissipative system wherein the two-phase heterogeneous structure is characterized by the so-called dissipative structure. Energy is likely to dissipate in the self-organized and yet heterogeneous ordered structure when the system is far from the equilibrium state. The transition from bubbling to turbulent fluidization can be characterized as a non-equilibrium phase transition,i.e., the first bifurcation point of the gas-solid fluidized system [7]. When the system operates at fast fluidization, global heterogeneous structure may exist, accompanied by the top-dilute phase and bottom-dense phase. The transition from fast fluidization to dilute transport is marked by a jump change (choking), signifying the second bifurcation point of the system. Generally each regime of two-phase flow may correspond to some non-equilibrium steady state, thus the regime transition is essentially a nonequilibrium phase transition.

    Hence Li and Kwauk [7] proposed the Energy-Minimization Multi-Scale (EMMS) model which is then extensively developed and applied for gas-solid fluidization in theoretical analysis of regime transition and CFD modeling of gas-solid flow structure [13].The methodology was also extended to other complex systems, in particular, the gas-liquid bubbly flow systems recently [14, 15]. In the EMMS approach, each dominant mechanism was identified and mathematically expressed with an extremum tendency of energy dissipation, and the mutually constrained extremum tendency constitutes a stability condition of the system,reflecting the compromise of different dominant mechanisms. The stability condition can then be used for closing the model in addition to mass and force balance equations. Though the formula of stability condition is system-dependent, it could be used to explore the underlying physics of structure variation with a unified approach.

    In this work, we compared the EMMS models for gas-solid and gas-liquid systems to explore the intrinsic similarity of these two systems. The latter is denoted as GL-EMMS model. We confine our discussion in gas-solid fast fluidization and gas-liquid bubbly flow rather than the whole regime expansion. Within the framework of the EMMS model, the solution space of the model is further clarified to help understanding the structure variation during regime transitions.

    2 GAS-SOLID FAST FLUIDIZATION

    The original EMMS model proposed by Li and Kwauk [7] can be represented in a reduced form in Table 1 [16]. The equations define a non-linear problem for calculating the eight structure parameters to

    Figure 1 Schematic diagram of regime transition in gas-solid and gas-liquid systems

    Table 1 The EMMS model for gas-solid systems (Variables: εf, εc,Uf, Uc, Upf, Upc, dcl, f )

    Table 1 (Continued)

    We noticed two points in the new exploration of the EMMS model. First, the energy dissipation term ofNstat each grid node within the space defined by two structure parameters (εcandf) is independent ofdcl, as can be seen from Eq. (8). Hence we are able to temporarily isolate the variabledcland Eqs. (5), (6) from the whole set of model equations. In other words, with given value ofεc,εfandf, we can immediately obtain the four structure parameters (Uc,Uf,Upc,Upf) from Eqs. (1)-(4). The new algorithm is illustrated in Fig. 2,traversingεcandfover all possible values by small steps. The domain ofεc-fis discretized into 1000×3000 cells, andNstcan be calculated without the need to solve Eqs. (5, 6). Note thatUsicould be obtained from Eqs. (11) and thendclcould also be calculated as an associated variable from Eq. (5) at this moment, but we leave this to the next step. In addition, Eqs. (14) and (15)are used to calculate the parameterUmf.

    When searching the whole space of (εc,f), no local minimum ofNstcan be found except at the boundary(see Fig. 3). Hence the second point is to evaluate the effect of the cluster diameter equation on the model solution. It can be seen from Eq. (6) thatdclis a function ofNstandUp, so that the parameterUsican be either determined by Eq. (5) withdclcalculated from Eq. (6), or obtained from its definition formula,i.e.,Eq. (11), withoutdclbeing known in advance. From this viewpoint, Eqs. (5) and (6) provide extra constraints ΔUsi=0 to ensure the model equations converged.

    Figure 3 reveals the elaborate structure of the solution space for the EMMS model. The grid nodes(combination ofεcandf), each of which has a valid value ofNst(εc,f) and ΔUsi(εc,f), constitutes a curved surface. The structure parameters at each grid node satisfy the mass and momentum conservative equations for the dilute and dense phases [Eqs. (1)-(4)],but most of them do not obey the cluster diameter correlation of Eq. (6). To let the structure parameters also meeting the force balance equation for interphase(the “phase” between dilute and dense phases) of Eq.(5), the cluster diameterdclhas to be correspondingly adjusted to fit with Eqs. (1)-(4).

    Figure 2 Solution scheme of the EMMS model for gas-solid flow (model equations are in Table 1, m=3000, n=1000)

    In this case, the cluster diameter equation, Eq. (6),applies to avoid the adjustment. The characteristic of Eq. (6) lies in thatdclis a function ofUpandNstin contrast to other cluster diameter correlations in literature which is only related to average voidage.Nstis again a combination of other structure parameters.Combination of Eqs. (5), (6) and (11) leads to an extra obeying the conservative equations of dense and dilute phases [Eqs. (1)-(4)], to a curve also satisfying the cluster diameter correlation and the force balance equation for the interphase [Eqs. (5), (6)], and finally shrinking into the points with the minimum ofNst.

    Figure 4 illustrates the solution curves of differentUgat a constant solid flow rateGs=50 kg·m-2·s-1.There are one or two points of the minimum ofNstfor each curve. This can be more clearly identified from Fig. 5 in which the solution space is projected on theNst-εcplane. The boundary ofεc=εmfis considered as a local minimum ifNst(εmf)<Nst(εmf+ Δεc). Another local minimum ofNstmay appear at a highεcdenoted asεo. With decreasingUg, a state ofNst(εmf)=Nst(εo)can be achieved, signifying the regime transition from dilute transport to fast fluidizationt [16, 17]. This transition is well known as the “C type” choking [18].More details about choking can be found in the references [18, 19]. Before chokingNst(εo) is always smaller thanNst(εmf) and the former is the real solution of the system, as shown in Fig. 5. After chokingNst(εmf) becomes the smaller one. The global minimum point shifts between the two local minima when choking happens. There is a large difference for dense phase structure parameterεcbefore and after choking, which agrees with the experimental evidence that choking is a collapse of suspension with decreasingUgor increasingGs[20].

    Figure 4 The solution spaces of different Ug at constant solid flow rate (Gs=50 kg·m-2·s-1)

    The bifurcation phenomena can be understood from Fig. 6. With increasingUg, the two local minima ofNstgenerate two branches, and one of them should be a pseudo solution. The branch 1-1 in Fig. 6 (a) corresponds to the local minimum ofNstwhenεc=εmfand the branch 1’-1’ in Fig. 6 (b) is an associated curve of branch 1-1 because all the structure parameters are determined by the stability criterion. The branches 2-2 and 2’-2’ correspond to the other local minimum withεc=εo. The stability criterion requires the global minimization ofNst, so the real solution shifts from branch 1-1 to branch 2-2 at the transition point. Correspondingly the voidage curve shifts from 1’-1’ to 2’-2’ and this jump change reflects the abrupt change in the phase structure. As a result, the solid line in Fig. 6 shows the real solution and the broken line represents the pseudo solution.

    Figure 5 The two local minima of Nst/NT [16] (Gs=50 kg·m-2·s-1)

    Figure 6 Relationship between structure bifurcation and energy dissipation in gas-solid system

    Liet al. [17, 21] recognized that the bifurcation phenomena should relate the structure variation of the system to the stability condition which physically reflects the compromise of two different mechanisms:the tendency of gas passing through particle layer with the least resistance (Wst=min) and the tendency of particles maintaining least gravitational potential (ε=min).But in general neither the gas nor the particles dominate the system, and the former gas-dominated and the latter particle-dominated mechanisms coexists in the system and jointly leads to the stability condition{Nst=Wst/[ρp(1-ε)]}.

    The new findings in this study on the hierarchy of solution structure and the description of the structure evolution using the two branches of voidage andNstwould further reinforce the understanding of the essence of the EMMS model. In recent years there is some work in the literature on the modification of cluster diameter correlations of the EMMS model [22].This work also suggests that the cluster diameter correlation be physically related to the meso-scale energy dissipation reflecting the compromise between different dominant mechanisms, and be mathematically of a curve with two local minima when intersecting with the curved surface of Fig. 3. The latter guarantees the co-existence of the bi-stable states of the system when regime transition occurs.

    3 GAS-LIQUID BUBBLY FLOW

    Our previous work [23-25] established the Dual-Bubble-Size (DBS) model, extending the EMMS method to gas-liquid bubbly flow. The system structure is resolved into a liquid phase, a small bubble phase and a large bubble phase. Six structure parameters are used to describe the system,i.e., bubble diameterdSanddL, gas volume fractionfSandfL, superficial gas velocityUg,SandUg,L. The total energy dissipation rate per unit mass is resolved to three parts:energy dissipation due to bubble oscillationNsurf, viscous dissipation in liquid phaseNturband energy dissipation due to bubble breakageNbreak. The stability criterion is proposed as the minimization of microscale energy dissipation terms (ΣNsurf,i+Nturb). The model equations are summarized in Table 2.

    There are six structure parameters and only threeconservation equations in the model, thus three variables are open. Each conservation equation can be considered as a constraint. Analogous to the solution strategy of the EMMS model for gas-solid systems,the non-linear optimization problem is solved by searching the space of open structure parameters to locate the minimum points of the microscale energy dissipation (ΣNsurf,i+Nturb). Fig. 7 shows the solution scheme of the GL-EMMS model in the air-water system.dS,dLandUg,Sare selected as three open variables to construct the solution space. In this work, the minimum bubble diameter is set as 0.5 mm and the maximum bubble diameter as 60 mm. Since the global minimum of (ΣNsurf,i+Nturb) is always attained in the medium value of bubble diameters, the real solution is independent on the minimum and maximum bubble diameters. The logarithmic steps fordSanddLare used to capture sufficient information of structure variation at small bubble region. The grid partition ofm×n×lis performed as 55×55×100 considering the balance between computation load and numerical precision.

    Table 2 The EMMS model equations for gas-liquid flow (GL-EMMS) (Variables: Ug,S, Ug,L, dS, dL, fS, fL)

    Figure 7 Solution scheme of the GL-EMMS model for gas-liquid systems

    The GL-EMMS model is capable of predicting the regime transition from homogeneous and transitional flows to heterogeneous flow between 0.128 m·s-1and 0.129 m·s-1for air-water system, as found by many experiments [26-28]. Fig. 8 shows the solution space for these two gas velocities. Two troughs can be clearly seen in the solution space. In other words, there are also two local minima of the stability condition, which is analogous to the case in the gas-solid systems (see Fig. 5). When regime transition occurs, the global minimum point shifts fromdS=1.42 mm todS=2.86 mm while the large bubble diameter remains to be 8.85 mm. Fig. 9 depicts the stability criterion againstdSonly and the red points mark all possible solutions with respect toUg. There is only one local minimum at lower gas velocities. When the second local minimum appears the system may fall into a bi-stable state as that in gas-solid systems. Note that the jump change point could be more accurately captured by fining the grid resolution and optimizing the solution algorithm [29].

    The bifurcation is related to the compromise between two dominant mechanisms in gas-liquid systems: the ability of gas playing the leading role in pattern formation through the minimization of energy dissipationvialiquid viscosityNturb, and the ability of liquid through the minimization of energy dissipation due to the response of bubble surface to liquidNsurf.

    Figure 9 Variation of energy dissipation against small diameter with increasing gas velocity (the points mark the local minima)superficial gas velocity/m·s-1: 0.02; 0.06; 0.08;0.10; 0.14

    Analogous to the bifurcation for gas-solid systems, two branches can also be found for gas-liquid systems, as illustrated in Fig. 10. They are determined by the local minima of micro-scale energy dissipation within the solution space of structure parameters for each gas velocity. The solid line denotes the real solution and the broken line denotes the pseudo solution.The two branches in Fig. 10 (a) are continuous, even at the crossing point; but discontinuity occurs on the gas hold-up curve. This characteristic is coincident more or less with first-order phase transition in equilibrium thermodynamics which obeys the principle of minimization of the Gibbs free energy. When the first-order phase transition happens, the Gibbs free energy exhibits continuity but its first derivative such as the specific volume exhibits discontinuity. Note that the regime transition in two-phase flow and the firstorder phase transition in thermodynamics are of different physical implications, because the former belongs to a non-linear non-equilibrium thermodynamics problem; whereas the latter is always regarded as an equilibrium system. The analogy discussed herein is purely from the view of numerical characteristics.

    Figure 10 Relationship between structure bifurcation and energy dissipation in bubble columns [14]

    4 CONCLUSIONS

    This work attempts to analyze the intrinsic similarity between gas-solid and gas-liquid two-phase flow systems within the framework of the EMMS approach. The models solution spaces for the two systems are exhaustively analyzed, and thus regime transitions in gas-solid fluidization and gas-liquid bubbly flows can be theoretically predicted under an unified modeling strategy. For gas-solid systems, the cluster diameter is found to provide an extra constraint on the final solution, and hence critical to capturing the bi-metastable states and the regime transition. The bifurcation of minimized energy dissipation rate can be clearly observed by recording all local minima of stability criterion in the solution space, reflecting the compromise between two different mechanisms. Regime transition is therefore attributed to the existence of the multiple stable states captured in the numerical solution. The relationship between the bifurcations of stability conditions and of structure parameters is found to exist in both gas-solid and gas-liquid two-phase flow systems, indicating that the stability conditions,though system-dependent in expression, is the drive for the structure evolution of the systems. The new findings on the three hierarchies of solution structure in the model and the similar bifurcations in gas-solid and gas-liquid systems would further reinforce the understanding of the essence of the EMMS approach.

    NOMENCLATURE

    CDdrag coefficient for a bubble swarm

    CD0drag coefficient for a bubble in quiescent liquid

    cfcoefficient of surface area increase [cf=(fBV)2/3+ (1 - fBV)2/3-1]

    dbbubble diameter, m

    dclcluster diameter, m

    dLlarge bubble diameter, m

    dpparticle diameter, m

    dSsmall bubble diameter, m

    Eo E?tvos number

    f volume fraction of dense phase

    fBVbreakup ratio of daughter bubble to its mother bubble

    fbvolume fraction of gas phase

    fLvolume fraction of large bubbles

    fSvolume fraction of small bubbles

    Gssolid flow rate, kg·m-2·s-1

    g gravity acceleration, m·s-2

    M Morton number

    Nbreakenergy dissipation rate due to bubble breakage and coalescence per unit mass, m2·s-3

    Ndenergy dissipation due to collision and friction per unit mass,m2·s-3

    Nstenergy dissipation rate for suspending and transporting particles per unit mass, m2·s-3

    Nsurfenergy dissipation rate due to bubble oscillation per unit mass,m2·s-3

    NTtotal energy dissipation rate per unit mass, m2·s-3

    Nturbenergy dissipation rate in turbulent liquid phase per unit mass,m2·s-3

    ninumber density of bubbles, m-3

    Pbbubble breakup probability

    Ucsuperficial gas velocity in dense phase, m·s-1

    Ufsuperficial gas velocity in dilute phase, m·s-1

    Ugsuperficial gas velocity, m·s-1

    Ug,Lsuperficial gas velocity for large bubble phase, m·s-1

    Ug,Ssuperficial gas velocity for small bubble phase, m·s-1

    Ulsuperficial liquid velocity, m·s-1

    Upsuperficial solid velocity, m·s-1

    Upcsuperficial solid velocity in dense phase, m·s-1

    Upfsuperficial solid velocity in dilute phase, m·s-1

    Usslip velocity, m·s-1

    Wstvolume specific energy consumption for suspension and transportation of particles, W·m-3

    β drag coefficient for a control volume, kg·m-3·s-1

    ε local average voidage

    λ character size of eddy, m

    μ viscosity, kg·m-1·s-1

    ρ density, kg·m-3

    σ surface tension, N·m-1

    ω collision frequency, s-1

    Subscripts

    b bubble

    c dense phase

    f dilute phase

    g gas

    i interphase

    i represents “S” and “L” for small, and large bubble phase, respectively

    L large bubble phase

    l liquid

    min minimum

    mf minimum fluidization

    max maximum

    p particle

    S small bubble phase

    1 Wilhelm, R.H., Kwauk, M., “Fluidization of solid particles”, Chem.Eng. Prog., 44, 201-218 (1948).

    2 Kwauk, M., Li, J., Liu, D., “Particulate and aggregative fluidization—50 years in retrospect”, Powder Technol., 111, 3-18 (2000).

    3 Davidson, J.F., Harrison, D., Guedes de Carvalho, J.R.F., “On the liquid-like behavior of fluidized beds”, Annu. Rev. Fluid Mech., 9,55-86 (1977).

    4 Grace, J.R., “Contacting models and behaviour classification of gas-solid and other two-phase suspensions”, Can. J. Chem. Eng., 64,353-363 (1986).

    5 Ellenberger, J., Krishna, R., “A unified approach to the scale-up of gas-solid fluidized bed and gas-liquid bubble column reactors”,Chem. Eng. Sci., 49, 5391-5411 (1994).

    6 Bi, H.T., Grace, J.R., “Regime transitions: Analogy between gas-liquid co-current upward flow and gas-solids upward transport”,Int. J. Multiphase Flow, 22, 1-19 (1996).

    7 Li, J., Kwauk, M., Particle-Fluid Two-Phase Flow—The Energy-Minimization Multi-Scale Method, Metallurgical Industry Press,Beijing (1994).

    8 Wallis, G.B., One-dimensional Two-phase Flow, McGraw-Hill, New York, USA (1969).

    9 Shah, Y.T., Kelkar, B.G., Godbole, S.P., Deckwer, W.D., “Design parameters estimations for bubble column reactors”, AIChE J., 28,353-379 (1982).

    10 Zhang, J.P., Grace, J.R., Epstein, N., Lim, K.S., “Flow regime identification in gas-liquid flow and three-phase fluidized beds”, Chem.Eng. Sci., 52, 3979-3992 (1997).

    11 Li, J., Wen, L., Qian, G., Cui, H., Kwauk, M., Schouten, J.C., van den Bleek, C.M., “Structure heterogeneity, regime multiplicity and nonlinear behavior in particle-fluid systems”, Chem. Eng. Sci., 51,2693-2698 (1996).

    12 Li, J., Wen, L., Ge, W., Cui, H., Ren, J., “Dissipative structure in concurrent-up gas-solid flow”, Chem. Eng. Sci., 53, 3367-3379 (1998).

    13 Yang, N., Wang, W., Ge, W., Li, J., “CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient”, Chem. Eng. J., 96, 71-80 (2003).

    14 Chen, J., Yang, N., Ge, W., Li, J., “Computational fluid dynamics simulation of regime transition in bubble columns incorporating the dual-bubble-size model”, Ind. Eng. Chem. Res., 48, 8172-8179 (2009).

    15 Yang, N., Wu, Z., Chen, J., Wang, Y., Li, J., “Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns”, Chem. Eng. Sci., 66, 3212-3222 (2011).

    16 Ge, W., Li, J., “Physical mapping of fluidization regimes-the EMMS approach”, Chem. Eng. Sci., 57, 3993-4004 (2002).

    17 Li, J., Cheng, C., Zhang, Z., Yuan, J., Nemet, A., Fett, F.N., “The EMMS model—Its application, development and updated concepts”,Chem. Eng. Sci., 54, 5409-5425 (1999).

    18 Bi, H.T., Grace, J.R., Zhu, J.X., “Types of choking in vertical pneumatic systems”, Int. J. Multiphase Flow, 19, 1077-1092 (1993).

    19 Yang, W.C., “Choking” revisited”, Ind. Eng. Chem. Res., 43,5496-5506 (2004).

    20 Zenz, F. A., Othmer, D. F., Fluidization and Fluid-Particle Systems,Reinhold, New York (1960).

    21 Li, J., Ge, W., Wang, W., Yang, N., “Focusing on the meso-scales of multi-scale phenomena—In search for a new paradigm in chemical engineering”, Particuology, 8, 634-639 (2010).

    22 Shah, M.T., Utikar, R.P., Tade, M.O., Pareek, V.K., Evans, G.M.,“Simulation of gas-solid flows in riser using energy minimization multiscale model: Effect of cluster diameter correlation”, Chem. Eng.Sci., 66, 3291-3300 (2011).

    23 Yang, N., Chen, J., Zhao, H., Ge, W., Li, J., “Explorations on the multi-scale flow structure and stability condition in bubble columns”,Chem. Eng. Sci., 62, 6978-6991 (2007).

    24 Chen, J., Yang, N., Ge, W., Li, J., “Modeling of regime transition in bubble columns with stability condition”, Ind. Eng. Chem. Res., 48,290-301 (2009).

    25 Yang, N., Chen, J., Ge, W., Li, J., “A conceptual model for analyzing the stability condition and regime transition in bubble columns”,Chem. Eng. Sci., 65, 517-526 (2010).

    26 Zahradnik, J., Fialova, M., “The effect of bubbling regime on gas and liquid phase mixing in bubble column reactors”, Chem. Eng. Sci.,51, 2491-2500 (1996).

    27 Camarasa, E., Vial, C., Poncin, S., Wild, G., Midoux, N., Bouillard,J., “Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column”, Chem. Eng. Process., 38, 329-344 (1999).

    28 Vial, C., Laine, R., Poncin, S., Midoux, N., Wild, G., “Influence of gas distribution and regime transitions on liquid velocity and turbulence in a 3-D bubble column”, Chem. Eng. Sci., 56, 1085-1093(2001).

    29 Wang, Y., Xiao, Q., Yang, N., Li, J., “In-depth exploration of the dual-bubble-size model for bubble columns”, Ind. Eng. Chem. Res.,DOI: 10.1021/ie200668f. (2011).

    猜你喜歡
    陳建華楊寧靜海
    復(fù)旦大學(xué)陳建華教授 華東師范大學(xué)王銳副教授
    劉暢、肖天為、楊寧伊楠作品
    蠟染的紋飾探討
    EXISTENCE AND CONCENTRATION BEHAVIOR OF GROUND STATE SOLUTIONS FOR A CLASS OF GENERALIZED QUASILINEAR SCHRDINGER EQUATIONS IN RN?
    巧學(xué)記事三大招
    金“雞”報(bào)春來
    航空模型(2017年2期)2017-05-22 18:23:39
    塑造城市品牌 彰顯靜海特色
    求知(2016年5期)2016-05-30 10:48:04
    聚焦數(shù)列熱點(diǎn)題型
    南瓜燈
    讓私生子成親子榜樣,真相揭開血案就來了
    91麻豆精品激情在线观看国产 | www.熟女人妻精品国产| xxxhd国产人妻xxx| 亚洲五月色婷婷综合| 一个人免费看片子| 亚洲精品粉嫩美女一区| 日韩大码丰满熟妇| 久久ye,这里只有精品| 亚洲欧美一区二区三区久久| 老汉色∧v一级毛片| 日韩 欧美 亚洲 中文字幕| 亚洲av电影在线进入| 国产精品成人在线| 50天的宝宝边吃奶边哭怎么回事| 国产精品亚洲一级av第二区| 国产精品国产av在线观看| 99精国产麻豆久久婷婷| 一区二区三区精品91| 欧美日韩亚洲国产一区二区在线观看 | 亚洲天堂av无毛| 夫妻午夜视频| 在线 av 中文字幕| av在线播放免费不卡| 成在线人永久免费视频| 国产一区二区在线观看av| 怎么达到女性高潮| 国产成人欧美| 国产精品九九99| 一区二区三区精品91| 黄色丝袜av网址大全| 757午夜福利合集在线观看| 精品亚洲乱码少妇综合久久| 成人免费观看视频高清| 69精品国产乱码久久久| 亚洲精品av麻豆狂野| 黄网站色视频无遮挡免费观看| 日韩精品免费视频一区二区三区| 日韩人妻精品一区2区三区| 国产成人欧美在线观看 | 嫩草影视91久久| av欧美777| 欧美午夜高清在线| 19禁男女啪啪无遮挡网站| 飞空精品影院首页| 国产精品 国内视频| 男女边摸边吃奶| 黄片大片在线免费观看| 一边摸一边抽搐一进一小说 | 久久99热这里只频精品6学生| 亚洲欧洲精品一区二区精品久久久| 在线十欧美十亚洲十日本专区| 久久久国产欧美日韩av| 一夜夜www| 两人在一起打扑克的视频| 大片免费播放器 马上看| 免费在线观看影片大全网站| 热99久久久久精品小说推荐| 久久毛片免费看一区二区三区| 精品乱码久久久久久99久播| 一区二区日韩欧美中文字幕| 啦啦啦免费观看视频1| 精品国产超薄肉色丝袜足j| www日本在线高清视频| 国产精品98久久久久久宅男小说| 麻豆乱淫一区二区| 天堂俺去俺来也www色官网| 伊人久久大香线蕉亚洲五| 色在线成人网| 久久亚洲精品不卡| 欧美老熟妇乱子伦牲交| 亚洲精品国产精品久久久不卡| 日韩视频一区二区在线观看| 69精品国产乱码久久久| 久久精品国产综合久久久| 国产高清视频在线播放一区| 日本黄色日本黄色录像| 亚洲国产av新网站| 岛国在线观看网站| 欧美在线黄色| 国产黄色免费在线视频| 久久久精品94久久精品| 亚洲精品在线美女| 亚洲伊人色综图| 777久久人妻少妇嫩草av网站| 中国美女看黄片| 一边摸一边抽搐一进一小说 | 91麻豆精品激情在线观看国产 | 免费观看av网站的网址| 在线av久久热| 亚洲va日本ⅴa欧美va伊人久久| tube8黄色片| 亚洲欧美一区二区三区黑人| 人妻久久中文字幕网| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 老鸭窝网址在线观看| 亚洲欧洲日产国产| 亚洲五月色婷婷综合| 国产不卡av网站在线观看| 亚洲av国产av综合av卡| 脱女人内裤的视频| 十八禁高潮呻吟视频| 99精国产麻豆久久婷婷| 免费av中文字幕在线| 午夜激情av网站| 一进一出好大好爽视频| 无人区码免费观看不卡 | 久久人妻福利社区极品人妻图片| 大片电影免费在线观看免费| 国产精品一区二区精品视频观看| 深夜精品福利| 99热国产这里只有精品6| 日韩视频在线欧美| av在线播放免费不卡| 亚洲欧美一区二区三区黑人| 正在播放国产对白刺激| 免费在线观看影片大全网站| 俄罗斯特黄特色一大片| 国产成人一区二区三区免费视频网站| 夜夜骑夜夜射夜夜干| 国产欧美日韩一区二区三区在线| 一个人免费在线观看的高清视频| 欧美黄色淫秽网站| 变态另类成人亚洲欧美熟女 | 国产精品电影一区二区三区 | 国产精品自产拍在线观看55亚洲 | www日本在线高清视频| 日韩精品免费视频一区二区三区| 国产av又大| 成人精品一区二区免费| 成年动漫av网址| 久久精品91无色码中文字幕| 午夜日韩欧美国产| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影观看| 亚洲av片天天在线观看| av在线播放免费不卡| 又大又爽又粗| 热re99久久国产66热| 精品亚洲成国产av| av超薄肉色丝袜交足视频| 欧美精品av麻豆av| 大型黄色视频在线免费观看| 亚洲国产精品一区二区三区在线| 两个人看的免费小视频| 日韩欧美国产一区二区入口| av网站免费在线观看视频| 久久影院123| 欧美日韩亚洲高清精品| 亚洲七黄色美女视频| 法律面前人人平等表现在哪些方面| 日韩中文字幕欧美一区二区| 亚洲久久久国产精品| 精品国产乱码久久久久久小说| 亚洲中文日韩欧美视频| 考比视频在线观看| 午夜老司机福利片| 亚洲色图av天堂| 国产91精品成人一区二区三区 | 无遮挡黄片免费观看| 国产福利在线免费观看视频| 淫妇啪啪啪对白视频| 中文字幕制服av| 日韩欧美免费精品| 成人18禁高潮啪啪吃奶动态图| 在线亚洲精品国产二区图片欧美| 男女免费视频国产| 怎么达到女性高潮| 精品一区二区三卡| 免费观看a级毛片全部| 亚洲欧美一区二区三区久久| 黄片小视频在线播放| 中文字幕人妻熟女乱码| 老司机在亚洲福利影院| 大香蕉久久网| 成年女人毛片免费观看观看9 | 国产无遮挡羞羞视频在线观看| 五月开心婷婷网| 欧美一级毛片孕妇| 老熟妇仑乱视频hdxx| 99国产综合亚洲精品| 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美| 亚洲精品自拍成人| 亚洲欧美一区二区三区久久| 午夜福利,免费看| 久久这里只有精品19| 欧美激情久久久久久爽电影 | 午夜日韩欧美国产| 欧美激情 高清一区二区三区| 精品国产乱码久久久久久小说| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av香蕉五月 | 少妇猛男粗大的猛烈进出视频| 亚洲第一av免费看| 麻豆av在线久日| 91精品国产国语对白视频| 国产日韩欧美在线精品| 18禁黄网站禁片午夜丰满| 欧美激情久久久久久爽电影 | 亚洲自偷自拍图片 自拍| 1024香蕉在线观看| 十分钟在线观看高清视频www| 麻豆成人av在线观看| 女性生殖器流出的白浆| 久久久久久久久免费视频了| 啦啦啦免费观看视频1| 香蕉国产在线看| 欧美日韩国产mv在线观看视频| 亚洲精品久久成人aⅴ小说| tocl精华| 777久久人妻少妇嫩草av网站| 美女高潮到喷水免费观看| 亚洲第一欧美日韩一区二区三区 | 男女下面插进去视频免费观看| 色视频在线一区二区三区| 精品人妻1区二区| 免费看十八禁软件| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人爽人人添夜夜欢视频| 91麻豆av在线| 日韩免费av在线播放| 人成视频在线观看免费观看| 亚洲午夜理论影院| 国产一区二区三区综合在线观看| 男女高潮啪啪啪动态图| 涩涩av久久男人的天堂| 一边摸一边抽搐一进一小说 | 少妇精品久久久久久久| 欧美日韩福利视频一区二区| 国产精品1区2区在线观看. | 欧美精品一区二区免费开放| www日本在线高清视频| 老汉色av国产亚洲站长工具| √禁漫天堂资源中文www| 亚洲全国av大片| 69av精品久久久久久 | 久久人妻熟女aⅴ| 天堂8中文在线网| 搡老岳熟女国产| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 精品少妇黑人巨大在线播放| svipshipincom国产片| 亚洲伊人色综图| 十八禁人妻一区二区| 9191精品国产免费久久| 美女高潮喷水抽搐中文字幕| 2018国产大陆天天弄谢| 男女午夜视频在线观看| 成年人黄色毛片网站| 在线十欧美十亚洲十日本专区| 欧美黑人精品巨大| 欧美日韩一级在线毛片| 女同久久另类99精品国产91| 大型av网站在线播放| 午夜免费鲁丝| 考比视频在线观看| 婷婷丁香在线五月| 乱人伦中国视频| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美软件| 国产精品.久久久| 亚洲欧洲精品一区二区精品久久久| 新久久久久国产一级毛片| 成人手机av| 老司机亚洲免费影院| 亚洲精品粉嫩美女一区| av一本久久久久| 十八禁高潮呻吟视频| 久久精品亚洲av国产电影网| 亚洲色图av天堂| 日韩视频一区二区在线观看| 久久 成人 亚洲| av在线播放免费不卡| 日本wwww免费看| 一边摸一边做爽爽视频免费| 久久人妻熟女aⅴ| 啦啦啦在线免费观看视频4| 在线观看免费视频网站a站| 亚洲人成伊人成综合网2020| 亚洲熟女毛片儿| 国产亚洲精品久久久久5区| 91老司机精品| 国产精品香港三级国产av潘金莲| 十分钟在线观看高清视频www| 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情极品国产一区二区三区| 色视频在线一区二区三区| av欧美777| 亚洲免费av在线视频| 久久久久久免费高清国产稀缺| 精品福利永久在线观看| www日本在线高清视频| 色94色欧美一区二区| 日本av手机在线免费观看| 考比视频在线观看| 欧美中文综合在线视频| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线美女| 在线观看免费日韩欧美大片| 丰满饥渴人妻一区二区三| 最近最新中文字幕大全免费视频| 国产精品久久久久成人av| 亚洲中文av在线| 久久久久久久久免费视频了| 他把我摸到了高潮在线观看 | 少妇被粗大的猛进出69影院| 亚洲avbb在线观看| 精品一区二区三卡| 欧美成人免费av一区二区三区 | 少妇被粗大的猛进出69影院| www.精华液| 天天躁狠狠躁夜夜躁狠狠躁| 最新在线观看一区二区三区| 乱人伦中国视频| 99香蕉大伊视频| 又紧又爽又黄一区二区| 亚洲精华国产精华精| 热99国产精品久久久久久7| 性高湖久久久久久久久免费观看| xxxhd国产人妻xxx| 19禁男女啪啪无遮挡网站| 黄片播放在线免费| 欧美激情 高清一区二区三区| 一级毛片电影观看| 在线观看免费视频网站a站| 中文字幕色久视频| 国产亚洲精品第一综合不卡| 国产欧美日韩综合在线一区二区| 中文字幕制服av| 欧美人与性动交α欧美精品济南到| 一级a爱视频在线免费观看| 免费观看人在逋| 色综合婷婷激情| 国产欧美亚洲国产| 国精品久久久久久国模美| 老汉色av国产亚洲站长工具| 中文字幕av电影在线播放| 精品少妇黑人巨大在线播放| 亚洲 欧美一区二区三区| 十八禁网站免费在线| 久久久久久久久免费视频了| 久久久久精品人妻al黑| 久久青草综合色| 久久av网站| 亚洲欧洲精品一区二区精品久久久| 久久久精品免费免费高清| 美女扒开内裤让男人捅视频| 亚洲精品久久成人aⅴ小说| 国产亚洲欧美精品永久| 日韩欧美一区视频在线观看| 黑人猛操日本美女一级片| 亚洲国产看品久久| 国产男女内射视频| 久热这里只有精品99| 国产精品免费大片| 80岁老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| www.999成人在线观看| 亚洲情色 制服丝袜| 午夜福利,免费看| 国产精品一区二区免费欧美| 99国产精品免费福利视频| 色视频在线一区二区三区| 日本精品一区二区三区蜜桃| 国精品久久久久久国模美| 欧美激情极品国产一区二区三区| 色综合婷婷激情| 一个人免费在线观看的高清视频| 国产成+人综合+亚洲专区| 亚洲性夜色夜夜综合| 午夜91福利影院| 叶爱在线成人免费视频播放| 老司机亚洲免费影院| 在线看a的网站| 欧美国产精品va在线观看不卡| 狠狠狠狠99中文字幕| 99国产精品一区二区三区| 男女免费视频国产| 在线观看66精品国产| av超薄肉色丝袜交足视频| 在线观看66精品国产| 亚洲人成电影观看| 999久久久精品免费观看国产| 国内毛片毛片毛片毛片毛片| 亚洲中文日韩欧美视频| 免费观看人在逋| 99国产精品99久久久久| 亚洲第一青青草原| 国产一区二区 视频在线| 日韩欧美三级三区| 脱女人内裤的视频| 亚洲人成77777在线视频| 精品久久久精品久久久| 久久久久久久精品吃奶| 久热爱精品视频在线9| 色精品久久人妻99蜜桃| 超碰97精品在线观看| 欧美日韩视频精品一区| 欧美+亚洲+日韩+国产| 99久久精品国产亚洲精品| 波多野结衣av一区二区av| 亚洲成国产人片在线观看| 少妇精品久久久久久久| 多毛熟女@视频| 久久毛片免费看一区二区三区| 一级毛片电影观看| 十八禁网站免费在线| 丁香六月欧美| 国产亚洲精品久久久久5区| a级毛片黄视频| 久久精品成人免费网站| 999久久久精品免费观看国产| 午夜精品久久久久久毛片777| 午夜视频精品福利| 色婷婷av一区二区三区视频| 日本欧美视频一区| 搡老乐熟女国产| 蜜桃在线观看..| 国产精品久久电影中文字幕 | 日韩视频在线欧美| 男女免费视频国产| 国产亚洲av高清不卡| 亚洲欧美一区二区三区黑人| 亚洲五月色婷婷综合| 亚洲av日韩在线播放| 美国免费a级毛片| 国产在线免费精品| 亚洲午夜理论影院| 欧美在线一区亚洲| 天天躁日日躁夜夜躁夜夜| 亚洲久久久国产精品| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区在线臀色熟女 | 精品亚洲乱码少妇综合久久| 国产欧美日韩综合在线一区二区| 免费看a级黄色片| 久久人妻熟女aⅴ| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影 | 欧美乱码精品一区二区三区| 成人免费观看视频高清| 在线十欧美十亚洲十日本专区| 国产男女超爽视频在线观看| 色婷婷久久久亚洲欧美| 国产黄频视频在线观看| 亚洲 国产 在线| 夜夜夜夜夜久久久久| 丝袜喷水一区| 免费av中文字幕在线| 99re6热这里在线精品视频| 久久 成人 亚洲| 免费观看av网站的网址| 黑人巨大精品欧美一区二区mp4| 国产黄频视频在线观看| 国产亚洲av高清不卡| av福利片在线| 免费少妇av软件| 国产精品美女特级片免费视频播放器 | 黄色成人免费大全| 五月开心婷婷网| 淫妇啪啪啪对白视频| 丰满饥渴人妻一区二区三| 免费日韩欧美在线观看| 国产野战对白在线观看| av片东京热男人的天堂| 亚洲三区欧美一区| 亚洲av国产av综合av卡| 午夜福利影视在线免费观看| 国产精品九九99| 欧美国产精品一级二级三级| 久久亚洲精品不卡| 国产精品免费大片| 女人高潮潮喷娇喘18禁视频| 99久久国产精品久久久| 美女国产高潮福利片在线看| 国内毛片毛片毛片毛片毛片| 免费不卡黄色视频| 热re99久久精品国产66热6| 国产主播在线观看一区二区| 色综合欧美亚洲国产小说| 少妇 在线观看| 国内毛片毛片毛片毛片毛片| svipshipincom国产片| 国产不卡一卡二| 另类亚洲欧美激情| 成年人黄色毛片网站| 欧美日韩精品网址| 天堂动漫精品| 色综合欧美亚洲国产小说| 一区二区三区激情视频| 久久天躁狠狠躁夜夜2o2o| 国产一区二区 视频在线| 亚洲视频免费观看视频| 18禁黄网站禁片午夜丰满| 中文亚洲av片在线观看爽 | 少妇的丰满在线观看| 少妇精品久久久久久久| 欧美日韩一级在线毛片| 18禁观看日本| 日韩欧美免费精品| 黄色成人免费大全| 国产成人影院久久av| 久久久久久久国产电影| 国产男女内射视频| 悠悠久久av| 日韩一卡2卡3卡4卡2021年| 两个人免费观看高清视频| 亚洲 欧美一区二区三区| 国产一区二区激情短视频| 在线十欧美十亚洲十日本专区| 桃红色精品国产亚洲av| 美女视频免费永久观看网站| 亚洲成国产人片在线观看| 欧美黄色片欧美黄色片| 两个人看的免费小视频| 少妇裸体淫交视频免费看高清 | 最近最新免费中文字幕在线| 手机成人av网站| 久久午夜亚洲精品久久| 咕卡用的链子| 电影成人av| 亚洲 国产 在线| 亚洲av国产av综合av卡| 97在线人人人人妻| 黄色丝袜av网址大全| 女性生殖器流出的白浆| 在线观看舔阴道视频| 亚洲精品自拍成人| 成人国产一区最新在线观看| 国产97色在线日韩免费| 欧美老熟妇乱子伦牲交| 久久久久视频综合| 人人妻人人爽人人添夜夜欢视频| 欧美 亚洲 国产 日韩一| 90打野战视频偷拍视频| 亚洲专区国产一区二区| aaaaa片日本免费| 亚洲av成人不卡在线观看播放网| 久久久久精品国产欧美久久久| 成人免费观看视频高清| 欧美日韩国产mv在线观看视频| 亚洲一区二区三区欧美精品| 女人被躁到高潮嗷嗷叫费观| av福利片在线| 两个人免费观看高清视频| 亚洲国产欧美网| 亚洲精品自拍成人| 蜜桃国产av成人99| 亚洲精品国产一区二区精华液| 日韩欧美三级三区| 精品第一国产精品| 国产免费福利视频在线观看| 亚洲中文日韩欧美视频| videosex国产| 亚洲精品一卡2卡三卡4卡5卡| 国产精品美女特级片免费视频播放器 | 午夜福利视频精品| 亚洲久久久国产精品| 午夜免费鲁丝| 欧美在线一区亚洲| 乱人伦中国视频| e午夜精品久久久久久久| 深夜精品福利| a级毛片黄视频| 三级毛片av免费| 精品亚洲成国产av| xxxhd国产人妻xxx| 亚洲国产欧美一区二区综合| 亚洲中文字幕日韩| 777米奇影视久久| 女人久久www免费人成看片| 91九色精品人成在线观看| 超色免费av| 免费黄频网站在线观看国产| 国产精品亚洲av一区麻豆| 欧美黑人欧美精品刺激| 亚洲专区字幕在线| 国产伦人伦偷精品视频| 老汉色∧v一级毛片| 国产麻豆69| 十八禁高潮呻吟视频| 精品一区二区三区av网在线观看 | 女人久久www免费人成看片| 国产精品久久久久久精品电影小说| 欧美日韩亚洲综合一区二区三区_| 欧美性长视频在线观看| 人人妻人人澡人人看| 天天躁狠狠躁夜夜躁狠狠躁| 在线播放国产精品三级| 黄频高清免费视频| 老司机深夜福利视频在线观看| 久久亚洲真实| 人人妻,人人澡人人爽秒播| 色视频在线一区二区三区| 天堂中文最新版在线下载| 国产精品98久久久久久宅男小说| 91国产中文字幕| 成人国产一区最新在线观看| 亚洲国产av新网站| 亚洲国产看品久久| 如日韩欧美国产精品一区二区三区| 高清欧美精品videossex| cao死你这个sao货| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 美女午夜性视频免费| 国产精品一区二区在线不卡| 午夜福利在线免费观看网站| 一级a爱视频在线免费观看| 狂野欧美激情性xxxx|