• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Immobilization of Penicillin G Acylase on Magnetic Nanoparticles Modified by Ionic Liquids*

    2012-03-22 10:10:34ZHOUHuacong周華從LIWei李偉SHOUQinghui壽慶輝GAOHongshuai高紅帥XUPeng徐芃DENGFuli鄧伏禮andLIUHuizhou劉會(huì)洲
    關(guān)鍵詞:李偉

    ZHOU Huacong (周華從), LI Wei (李偉)**, SHOU Qinghui (壽慶輝), GAO Hongshuai(高紅帥) XU Peng (徐芃), DENG Fuli (鄧伏禮) and LIU Huizhou (劉會(huì)洲)**

    1 State Key Laboratory of Biochemical Engineering, Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

    2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

    1 INTRODUCTION

    Penicillin G acylase (EC 3.5.1.11, PGA) is one of the important pharmaceutical enzymes during the production of β-lactam antibiotics. It can catalyze the hydrolysis of amidic bonds of penicillin G and cephalosporin G to produce 6-aminopenicillanic acid (6-APA)and 7-aminodeacetoxy-cephalosporanic acid (7-ADCA)[1]. However, difficulties in enzyme recycling limit application of native enzyme in industrial production.An efficient solution is to immobilize the enzyme on certain support materials [2]. Many organic or inorganic carriers have been used to immobilize PGA [3]. Although they have several advantages in immobilization of enzyme, the organic carriers have some inevitable disadvantages, such as the poor stability towards organic solvents, microbial attacks and disposal problems [4]. In contrast, many inorganic carriers are antimicrobial and stable towards organic solvents. Besides,they have high specific surface areas, large pore volume and strong physical strength. So more and more attention have been paid to the inorganic carriers [5, 6].

    Among the inorganic supports, nano- or microparticles with magnetic properties have great potential applications because they can be separated rapidly and easily from reaction systems by applying an external magnetic field [7, 8]. Fe3O4nanoparticles exhibit superparamagnetic properties when their size is in a proper range [9]. Surface modification of magnetic nanoparticles (MNP) is a key procedure because it can make beneficial improvements in the surface properties and enzyme activity and/or stability. There have been many reports about the modification of inorganic supports. Shi et al. [10] introduced γ-aminopropyl groups on the silica surface through W/O microemulsion. After activated by glutaraldehyde, the materials were used as carrier for PGA immobilization. Composite microspheres containing hydroxyl groups were prepared by Wang et al [4]. Furthermore, other functional groups, such as epoxy-thiol group [11], were also used to modify the supports. Enzymes are immobilized on particle surfaces through reactions between these functional groups with certain groups on the surfaces of enzyme molecules. These reported approaches are efficient ways for immobilizing PGA but still have some disadvantages: (1) many steps are required to synthesize the composite materials, leading to long synthesis procedure and low final yield; (2) the use of many hazardous reagents could increase the environmental burden. Thus, it is necessary to find a new method for modifying carriers.

    Ionic liquids (ILs) are a class of molten salts with no or very low volatile pressure, low melting point,thermal stability, excellent salvation properties, and structure-tunability [12], and have potential applications in catalysis, extraction, absorption and so on [13].It has been confirmed that ILs are suitable media for enzyme catalysis [14, 15]. These properties make ILs potential materials for enzyme immobilization. In previous work of our group, ionic liquids containing silane coupling group had been immobilized successfully onto MNPs, and this composite material applied in Candida rugosa lipase immobilization [16]. Herein,to further develop magnetic nanoparticles supported ionic liquids in enzyme immobilization, we prepared magnetic nanoparticles supported ionic liquids with a modified way and developed their application in PGA immobilization. ILs were loaded on the surface of magnetic silica nanoparticles (MSNP) through chemical bonds formed by reaction between ethoxy groups on ILs and silanol groups on MSNPs surface [17].PGA was immobilized onto the magnetic supportsviaphysical adsorption. The morphology and properties of the composite materials were characterized by the means of Fourier transform infrared spectroscopy(FTIR), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The amount of loaded enzyme, activity and recovery performance of immobilized penicillin G acylase were also investigated.The results showed that MSNP was an effective material for immobilizing penicillin G acylase.

    2 MATERIALS AND METHODS

    2.1 Materials

    Toluene (analytical grade) was dehydrated with 5A molecular sieve before use. All other reagents were analytical grade and used as received, including ferric chloride hexahydrate (FeCl3·H2O), ferrous chloride tetrahydrate (FeCl2·4H2O), ammonium hydroxide(NH3·H2O, 25% by mass), tetraethyl orthosilicate(TEOS),N-methylimidazole (purity>99%). Penicillin G potassium salt (purity>99%) was a gift from North China Pharmaceutical Group. Penicillin G acylase(774.03 U·ml-1, 23.1 mg protein·ml-1) was purchased from Haider Biochemical Corp., Zhejiang, China.

    Scheme 1 Synthesis of functional ionic liquids

    2.2 Synthesis of functional ionic liquids

    Silane coupling group functionalized ionic liquids were synthesized according to the reported procedure[18]. The synthesis route was illustrated in Scheme 1.Equal molar ofN-methylimidazole and 3-chloropropyltriethoxy-silane were added into a flask and agitated at 95 °C under nitrogen for 24 h. After cooling down, an equal volume of ether was mixed and extracted for three times. The product (named [C1C(S)Im]Cl, where S denotes the silane substitute) was dried under vacuum at room temperature (yield: 94%).

    Scheme 2 Preparation of magnetic silica nanoparticles supported ionic liquids and immobilization of penicillin G acylasepenicillin G acylase; Fe3O4 particles; silica shell; IL,1-methyl-3-(tri-ethoxysilylpropyl)-imidazolium chloride

    2.3 Preparation of magnetic silica nanoparticles

    The whole process for support synthesis and PGA immobilization was illustrated in Scheme 2.Fe3O4was prepared first by modified co-precipitation method [17]. The deionized water was heated to a higher temperature (95 °C) than the reaction temperature (90 °C) for 30 min with nitrogen bubbling before ferric and ferrous salts were added for better removal of dissolved oxygen. After this, the system was cooled down to a lower temperature (90 °C) and 4.649 g(0.0172 mol) FeCl3·6H2O and 1.710 g (0.0086 mol)FeCl2·4H2O were dissolved under nitrogen. 10 ml 25% NH3·H2O was poured with vigorous stirring. After the color of bulk solution turned to black, the magnetic precipitates were separated and washed several times with deionized water until the pH value of eluent decreased to ~7. Then, silica shell was formed on the surface of Fe3O4through sol-gel method [17].2 g magnetic fluid containing 40 mg Fe3O4was diluted with 40 ml of water and 160 ml of 2-propanol. This mixture was dispersed under ultrasonification for 10 min and then 3 ml concentrated ammonium hydroxide was added under 30 °C in the presence of a constant nitrogen flux. 0.2 ml TEOS was added slowly with stirring. This suspension was stirred for 12 h to make the silica shell grow on the surface of nanoparticles.The obtained sample was washed with water for several times and dried under vacuum.

    2.4 Immobilization of functional ionic liquids

    0.1 g magnetic silica nanoparticles was dispersed in dry toluene by ultrasonification for 10 min [19]. About 10 g [C1C(S)Im]Cl was added and the mixture was stirred at 90 °C for 24 h. The product was isolated by an external magnet, washed with acetonitrile (100 ml)twice and methanol (100 ml) twice, and dried in vacuo.

    2.5 Characterization of magnetic MNPs and MNPILs

    The size and morphology of MNPs and MNPs-IL were observed by scanning electron microscopy (SEM,Japan, JSM-6700 F) and transmission electron microscopy (TEM, Japan, JEM 2010). Magnetization curves of samples were recorded with a vibrating sample magnetometer (VSM, Model 4 HF VSM, ADE Technologies, USA). Fourier transform infrared spectroscopy (FTIR, Bruker, Vecter 22) was used to record functional groups.

    2.6 PGA immobilization and activity assay

    The procedure for PGA immobilization was as follows: 0.05 g MNP-IL (dry mass) and different concentrations of PGA solution in 0.1 mol·L-1phosphate buffer (pH 9.0) were mixed and shaken at 37 °C, 180 r·min-1for 2 h. After that, the particles were isolated with magnet and washed for three times with 0.1 mol·L-1phosphate buffer (pH 9.0). Protein concentrations before and after the immobilization were measured by Bradford’s dye binding assay [20]. The immobilized protein amounts were calculated by mass balance.

    The activities ImPGA were detected by the hydrolysis reaction of penicillin G potassium salt (PGP,Scheme 3). One unit of enzyme activity was defined as the amount of enzyme required to produce 1 μmol 6-APA per minute with 2% penicillin G potassium salt as substrate in 0.1 mol·L-1, pH 9.0 phosphate buffer at 37 °C, 180 r·min-1. Typical procedure was as follows:15 ml 2% PGP solution in 0.1 mol·L-1phosphate buffer under pH 9.0 was prewarmed at 37 °C for 30 min. Then certain amount of ImPGA was added and the system was shaken at 180 r·min-1. After reaction for 5 min, 10 ml sample was extracted and mixed vigorously with 5 ml anhydrous alcohol to stop the reaction. The enzyme activity was measured by the production of 6-aminopenicillanic acid (6-APA), one of the hydrolysis products, by the PDAB method [21].The experimental procedure was as follows: 3 ml 2 mol·L-1acetic acid buffer (pH 2.5) and 1 ml 0.5% ofp-dimethylaminobenzaldehyde (PDAB) in methanol were mixed and then 1 ml sample containing 6-APA was added. The mixture was allowed to react for exact 3 min at room temperature and the optical density value of reaction solution was determined at 415 nm.

    Scheme 3 Hydrolysis of penicillin G potassium salts under ImPGA

    3 RESULTS AND DISCUSSION

    3.1 Synthesis of magnetic nanoparticles supported ionic liquids

    Figure 1 (a) SEM of naked Fe3O4 nanoparticles; (b) TEM of magnetic silica nanoparticles; (c) TEM of magnetic silica nanoparticles supported ionic liquids [C1C(S)Im]Cl;and (d) TEM of magnetic nanoparticles immobilized penicillin G acylase

    To obtain magnetic Fe3O4, the co-precipitation method was adopted in this work because this technique is probably the simplest and most efficient way [22].The morphology of Fe3O4particles is shown in Fig. 1(a). It can be seen that naked Fe3O4nanoparticles aggregated seriously. This may be due to that naked Fe3O4nanoparticles have a strong dipole interaction and a high surface energy [22]. According to statistical results from different regions in SEM photographs, the particle size of Fe3O4ranged from 7 to 14 nm and the average size was 10 nm (Fig. 2), smaller than the critical size (25 nm) of superparamagnetism.

    Figure 2 Size distribution of Fe3O4 nanoparticles

    The introduction of silica shell on the surface of Fe3O4particles mainly for: (1) the prevention of aggregating of Fe3O4particles and (2) the presence of silanol groups on particle surface. The prevention of aggregating may be contributed to particle sizes increase, shielding the magnetic dipole interaction, and modifying the surface with negative charges. The silanol groups can react with the ethoxy groups in IL,which makes IL molecules immobilized on the surface chemically. Fig. 1 (b) shows the TEM of MSNPs, in which the core-shell structure of MSNPs can be obviously seen. The average diameter of MSNPs was about 90 nm.

    FTIR spectra of Fe3O4and MSNPs were shown in Fig. 3. The strong bond at 585 cm-1in curve (a)corresponds to Fe-O vibrations [23]. Bonds at 3425 and 1632 cm-1represent the stretching and bending vibrations of OH on the surface of Fe3O4, respectively [16].The new peak at 1400 and 1100 cm-1in curve (b) represents SiO bonds, while the same peaks as in curve (a)at 3425 and 1632 cm-1correspond to the stretching and bending vibrations of OH on the surface of MSNP. This means the existence of abundant SiOH groups on the surface. The weak peak at 800 cm-1is the characteristic peak of SiO Fe, which implies that SiO2is chemically bonded to Fe3O4[24].

    Figure 3 FTIR spectra of (a) Fe3O4 and (b) magnetic silica nanoparticles

    Ionic liquid was loaded on the surface of MSNPs through reaction between ethoxy groups on IL molecules and silanol groups on MSNPs surface (illustrated in Scheme 2). Fig. 1 (c) shows the TEM photographs of MNP-IL. It can be seen that particles appear to a little aggregation after modified with IL, but not as serious as that in naked Fe3O4. This may be due to that the layer of IL may interact with each other [16].Fig. 4 presents the FTIR spectra of IL and MNPs-IL.Comparing with the spectra of MSNPs without modifiers (curve a), spectrum of MNP-IL (curve b) presents two new peaks at 2973 and 2929 cm-1corresponding to the stretching vibrations of CH3and CH2in IL,while new peaks at 1463 and 1381 cm-1are their bending vibrations. Accordingly, it can be sure that IL has been immobilized successfully on the surface of MSNPs.

    Figure 4 FTIR spectra of (a) magnetic silica nanoparticles;(b) ionic liquids [C1C(S)Im]Cl; (c) magnetic silica nanoparticles modified with [C1C(S)Im]Cl

    The magnetic properties of Fe3O4and MNPs-IL are shown in Fig. 5. There was no hysteresis in the magnetization, meaning that there would be no magnetic interactions among particles in a zero-field environment. It can be seen that the two samples are superparamagnetic. The saturation magnetization of Fe3O4was turned from 63.667 A·m2·kg-1(curve 1) to 26.888 A·m2·kg-1when it was coated with silica and then IL (curve 2). Despite of this, it is found that the MNPs-IL are still very sensitive to external magnetic field and can be separated easily and rapidly.

    Figure 5 Magnetization curves of (1) Fe3O4 and (2) magnetic silica nanoparticles modified with [C1C(S)Im]Cl

    3.2 Immobilization of PGA

    PGA was successfully immobilized onto the surface of MNPs-IL. The adsorption isotherm is shown in Fig. 6. The PGA loaded amount increases with the initial concentration increase until the initial concentration of PGA comes to 2.1 mg·ml-1. The PGA loaded amount remains constant at about 209 mg·g-1(based on carrier) when the concentration of PGA is between 2.1 and 4.6 mg·ml-1. The enzyme activity reaches its maximum at 262 U·g-1(based on ImPGA) when the initial concentration of PGA is 1.71 mg·ml-1and decreases thereafter. It may be attributed to the steric hindrance of enzyme molecules on the surface of supporting particles, which is severe at high loading density [25].

    Figure 6 Effect of initial PGA concentration on loading density and enzyme activity■ loaded PGA; ● activity of ImPGA

    3.3 Recovery performance of ImPGA

    One of the most significant advantages of immobilizing enzyme is the recycling property. In this experiment, ImPGA was separated by magnetic separation, washed with phosphate buffer (0.1 mol·L-1, pH 9.0), and reused in the next batch. As can be seen in Fig. 7, the activity of ImPGA remains 75% of its initial activity after 5 cycles and 62% even after 10 cycles, while native PGA is difficult in recycling.

    Figure 7 Reusability of immobilized PGA

    This work has demonstrated that MNP-IL is suitable as carriers of PGA immobilization. The maximum PGA loaded amount [209 mg·g-1(based on carrier)] and enzyme activity [262 U·g-1(based on ImPGA)] are higher than that in the previous reports[4, 6]. However, in this study, we also found that the specific activity of the immobilized PGA decreased gradually comparing with the native form. The specific activity of native and immobilized PGA are 34 U·mg-1(based on PGA) and 2 U·mg-1(based on PGA),respectively. The apparent decrease of activity may be caused by the steric hindrance of enzyme molecules which decreases the contact chance between PGA and substrate molecules. Besides, the interaction between PGA and the carriers may also have a negative effect on the activity. However, ImPGA can be recycled and reused for many times, while it is very difficult to reuse native PGA. Immobilization can also fix PGA molecules on carriers and thus decrease or prevent the protein pollution after reaction, which simplifies the postpurification process. Furthermore, through optimizing the structures of ILs on the surface of carriers, it is possible to keep or improve the activity and stability of ImPGA. Thus, it is promising to construct new materials based on MNP-IL for immobilizing PGA and conduct detailed research on the effects of ILs on activity and stability of PGA molecules. Extensive work on PGA immobilization with MNP-IL is in progress.

    4 CONCLUSIONS

    Superparamagnetic Fe3O4nanoparticles with an average size of ~10 nm were prepared by modified co-precipitation method. After coated by silica shell and then modified with functionalized ILs, the obtained composite nanoparticles exhibited a typical core-shell structure and the average size of particles increased to ~90 nm, while the saturation magnetization decreased from 63.7 to 26.9 A·m2·kg-1. The MNP-ILs maintains the advantages of high specific area and sensitivity to external magnetic field. The biggest enzyme loaded amount was about 209 mg·g-1(based on carrier), and the highest enzyme activity of ImPGA was 262 U·g-1(based on ImPGA).

    1 Xue, J.Y., Wang, A.M., Zhou, C., Shen, S.B., “Penicillin acylase immobilization depending on macromolecular crowding and catalysis in aqueous-organic medium”,Bioprocess Biosyst.Eng., 32 (8),765-772 (2009).

    2 Brady, D., Jordaan, J., “Advances in enzyme immobilization”,Biotechnol.Lett., 31 (11), 1639-1650 (2009).

    3 Chong, A.S.M., Zhao, X.S., “Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst”,Catal.Today, 93 (95), 293-299 (2004).

    4 Wang, W., Deng, L., Peng, Z.H., Xiao, X., “Study of the epoxydized magnetic hydroxyl particles as a carrier for immobilizing penicillin G acylase”, Enzyme Micrb. Technol., 40 (2), 255-261 (2007).

    5 Hartmann, M., Jung, D., “Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends”, J. Mater. Chem.,20 (5), 844-857 (2010).

    6 Shi, B.F., Wang, Y.Q., Ren, J.W., Liu, X.H., Zhang, Y., Guo, Y.L.,Guo, Y., Lu, G.Z., “Superparamagnetic aminopropyl-functionalized silica core-shell microsphere as magnetically separable carriers for immobilization of penicillin G acylase”, J. Mol. Catal. B Enzym., 63(1/2), 50-56 (2010).

    7 Liu, X.Q., Guan, Y.P., Shen, R., Liu, H.Z., “Immobilization of lipase onto micron-size magnetic beads”, J. Chromatogr. B, 822 (1/2),91-97 (2005).

    8 Ma, Z.Y., Guan, Y.P., Liu, X.Q., Liu, H.Z., “Preparation and characterization of non-porous superparamagnetic microspheres with epoxy groups by dispersion polymerization”, Chin. J. Chem. Eng., 13(2), 239-243 (2005).

    9 Lee, J., Isobe, T., Senna, M., “Preparation of ultrafine Fe3O4particles by precipitation in the presence of PVA at high pH”, J. Colloid Surf. Sci., 177 (2), 490-494 (1996).

    10 Shi, B.F., Wang, Y.S., Guo, Y.L., Wang, Y.Q., Wang, Y., Guo, Y.,Zhang, Z.G., Liu, X.H., Lu, G.Z., “Aminopropyl-functionalized silicas synthesized by W/O microemulsion for immobilization of penicillin G acylase”, Catal. Today, 148 (1-2), 184-188 (2009).

    11 Grazú, V., Abian, O., Mateo, C., Batista-Viera, F., Fernández-Lafuente,R., Guisán, J.M., “Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxyl-thiol support”, Biotechnol.Bioeng., 90 (5), 597-605 (2005).

    12 Seddon, K.R., Stark, A., Torres, M.J., “Influence of chloride, water,and organic solvents on the physical prpperties of ionic liquids”,Pure Appl. Chem., 72 (12), 2275-2287 (2000).

    13 Fujita, K., MacFarlane, D.R., Forsyth, M., Yoshizawa-Fujita, M.,Murata, K., Nakamura, N., Ohno, H., “Solubility and stability of cytochrome c in hydrated ionic liquids: Effect of oxo acid residues and kosmotropicity”, Biomacromolecules, 8 (7), 2080-2086 (2007).

    14 Kaar, J.L., Jesionowski, A.M., Berberich, J.A., Moulton, R., Russell,A.J., “Impact of ionic liquid physical properties on lipase activity and stability”, J. Am. Chem. Soc., 125 (14), 4125-4131 (2003).

    15 Louren?o, N.M.T., Barreiros, S., Afonso, C.A.M., “Enzymatic resolution of Indinavir precursor in ionic liquids with reuse of biocatalyst and media by product sublimation”, Green Chem., 9 (7), 734-736(2007).

    16 Jiang, Y.Y., Guo, C., Xia, H.S., Mahmood, I., Liu, C.Z., Liu, H.Z.,“Magnetic nanoparticles supported ionic liquids for lipase immobilization enzyme activity in catalyzing esterification”, J. Mol. Catal.B Enzym., 58 (1-4), 103-109 (2009).

    17 Tartaj, P., Serna, C.J., “Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites”, J. Am. Chem. Soc., 125(51), 15754-15755 (2003).

    18 Valkenberg, M.H., deCastro, C., Holderich, W.F., “Immobilisation of chloroaluminate ionic liquids on silica materials”, Top. Catal., 14(1-4), 139-144 (2001).

    19 Valkenberg, M.H., deCastro, C., H?lderich, W.F., “Friedel-crafts acylation of aromatics catalysed by supported ionic liquids”, Appl.Catal., A General, 215 (1-2), 185-190 (2001).

    20 Bradford, M.M., “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”, Anal. Biochem., 72 (1-2), 248-254 (1976).

    21 Shewale, J.G., Kumar, K.K., Ambekar, G.R., “Evaluation of determination of 6-aminopenicillanic acid by p-dimethylaminobenzaldedyde”,Biotechnol. Tech., 1 (1), 69-72 (1987).

    22 Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V.,Muller, R.N., “Magnetic iron oxide nanoparticles synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications”, Chem. Rev., 108 (6), 2064-2110 (2008).

    23 Bruce, I.J., Sen, T., “Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations”,Langmuir, 21 (15), 7029-7039 (2005).

    24 Haddad, P.S., Duarte, E.L., Baptista, M.S., Goya, G.F., Leite, C.A.P.,Itri, R., “Synthesis and characterization of silica-coated magnetic nanoparticles”, Prog. Colloid Polym. Sci., 128, 232-238 (2004).

    25 Guo, Z., Bai, S., Sun, Y., “Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres”, Enzyme Microb. Technol., 32 (7), 776-782 (2003).

    猜你喜歡
    李偉
    年夜飯里的漢字
    “田”野里的樂趣
    “制造”年獸
    孟母三遷
    李偉作品選登
    變魔術(shù)
    錯(cuò)在哪兒
    這樣玩多好
    拼拼 讀讀 寫寫
    電話里傳來的“暖氣”
    欧美乱码精品一区二区三区| 国产精品二区激情视频| 亚洲国产中文字幕在线视频| 飞空精品影院首页| 久久天躁狠狠躁夜夜2o2o| 下体分泌物呈黄色| 天天操日日干夜夜撸| 亚洲欧美一区二区三区久久| 一个人免费看片子| 日本一区二区免费在线视频| 一级黄色大片毛片| 最近最新免费中文字幕在线| 亚洲自偷自拍图片 自拍| 大陆偷拍与自拍| 一级毛片精品| 性高湖久久久久久久久免费观看| 日日夜夜操网爽| 国产欧美亚洲国产| 精品少妇久久久久久888优播| www.999成人在线观看| 久久影院123| 99re6热这里在线精品视频| 黄色怎么调成土黄色| 十八禁网站网址无遮挡| 国产99久久九九免费精品| 国产一卡二卡三卡精品| 亚洲情色 制服丝袜| 久久久精品免费免费高清| 伦理电影免费视频| 久久中文看片网| 久久青草综合色| 视频区欧美日本亚洲| 91九色精品人成在线观看| 国产成人精品在线电影| 欧美乱码精品一区二区三区| 国产免费福利视频在线观看| 手机成人av网站| 亚洲av国产av综合av卡| 另类精品久久| 人人妻人人澡人人看| 久久久国产欧美日韩av| 亚洲国产欧美在线一区| 考比视频在线观看| 黄片播放在线免费| 国产精品.久久久| 一本大道久久a久久精品| 日日爽夜夜爽网站| 国产日韩一区二区三区精品不卡| 久久九九热精品免费| 女性生殖器流出的白浆| 99re在线观看精品视频| 亚洲国产毛片av蜜桃av| 久久人妻av系列| 老司机影院毛片| 久热爱精品视频在线9| 在线观看免费午夜福利视频| 国产真人三级小视频在线观看| 国产日韩一区二区三区精品不卡| 久久久国产精品麻豆| 9热在线视频观看99| 亚洲天堂av无毛| 亚洲中文av在线| 日本黄色日本黄色录像| 亚洲美女黄片视频| 亚洲精品成人av观看孕妇| 亚洲中文日韩欧美视频| 国产激情久久老熟女| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜喷水一区| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品久久久久5区| 妹子高潮喷水视频| 久久久久视频综合| 久久av网站| 日韩视频一区二区在线观看| av免费在线观看网站| 18禁黄网站禁片午夜丰满| 国产淫语在线视频| 精品国内亚洲2022精品成人 | 日韩有码中文字幕| 99re在线观看精品视频| 精品国内亚洲2022精品成人 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦免费观看视频1| 亚洲欧美日韩高清在线视频 | 黑人欧美特级aaaaaa片| 大陆偷拍与自拍| 不卡一级毛片| 色综合欧美亚洲国产小说| 十八禁网站网址无遮挡| 国产精品久久久久久精品电影小说| 欧美日韩视频精品一区| 国产成人系列免费观看| 国产精品一区二区免费欧美| 狠狠狠狠99中文字幕| 在线亚洲精品国产二区图片欧美| 欧美一级毛片孕妇| 国产一区二区激情短视频| 精品福利观看| 99久久精品国产亚洲精品| 国产不卡av网站在线观看| 亚洲专区字幕在线| 中文字幕人妻熟女乱码| 欧美变态另类bdsm刘玥| 午夜福利影视在线免费观看| 国产色视频综合| 精品国产一区二区三区四区第35| 精品高清国产在线一区| 啪啪无遮挡十八禁网站| 伊人久久大香线蕉亚洲五| 国产精品一区二区在线不卡| 国产伦人伦偷精品视频| 纯流量卡能插随身wifi吗| 国产高清videossex| 一夜夜www| 亚洲伊人色综图| 色视频在线一区二区三区| 国产成人精品久久二区二区91| 亚洲全国av大片| 久久人人爽av亚洲精品天堂| 亚洲av日韩在线播放| 欧美+亚洲+日韩+国产| 久久人妻av系列| 老鸭窝网址在线观看| 在线观看人妻少妇| 中文字幕高清在线视频| 91国产中文字幕| 国产av一区二区精品久久| 不卡av一区二区三区| aaaaa片日本免费| 亚洲男人天堂网一区| 亚洲精品一卡2卡三卡4卡5卡| 日韩中文字幕视频在线看片| 午夜福利在线免费观看网站| 国产成人欧美| 欧美大码av| 亚洲精品自拍成人| 国产真人三级小视频在线观看| 天天躁日日躁夜夜躁夜夜| 99精品久久久久人妻精品| 亚洲成人国产一区在线观看| 欧美精品啪啪一区二区三区| 一进一出抽搐动态| 国产在线视频一区二区| 精品一区二区三区视频在线观看免费 | 黄色丝袜av网址大全| 免费观看a级毛片全部| 啪啪无遮挡十八禁网站| 男女下面插进去视频免费观看| 国产淫语在线视频| 亚洲专区国产一区二区| 色尼玛亚洲综合影院| 日韩大码丰满熟妇| 国产91精品成人一区二区三区 | 90打野战视频偷拍视频| 三上悠亚av全集在线观看| 精品一区二区三区av网在线观看 | 久久这里只有精品19| 一级,二级,三级黄色视频| 免费不卡黄色视频| 成年人黄色毛片网站| 免费看十八禁软件| 欧美亚洲 丝袜 人妻 在线| 一边摸一边抽搐一进一小说 | 久久九九热精品免费| 天堂动漫精品| 嫩草影视91久久| 成人精品一区二区免费| 最新在线观看一区二区三区| 狠狠婷婷综合久久久久久88av| 免费少妇av软件| 9热在线视频观看99| 亚洲欧洲精品一区二区精品久久久| 十八禁人妻一区二区| 久久中文看片网| 亚洲国产欧美日韩在线播放| 少妇猛男粗大的猛烈进出视频| 菩萨蛮人人尽说江南好唐韦庄| 精品国产一区二区三区久久久樱花| 91成人精品电影| 免费日韩欧美在线观看| 成人三级做爰电影| 久久免费观看电影| 美女高潮喷水抽搐中文字幕| 久久婷婷成人综合色麻豆| 丁香六月欧美| 夜夜夜夜夜久久久久| 狠狠狠狠99中文字幕| 他把我摸到了高潮在线观看 | 又大又爽又粗| 久久久久国产一级毛片高清牌| 色播在线永久视频| 丰满饥渴人妻一区二区三| 日日夜夜操网爽| av片东京热男人的天堂| 免费观看av网站的网址| 无遮挡黄片免费观看| 亚洲国产中文字幕在线视频| videosex国产| 999久久久国产精品视频| 高清欧美精品videossex| www.精华液| 制服诱惑二区| 丝袜美腿诱惑在线| 久久精品熟女亚洲av麻豆精品| 一边摸一边做爽爽视频免费| 日本av手机在线免费观看| e午夜精品久久久久久久| 久久久久久久精品吃奶| 日韩欧美三级三区| 老熟妇仑乱视频hdxx| 又黄又粗又硬又大视频| 伦理电影免费视频| bbb黄色大片| 国产福利在线免费观看视频| 欧美激情 高清一区二区三区| 亚洲专区中文字幕在线| 亚洲自偷自拍图片 自拍| 欧美大码av| 色婷婷av一区二区三区视频| 母亲3免费完整高清在线观看| 国产精品香港三级国产av潘金莲| 建设人人有责人人尽责人人享有的| 国产1区2区3区精品| 欧美一级毛片孕妇| 制服诱惑二区| 18禁美女被吸乳视频| 99香蕉大伊视频| 国产男女超爽视频在线观看| 国产主播在线观看一区二区| 久久久久久人人人人人| 欧美性长视频在线观看| 精品第一国产精品| 99久久精品国产亚洲精品| 丝袜人妻中文字幕| 久久中文字幕人妻熟女| 国产精品免费一区二区三区在线 | 中文字幕色久视频| 嫁个100分男人电影在线观看| 99精国产麻豆久久婷婷| 1024香蕉在线观看| 亚洲少妇的诱惑av| 国产亚洲一区二区精品| 一区二区三区乱码不卡18| 91大片在线观看| 一本—道久久a久久精品蜜桃钙片| 超色免费av| 叶爱在线成人免费视频播放| 两个人免费观看高清视频| av线在线观看网站| 在线观看免费视频日本深夜| 丰满少妇做爰视频| 亚洲情色 制服丝袜| 婷婷丁香在线五月| 99热国产这里只有精品6| 亚洲精华国产精华精| 免费高清在线观看日韩| 午夜福利,免费看| 国产成人系列免费观看| 女人被躁到高潮嗷嗷叫费观| 一区福利在线观看| 这个男人来自地球电影免费观看| 女警被强在线播放| 高清av免费在线| 国精品久久久久久国模美| 国产精品久久久久久精品电影小说| 在线亚洲精品国产二区图片欧美| 亚洲精品成人av观看孕妇| 曰老女人黄片| 91九色精品人成在线观看| 亚洲精品av麻豆狂野| 国产精品一区二区在线不卡| 人妻久久中文字幕网| 操美女的视频在线观看| 免费观看a级毛片全部| 超色免费av| 久久久久久久久久久久大奶| 国产亚洲精品久久久久5区| 成人亚洲精品一区在线观看| 99国产精品免费福利视频| 久久久国产成人免费| 欧美国产精品一级二级三级| 色综合婷婷激情| 日本黄色视频三级网站网址 | 国产精品影院久久| 久久中文看片网| 波多野结衣一区麻豆| 成年女人毛片免费观看观看9 | 欧美精品高潮呻吟av久久| 老熟女久久久| 自线自在国产av| 国产高清视频在线播放一区| 日韩中文字幕欧美一区二区| 侵犯人妻中文字幕一二三四区| 色老头精品视频在线观看| 国产精品久久久久成人av| 午夜91福利影院| 国产成人精品久久二区二区免费| 怎么达到女性高潮| 国产精品一区二区免费欧美| 伦理电影免费视频| 黄色丝袜av网址大全| 国产精品欧美亚洲77777| 91麻豆av在线| 精品午夜福利视频在线观看一区 | 久久国产精品人妻蜜桃| 伦理电影免费视频| 中文字幕最新亚洲高清| 国产人伦9x9x在线观看| 中文字幕最新亚洲高清| 欧美精品av麻豆av| 黄色丝袜av网址大全| 男女高潮啪啪啪动态图| 一级毛片电影观看| svipshipincom国产片| 国产精品欧美亚洲77777| svipshipincom国产片| 在线播放国产精品三级| svipshipincom国产片| www.熟女人妻精品国产| 亚洲欧洲精品一区二区精品久久久| 精品免费久久久久久久清纯 | 国产精品香港三级国产av潘金莲| 欧美在线黄色| 午夜福利乱码中文字幕| 久久久精品免费免费高清| 日韩欧美一区二区三区在线观看 | 丰满迷人的少妇在线观看| 人人澡人人妻人| 日日夜夜操网爽| 亚洲成人手机| 亚洲国产欧美网| 国产在视频线精品| 欧美精品啪啪一区二区三区| 老熟妇乱子伦视频在线观看| 又紧又爽又黄一区二区| 麻豆成人av在线观看| 超碰97精品在线观看| 欧美亚洲日本最大视频资源| 999久久久国产精品视频| 十八禁高潮呻吟视频| 亚洲国产毛片av蜜桃av| 男女无遮挡免费网站观看| 考比视频在线观看| 美女高潮喷水抽搐中文字幕| 国产欧美日韩精品亚洲av| 国产免费现黄频在线看| 91av网站免费观看| 国产精品 国内视频| 久久性视频一级片| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区四区五区乱码| 成人国产av品久久久| 热re99久久国产66热| 又黄又粗又硬又大视频| 九色亚洲精品在线播放| 亚洲精品国产区一区二| 欧美+亚洲+日韩+国产| 亚洲国产毛片av蜜桃av| av视频免费观看在线观看| 欧美黑人欧美精品刺激| 精品久久久久久久毛片微露脸| 亚洲精品中文字幕一二三四区 | 国产成人精品久久二区二区免费| av电影中文网址| 一级黄色大片毛片| 老熟妇仑乱视频hdxx| 丝袜喷水一区| 久久天堂一区二区三区四区| 啦啦啦 在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| a级毛片在线看网站| 麻豆国产av国片精品| 99久久精品国产亚洲精品| 国产成人啪精品午夜网站| 高潮久久久久久久久久久不卡| 亚洲中文日韩欧美视频| 亚洲欧洲日产国产| 两个人看的免费小视频| 看免费av毛片| 国产精品久久久久成人av| 麻豆乱淫一区二区| 18禁观看日本| 日本欧美视频一区| 99国产精品免费福利视频| 叶爱在线成人免费视频播放| 亚洲精品自拍成人| 国产麻豆69| 法律面前人人平等表现在哪些方面| 免费在线观看日本一区| 又紧又爽又黄一区二区| 美女高潮到喷水免费观看| 99久久国产精品久久久| netflix在线观看网站| 色在线成人网| 亚洲国产精品一区二区三区在线| 国产激情久久老熟女| 亚洲精品成人av观看孕妇| 国产xxxxx性猛交| 岛国毛片在线播放| 亚洲av国产av综合av卡| 99久久精品国产亚洲精品| 国产一区二区 视频在线| 两性午夜刺激爽爽歪歪视频在线观看 | 露出奶头的视频| 亚洲av国产av综合av卡| 日韩大片免费观看网站| 一级毛片女人18水好多| 成年人午夜在线观看视频| 18禁观看日本| 丝袜人妻中文字幕| 香蕉久久夜色| 涩涩av久久男人的天堂| cao死你这个sao货| 成人18禁高潮啪啪吃奶动态图| 免费在线观看影片大全网站| 色94色欧美一区二区| 国产成人欧美在线观看 | 老熟妇仑乱视频hdxx| 欧美黄色片欧美黄色片| 久久久久久久久久久久大奶| 久久青草综合色| 久久精品国产综合久久久| 免费在线观看影片大全网站| av视频免费观看在线观看| 精品国产乱码久久久久久男人| 后天国语完整版免费观看| 大片电影免费在线观看免费| 王馨瑶露胸无遮挡在线观看| 黄色成人免费大全| 国产成人系列免费观看| 国产免费现黄频在线看| 香蕉国产在线看| 在线播放国产精品三级| 欧美精品啪啪一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久久久99蜜臀| av网站免费在线观看视频| 久久久久久亚洲精品国产蜜桃av| 国精品久久久久久国模美| 亚洲三区欧美一区| 亚洲精品久久成人aⅴ小说| 免费观看av网站的网址| 日本wwww免费看| 怎么达到女性高潮| 天堂俺去俺来也www色官网| 午夜精品久久久久久毛片777| 婷婷丁香在线五月| 成人永久免费在线观看视频 | 国产成人精品无人区| 久久久久久亚洲精品国产蜜桃av| 少妇猛男粗大的猛烈进出视频| 999久久久精品免费观看国产| 在线永久观看黄色视频| 人成视频在线观看免费观看| 久久久久视频综合| 美国免费a级毛片| 伊人久久大香线蕉亚洲五| 国产一区二区三区综合在线观看| 国产黄色免费在线视频| 国产成人啪精品午夜网站| 757午夜福利合集在线观看| 日韩成人在线观看一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲熟女精品中文字幕| 精品一区二区三区av网在线观看 | 成人av一区二区三区在线看| 纯流量卡能插随身wifi吗| 亚洲成人国产一区在线观看| 在线天堂中文资源库| 一级,二级,三级黄色视频| 国产精品久久电影中文字幕 | 午夜福利在线观看吧| svipshipincom国产片| 亚洲色图av天堂| 欧美黑人精品巨大| 母亲3免费完整高清在线观看| 一级片'在线观看视频| 成年人午夜在线观看视频| 美女午夜性视频免费| 69av精品久久久久久 | 少妇粗大呻吟视频| 亚洲精品国产精品久久久不卡| 日韩有码中文字幕| 热re99久久国产66热| 午夜免费成人在线视频| 日韩欧美免费精品| 婷婷丁香在线五月| 下体分泌物呈黄色| 少妇被粗大的猛进出69影院| 母亲3免费完整高清在线观看| av一本久久久久| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 欧美日韩视频精品一区| 日日爽夜夜爽网站| 精品亚洲乱码少妇综合久久| 日韩欧美免费精品| 成人三级做爰电影| 变态另类成人亚洲欧美熟女 | 一边摸一边做爽爽视频免费| 深夜精品福利| 视频区图区小说| 国产在视频线精品| 一区福利在线观看| 大香蕉久久成人网| 真人做人爱边吃奶动态| 新久久久久国产一级毛片| 国产免费福利视频在线观看| 国产亚洲午夜精品一区二区久久| 一边摸一边做爽爽视频免费| 精品少妇黑人巨大在线播放| 午夜老司机福利片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| 大香蕉久久网| 亚洲精品乱久久久久久| 9热在线视频观看99| 亚洲成av片中文字幕在线观看| 国产国语露脸激情在线看| 免费在线观看视频国产中文字幕亚洲| 成人免费观看视频高清| 怎么达到女性高潮| 国产不卡av网站在线观看| 精品午夜福利视频在线观看一区 | 高清视频免费观看一区二区| 高清av免费在线| 91成人精品电影| bbb黄色大片| 国产精品免费视频内射| 在线天堂中文资源库| 人妻久久中文字幕网| 亚洲精品中文字幕在线视频| 91av网站免费观看| 制服人妻中文乱码| 97在线人人人人妻| a在线观看视频网站| 精品卡一卡二卡四卡免费| 久久久精品免费免费高清| 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区| 美女高潮喷水抽搐中文字幕| 两人在一起打扑克的视频| 黄色成人免费大全| 90打野战视频偷拍视频| 免费av中文字幕在线| 欧美+亚洲+日韩+国产| 久久久久久久久久久久大奶| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 日韩有码中文字幕| 韩国精品一区二区三区| 精品久久久久久电影网| 老熟妇仑乱视频hdxx| 后天国语完整版免费观看| 亚洲中文字幕日韩| 亚洲精品自拍成人| 老司机在亚洲福利影院| 亚洲av第一区精品v没综合| 91九色精品人成在线观看| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩高清在线视频 | 啦啦啦视频在线资源免费观看| 色94色欧美一区二区| 伦理电影免费视频| 免费黄频网站在线观看国产| 制服诱惑二区| 欧美日韩av久久| 久久中文字幕人妻熟女| 一级毛片女人18水好多| 人妻 亚洲 视频| 欧美黄色淫秽网站| 12—13女人毛片做爰片一| 国产精品 国内视频| 91九色精品人成在线观看| 国产欧美日韩精品亚洲av| 亚洲欧洲日产国产| 丁香六月天网| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 久久人妻熟女aⅴ| 在线观看免费高清a一片| 他把我摸到了高潮在线观看 | 久久久精品区二区三区| 男女下面插进去视频免费观看| 丝袜美足系列| 男女床上黄色一级片免费看| 国产激情久久老熟女| 精品亚洲成a人片在线观看| 欧美人与性动交α欧美精品济南到| 九色亚洲精品在线播放| 欧美激情高清一区二区三区| 脱女人内裤的视频| 国产伦理片在线播放av一区| 淫妇啪啪啪对白视频| 天天添夜夜摸| 曰老女人黄片| 久久99一区二区三区| 欧美乱码精品一区二区三区| 亚洲精品国产精品久久久不卡| 久久影院123| 久久精品国产亚洲av香蕉五月 | 日本一区二区免费在线视频| 亚洲美女黄片视频| 午夜成年电影在线免费观看| 91精品三级在线观看| 亚洲午夜理论影院| 大香蕉久久网| 国产99久久九九免费精品| a级片在线免费高清观看视频| 大片电影免费在线观看免费| 无遮挡黄片免费观看| 精品久久久久久电影网|