• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Experimental Study of Liquid-Liquid Microflow Pattern Maps Accompanied with Mass Transfer*

    2012-03-22 10:09:50SHAOHuawei邵華偉Yangcheng呂陽成WANGKai王凱andLUOGuangsheng駱廣生
    關(guān)鍵詞:王凱

    SHAO Huawei (邵華偉), Lü Yangcheng (呂陽成), WANG Kai (王凱) and LUO Guangsheng(駱廣生)**

    State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    1 INTRODUCTION

    Liquid-liquid systems have been extensively mentioned in many industrial processes. Microfluidic technology has demonstrated its advantages in liquid-liquid dispersion processes [1-5] with respect to mass transfer efficiency [1-3], safety, repeatability and controllability [4, 5]. The microfluidic devices with various configurations, mainly including T-shaped microchannels [6, 7], co-flowing pipes [8-13], hydrodynamic flow-focusing microchannels [14, 15], geometrically mediated break up microchannels [16], have been developed and applied in liquid-liquid and gas-liquid microdispersion processes [17-22].

    Many groups have paid their attention to liquidliquid microflow in microchannels [23-25]. One of the most frequently used microfluidic geometries is a co-flowing coaxial structure in which one liquid is forced through an orifice into a continuous fluid to form droplets (dripping flow) or jet (jetting flow). In the dripping flow region monodispersed droplets can be generated at the needle tip under the balance of the viscous force and surface tension force [10, 11, 26]. So the droplet formation can be used to measure the interfacial tension [26]. While in jetting flow region, the viscous force or inertia force is dominant, and the inner liquid firstly forms an extended jet from the tip and then breaks up downstream due to the Rayleigh-Plateau instability [8, 9, 11].

    There are many publications about liquid-liquid microdispersion processes, but few of them involve with mass transfer. In order to understand more fundamentals of liquid-liquid microflow in microdevices and apply it in practice, we investigate the liquid-liquid microflows with mass transfer in a co-axial microfluidic device in this study. Three working systems including n-butanol + phosphoric acid (PA) + water, methyl isobutyl ketone (MIBK) + PA + water, 30% kerosene in tri-n-butylphosphate (TBP) + PA + water were selected. The influence of mass transfer direction and intensity on liquid-liquid microflow was experimentally studied. The new liquid-liquid microflow pattern and phenomena were observed, and the liquid-liquid micro dispersion mechanism with mass transfer was discussed.

    2 EXPERIMENTAL

    2.1 Microfluidic device

    Figure 1 shows the experimental setup. The experiments were performed in a coaxial microfluidic device fabricated on a 30 mm×20 mm×3 mm polymethylmetacrylate (PMMA) plate using an end mill.The microdevice, as shown in Fig. 1, consisted of a glass capillary produced by West China Center of Medical Sciences, Sichuan University and a stainless steel needle embedded into the PMMA substrate. The inner and outer diameters of the glass capillary were approximately 720 μm and 920 μm, respectively. The inner and outer diameters of the needle were approximately 160 μm and 300 μm, respectively. The needle was inserted 10 mm into the glass capillary and fixed carefully to ensure it to be coaxial with the capillary. The microfluidic device was sealed using another PMMA plate of 1 mm thickness with supersonic assisted sealing technique [27]. Three microsyringe pumps were used to pump feeds into the microfluidic device.

    Figure 1 The experimental setup

    2.2 Liquid-liquid working systems

    n-Butanol + PA + water, MIBK + PA + water,30% kerosene in TBP + PA + water were used as the working systems. The liquid-liquid interfacial tensions of these three systems are listed in Table 1.

    Table 1 The interfacial tensions of working systems (25 °C)

    n-Butanol, MIBK and 30% kerosene in TBP were mutually saturated with water before used, respectively. According to the mass transfer direction of PA,the experimental systems are classified into 2 types.For type 1, the mass transfer direction is from the aqueous phase to the organic phase with PA added in the aqueous phase. For type 2, the mass transfer direction is from the organic phase to the aqueous phase with PA added in the organics phase. In all experiments,the aqueous phase was used as the continuous phase,and the organic phase was used as the dispersed phase.The viscosities of the continuous phase with different PA concentration at 25 °C are listed in Table 2.

    2.3 Visualization and analysis

    Experiments were carried out under observations by a microscope at the magnification of 100. Ahigh-speed CCD video camera was connected to the microscope and the images were recorded with a frequency of 100 images per second. The flow was judged to belong to a jetting flow pattern when the length of the jet was larger than two times of the droplet diameter. The typical flow patterns are shown in Fig. 2.

    Table 2 Viscosities of PA solutions

    Figure 2 Typical photos of different flow patterns (The working system was n-butanol + PA + water)

    The concentration of phosphoric acid in water or in the organic phase was measured by titration. The viscosities of different PA concentration solutions(Table 2) and the interfacial tension of the blank systems (Table 1) were measured using the spinning digital viscometer (NDJ-5S, Shanghai Jingtian Electronics Instrument Co.) and the commercial interfacial tensiometry (OCAH200, Data Physics Instruments GmbH) at 25 °C.

    3 RESULTS AND DISCUSSION

    3.1 New liquid-liquid microflow patterns with mass transfer

    Some specific liquid-liquid flow patterns were observed when mass transfer happening in the liquidliquid microdispersion processes using the system ofn-butanol + PA + water as the model system.

    When PA transferred from the organic phase(dispersed phase) to the aqueous phase (continuous phase), numerous tiny aqueous droplets in the organic phase were observed and a double emulsion W/O/W microflow in a single dispersion process was formed in some cases. Fig. 3 shows some typical moments of the liquid-liquid microdispersion process with the PA mass concentration in the organic phaseat 9%.Some tiny droplets were firstly found att=0.8 s. As time elapses, more and more tiny droplets were found and larger droplets emerged subsequently. The pathlines of these tiny droplets could express the flow field inside the organic droplet at the forming stage very well.

    The possible reasons to provoke the tiny droplets are the Marangoni effect or local phase separation.is 9%. It indicates that the prerequisite for forming the double-emulsion microflow is the quick and substantive mass transfer of PA from the organic phase to the aqueous phase. However, the concentration of water in the oil phase should be close to saturation. The closed region of double-emulsion microflow shown in Fig. 4 is because that when the flow rate of the dispersed phase (Qd) is larger than 5 μl·min-1, the organic droplet forming time is short and the net mass transfer is not enough to induce the phase separation; whenQdis lower than 0.5 μl·min-1, the weakness of the inner circular flow results in lower mass transfer in the organic phase; when the flow rate of the continuous phase (Qc) is larger than 300 μl·min-1, the mass transfer time at the droplet forming stage is too short; whenQcis lower than 11 μl·min-1, the overall mass transfer rate is low. Therefore we may conclude that a certain amount of PA transferred from the organic phase to Since no obvious interface turbulence was observed from the movies, the latter one seems to be more reasonable. The strong inner circular flow can enhance the mass transfer at the droplet forming stage effectively. Once the concentration of PA in the organic phase decreases due to mass transfer, the surplus water dissolved with PA addition may separate out and form tiny aqueous droplet. The amount of this part of water will increase with mass transfer proceeding, resulting in the growth of aqueous droplets. However, the coalescence also makes aqueous droplets grow up. Finally the double emulsion of W/O/W flow can form when the dispersed phase droplet breaks away from the tip of the needle. We define this flow as the double-emulsion microflow.

    Figure 3 A typical formation process of double-emulsion microflow at=9%, Qc=160 μl·min-1, Qd=1 μl·min-1 (The working system was n-butanol + PA + water)

    Figure 4 The operation region for double-emulsion microflows at =9%

    Figure 4 presents the operation region of the double-emulsion microflow When the aqueous phase is basically required for the formation of double-emulsion microflow when the organic phase is used as the dispersed phase. When PA transferred from the aqueous phase to the organic phase with the system, the double-emulsion microflow did not appear in our experiments.

    The formation of double-emulsion flow shows that water dissolved in the organic phase may have distinct effect on the flow pattern. To further understand the mechanism of the microflows, we increased the PA concentration and decreased the water concentration in the organic phase. Fig. 5 shows the experimental results. When the PA concentration was much higher, clear waves were generated at the interface,indicating more violent turbulent caused by higher mass transfer rate. At higherQc, part of organic phase was even thrown out from the highly unstable interface and formed tails following the droplet, as shown in Fig. 6. This microflow is mainly caused by the Marangoni effect, which could be applied to explore the surface tension sensitivity to the solute concentration variation effectively.

    3.2 Effect of mass transfer on liquid-liquid two-phase flow pattern

    The above new liquid-liquid microflow phenomena indicate that the mass transfer of PA can influence the interfacial behavior, including the liquid-liquid interfacial tension and interface turbulence,which heavily affects the two-phase microflow. In this section, we used the three working systems with different interfacial tension to study further the effect of mass transfer on two-phase microflows.

    In the coaxial capillary microfluidic device, the droplet formation process was mainly affected by the two phase flow rates, fluid viscosity and interfacial tension. Two different droplet formation mechanisms were distinguished: (1) Dripping flow region, the droplets are formed at the place close to the capillary tip; (2) Jetting flow region, the droplets break up from an expanded liquid jet. The droplet dispersion scale depends directly on the break up mechanism. Crameret al. [10] found that the tendency of the disperse phase to generate a liquid jet rises with increasing velocity of the continuous disperse phase, higher flow rate and viscosity of the disperse phase and lower interfacial tension. Utadaet al. [11] observed two distinct classes of transitions from dripping to jetting, and unified them by considering the balance of inertial forces, viscous force and surface tension exerted on the droplet. The continuous phaseCaand the dispersed phaseWewere used to characterize the balance of inertial forces, viscous force and surface tension and distinguish the different flow patterns.CacandWedare defined respectively as

    whereμcis the viscosity of the continuous phase,ρdis the density of the dispersed phase,ucandudare the velocities of the continuous phase and dispersed phase,respectively,dinis the inner diameter of the needle,γis the liquid liquid interfacial tension.

    Figure 7 shows the flow patterns of n-butanol +PA + water system with different initial PA concentration in the aqueous phase () at various two-phase flow rates. It clearly shows that the increase ofcan expand the jetting flow region. Whenis zero(no mass transfer during the dispersion process), as shown in Fig. 7 (a), the dripping flow region is large.But whenis 40%, as shown in Fig. 7 (e), dripping flow is hardly to be formed. Whenis small (less than 30%), a horizontal line can be drawn out at low Ca number. This horizontal line reveals that the inertial forces should be balanced with surface tension at low viscous force. When We is small, the surface tension dominates the microdispersion process, leading the microflow to dripping flow. At higher Ca, a slantwise line could be drawn, meaning that both the inertial force and the viscous force play important roles in the microdispersion process. Asincreases, the horizontal line and the slantwise line shift to the original point and finally horizontal line disappears whenis 40%. From the force balance at dripping flow region boundary, we can know that the reason of the change of flow region is mainly due to the reduction of surface tension by mass transfer.

    The effect of mass transfer from the organic phase to the aqueous phase was also studied. The similar changes were found. Fig. 8 shows the experimental results, indicating that the increase of PA con-centration in the organic phase () can expand the jetting flow region, too.

    In general, regardless of adding PA in the aqueous phase or the organic phase, the transition region from the dripping flow to the jetting flow shifts to lower two-phase flow rates. This trend can be explained from the changes of viscosity of the continuous phase, density of the dispersed phase, and interfacial tension. Obviously with the addition of PA in the systems, the viscosity and density of corresponding fluid are increased. And the interfacial tension is decreased. So the liquid-liquid microflow tends to the jetting flow region.

    The expansion of jetting flow region by mass transfer was also observed with 30% kerosene in TBP+ PA + water as the system as shown in Figs. 9 and 10. The borderlines of dripping region and jetting region shift to low We and Ca due to mass transfer. Different from n-butanol + PA + water system, in 30%kerosene in TBP + PA + water system the displacement of the dripping and jetting region borderline is larger even at low PA concentration. It may be because of the difference of the liquid-liquid interfacial tension between the two systems. In low interfacial tension system, as n-butanol + PA + water system, the influence of mass transfer on interfacial tension is significant only at large concentration gradient, while for medium interfacial tension system, as 30% kerosene in TBP + PA + water system, the interfacial tension

    Figure 8 The flow pattern maps of n-butanol + PA + water system with mass transfer from the organic phase to the aqueous phase● jetting flow; ■ dripping flow

    Figure 9 The flow pattern maps of 30% kerosene in TBP + PA + water system with mass transfer from the aqueous phase to the organic phase● jetting flow; ■ dripping flow

    Figure 10 The flow pattern maps of 30% kerosene in TBP + PA +water system with mass transfer from the organic phase to the aqueous phase● jetting flow; ■ dripping flow

    Figure 11 The flow pattern maps of MIBK + PA + water system with mass transfer from the aqueous phase to the organic phase● jetting flow; ■ dripping flow

    Figure 11 The flow pattern maps of MIBK + PA + water system with mass transfer from the aqueous phase to the organic phase● jetting flow; ■ dripping flow

    Figure 12 The flow pattern maps of MIBK + PA + water system with mass transfer from the organic phase to the aqueous phase● jetting flow; ■ dripping flow

    4 CONCLUSIONS

    In this work we presented the experimental results of liquid-liquid microflow in a coaxial circular microfluidic device with mass transfer. Three working systems with typical and various interfacial tension were used. Liquid-liquid flow patterns were observed when the mass transfer happened in the microdispersion processes. When PA transferred from the organic phase to the aqueous phase, numerous tiny aqueous droplets in the organic phase were generated and a double emulsion W/O/W microflow in a single dispersion process was formed in some experimental conditions. The formation of double-emulsion requires that the net transfer of PA from the organic phase to the aqueous phase is quick and substantive, corresponding to high mass transfer efficiency in droplet generation stage and a close window of two-phase flow rates. The tiny droplets are of potential tracer to reflect on the inner circular flow in droplet generation stage. When the PA concentration was much higher,violent Marangoni effect could be observed. Waves were observed clearly at the interface. At higherQc,part of organic phase even was thrown out from the highly unstable interface and formed tails following the droplet. To get a clear known of the liquid-liquid microdispersion process,Wednumber of the dispersed phase andCacnumber of the continuous phase were used to distinguish the flow region with different mass transfer direction and intensity. The transition region from dripping flow to jetting flow shifted to lower two-phase flow rates as PA transfer was introduced.

    The mutual influence of mass transfer and liquidliquid dispersion is worth for further investigation. A quantitative relationship of the mass transfer intensity during droplet formation stage and the droplet dispersion performance is unclear. More research is needed on the mechanism of microflow and mass transfer in microchannels.

    1 Xu, J.H., Tan, J., Li, S.W., Luo, G.S., “Enhancement of mass transfer performance of liquid-liquid system by droplet flow in microchannels”,Chem.Eng.J., 141 (1-3), 242-249 (2008).

    2 Dessimoz, A.L., Cavin, L., Renken, A., Kiwi-Minsker, L., “Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors”,Chem.Eng.Sci., 63 (16),4035-4044 (2008).

    3 Shrivastava, A., Cussler, E.L., Kumar S, “Mass transfer enhancement due to a soft elastic boundary”,Chem.Eng.Sci., 63 (17),4302-4305 (2008).

    4 Jensen, K., Lee, A., “The science & applications of droplets in microfluidic devices—Foreword”,Lab Chip, 4 (4), 31-32 (2004).

    5 Xu, J.H., Li, S.W., Tan, J., Wang, Y.J., Luo, G.S., “Preparation of highly monodisperse droplet in a T-junction microfluidic device”,AIChE J., 52 (9), 3005-3010 (2006).

    6 Nisisako, T., Torii, T., Higuchi, T., “Droplet formation in a microchannel network”, Lab Chip, 2 (1), 24-26 (2002).

    7 Xu, J.H., Li, S.W., Tan, J., Luo, G.S., “Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping”,Microfluid. Nanofluid., 5 (6), 711-717 (2008).

    8 Guillot, P., Colin, A., Utada, A.S., Ajdari, A., “Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers”,Phys. Rev. Lett., 99, 104502 (2007).

    9 Guillot, P., Ajdari, A., Goyon, J., Joanicot, M., Colin, A., “Droplets and jets in microfluidic devices”, Comptes Rendus Chimie, 12 (1-2),247-257 (2009).

    10 Cramer, C., Fischer, P., Windhab, E.J., “Drop formation in a co-flowing ambient fluid”, Chem. Eng. Sci., 59 (15), 3045-3058(2004).

    11 Utada, A.S., Fernandez-Nieves, A., Stone, H.A., Weitz, D.A., “Dripping to jetting transitions in coflowing liquid streams”, Phys. Rev.Lett., 99, 094502/1 (2007).

    12 Chu, L.Y., Utada, A.S., Shah, R.K., Kim, J.W., Weitz, D.A., “Controllable monodisperse multiple emulsions”, Ang. Chem. Int. Ed., 46(47), 8970-8974 (2007).

    13 Lan, W.J., Li, S.W., Xu, J.H., Luo, G.S., “Rapid measurement of fluid viscosity using co-flowing in a co-axial microfluidic device”,Microfluid. Nanofluid., 8 (5), 687-693 (2010).

    14 Wang, W.H., Zhang, Z.L., Xie, Y.N., Wang, L., Yi, S., Liu, K., Liu, J.,Pang, D.W., Zhao, X.Z., “Flow-focusing generation of monodisperse water droplets wrapped by ionic liquid on microfluidic chips: from plug to sphere”, Langmuir, 23 (23), 11924-11931 (2007).

    15 Xu, Q.Y., Nakajima, M., “The generation of highly monodisperse droplets through the break up of hydrodynamically focused microthread in a microfluidic device”, Appl. Phys. Lett., 85 (17),3726-3728 (2004).

    16 Jullien, M.C., Ching, M., Cohen, C., Menetrier, L., Tabeling, P.,“Droplet break up in microfluidic T-junctions at small capillary numbers”, Phys. Fluids, 21, 072001 (2009).

    17 Shui, L., Eijkel, J., van den Berg A, “Multiphase flow in microfluidic systems - Control and applications of droplets and interfaces”,Adv. Colloid Interface Sci., 133 (1), 35-49 (2007).

    18 Benz, K., Jackel, K.P., Regenauer, K.J., Schiewe, J., Drese, K., Ehrfeld, W., Hessel, V., Lowe, H., “Utilization of micromixers for extraction processes”, Chem. Eng. Technol., 24 (1), 11-17 (2001).

    19 Kralj, J.G., Sahoo, H.R., Jensen, K.F., “Integrated continuous microfluidic liquid-liquid extraction”, Lab Chip, 7 (2), 256-263 (2007).

    20 Ueno, M., Hisamoto, H., Kitamori, T., Kobayashi, S.,“Phase-transfer alkylation reactions using microreactors”, Chem.Commun., (8), 936-937 (2003).

    21 Burns, J.R., Ramshaw, C., “The intensification of rapid reactions in multiphase systems using slug flow in capillaries”, Lab Chip, 1 (1),10-15 (2001).

    22 Mary, P., Studer, V., Tabeling, P., “Microfluidic droplet-based liquid-liquid extraction”, Anal. Chem., 80 (8), 2680-2687 (2008).

    23 Hudson, S.D., “Poiseuille flow and drop circulation in microchannels”, Rheol. Acta, 49 (3), 237-243 (2010).

    24 Wang, H., Wang, Y., “Flow in microchannels with rough walls: flow pattern and pressure drop”, J. Micromech. Microeng., 17 (3), 586-596(2007).

    25 Zhao, Y.C., Chen, G.W., Yuan, Q., “Liquid-liquid two-phase flow patterns in a rectangular microchannel”, AIChE J., 52 (12), 4052-4060(2006).

    26 Xu, J.H., Li, S.W., Lan, W.J., Luo, G.S., “Microfluidic approach for rapid interfacial tension measurement”, Langmuir, 24 (19), 11287-11292(2008).

    27 Li, S.W., Xu, J.H., Wang, Y.J., Lu, Y.C., Luo, G.S., “Low-temperature bonding of poly-(methyl methacrylate) microfluidic devices under an ultrasonic field”, J. Micromech. Microeng., 19, 015035 (2009).

    猜你喜歡
    王凱
    王凱室內(nèi)設(shè)計(jì)作品選登
    Characteristics of the propagation of partial discharge ultrasonic signals on a transformer wall based on Sagnac interference
    一種輕量化自卸半掛車結(jié)構(gòu)設(shè)計(jì)
    世界以痛吻我,我卻報(bào)之以歌——王凱長篇小說《導(dǎo)彈和向日葵》讀記
    離開央視“賣故事”:光頭王凱的創(chuàng)客生涯
    王凱:我現(xiàn)在準(zhǔn)備好了,歡迎隨時(shí)來撲
    意林繪閱讀(2016年2期)2016-03-09 07:23:24
    “靖王”王凱:我自己看《瑯琊榜》也會(huì)哭
    金色年華(2016年2期)2016-02-28 01:38:42
    由一道習(xí)題錯(cuò)解想到的
    打賭
    愛你(2015年14期)2015-11-17 09:09:06
    打賭
    亚洲男人的天堂狠狠| 自拍偷自拍亚洲精品老妇| 国产精品电影一区二区三区| 欧美3d第一页| 国产精品亚洲av一区麻豆| 国产精华一区二区三区| 90打野战视频偷拍视频| 日本 av在线| 黄色配什么色好看| 欧美一级a爱片免费观看看| 久久精品国产99精品国产亚洲性色| 毛片一级片免费看久久久久 | 欧美国产日韩亚洲一区| 最近在线观看免费完整版| 日本免费a在线| 亚洲国产欧洲综合997久久,| 精品人妻视频免费看| 悠悠久久av| 少妇高潮的动态图| 99精品在免费线老司机午夜| 老司机福利观看| 麻豆国产av国片精品| 一区二区三区四区激情视频 | 国产精品,欧美在线| 日韩精品青青久久久久久| 国产精品一区二区三区四区免费观看 | 99热这里只有精品一区| 男人和女人高潮做爰伦理| 天美传媒精品一区二区| 99热只有精品国产| 欧美+亚洲+日韩+国产| 久久香蕉精品热| 久久久久久久久久成人| 国产av麻豆久久久久久久| 国产久久久一区二区三区| 精品无人区乱码1区二区| 日韩高清综合在线| 免费在线观看成人毛片| 欧美国产日韩亚洲一区| 亚洲欧美日韩高清在线视频| 成人美女网站在线观看视频| 中文资源天堂在线| 99视频精品全部免费 在线| 此物有八面人人有两片| 日本黄大片高清| 国语自产精品视频在线第100页| 韩国av一区二区三区四区| av黄色大香蕉| 欧美色欧美亚洲另类二区| 亚洲成av人片免费观看| 国产高清有码在线观看视频| 嫩草影院精品99| 哪里可以看免费的av片| 宅男免费午夜| 亚洲美女黄片视频| 国产精品综合久久久久久久免费| 亚洲精品一卡2卡三卡4卡5卡| 欧美日本视频| 亚洲在线观看片| 精品久久久久久成人av| 国产69精品久久久久777片| 狂野欧美白嫩少妇大欣赏| 国模一区二区三区四区视频| 精品久久久久久久久av| www.色视频.com| 色在线成人网| 久久久久亚洲av毛片大全| 在线观看免费视频日本深夜| 亚洲一区二区三区不卡视频| 真人做人爱边吃奶动态| 亚洲人成网站在线播| 国产单亲对白刺激| 日本撒尿小便嘘嘘汇集6| 非洲黑人性xxxx精品又粗又长| 最近在线观看免费完整版| 亚洲五月婷婷丁香| 国产成人影院久久av| 69人妻影院| 久久6这里有精品| 一区二区三区四区激情视频 | 久久人人爽人人爽人人片va | 久久久色成人| 久久久久九九精品影院| 一本久久中文字幕| 国产亚洲av嫩草精品影院| 亚洲最大成人手机在线| 嫁个100分男人电影在线观看| 岛国在线免费视频观看| 99久久久亚洲精品蜜臀av| 丁香六月欧美| 国产精品电影一区二区三区| 欧美一级a爱片免费观看看| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩亚洲国产一区二区在线观看| 国产单亲对白刺激| 男女那种视频在线观看| 又黄又爽又刺激的免费视频.| 最近最新中文字幕大全电影3| 又爽又黄a免费视频| 国产成人啪精品午夜网站| 成年女人毛片免费观看观看9| 色视频www国产| 夜夜夜夜夜久久久久| 简卡轻食公司| 国产成人av教育| 日韩有码中文字幕| 久久久久国内视频| 欧美xxxx黑人xx丫x性爽| 亚洲五月天丁香| 国产精品久久久久久人妻精品电影| 69av精品久久久久久| 色精品久久人妻99蜜桃| 亚洲aⅴ乱码一区二区在线播放| 亚洲av电影在线进入| 俄罗斯特黄特色一大片| 综合色av麻豆| 黄色视频,在线免费观看| 欧美成狂野欧美在线观看| 欧美中文日本在线观看视频| 亚洲成人久久爱视频| 欧美xxxx黑人xx丫x性爽| 日本免费a在线| 国产成人福利小说| 久久久成人免费电影| 此物有八面人人有两片| 动漫黄色视频在线观看| 国产精品98久久久久久宅男小说| 欧美激情国产日韩精品一区| 精品一区二区三区av网在线观看| 欧美另类亚洲清纯唯美| 国产麻豆成人av免费视频| 亚洲最大成人手机在线| 久久亚洲真实| 成年女人永久免费观看视频| 99久久精品热视频| 亚洲国产精品999在线| 91午夜精品亚洲一区二区三区 | 亚洲精品乱码久久久v下载方式| 十八禁人妻一区二区| 一夜夜www| 亚洲av电影在线进入| 久久中文看片网| 国产真实伦视频高清在线观看 | 少妇熟女aⅴ在线视频| 日日摸夜夜添夜夜添小说| 黄色丝袜av网址大全| 久久精品国产99精品国产亚洲性色| 亚洲人成电影免费在线| 午夜老司机福利剧场| 亚洲国产精品成人综合色| 国产黄色小视频在线观看| 亚洲熟妇中文字幕五十中出| 国产高清激情床上av| 国产三级在线视频| 999久久久精品免费观看国产| 国语自产精品视频在线第100页| 最新中文字幕久久久久| 乱人视频在线观看| 国产成人福利小说| 制服丝袜大香蕉在线| 亚洲av免费高清在线观看| 欧美xxxx性猛交bbbb| 内地一区二区视频在线| 九色国产91popny在线| 成人欧美大片| 国产精品不卡视频一区二区 | 欧美一区二区国产精品久久精品| 中文字幕熟女人妻在线| а√天堂www在线а√下载| 久久天躁狠狠躁夜夜2o2o| 国产淫片久久久久久久久 | 国内久久婷婷六月综合欲色啪| 简卡轻食公司| 美女高潮的动态| 久久伊人香网站| 亚洲在线观看片| 亚洲成av人片在线播放无| 欧美激情久久久久久爽电影| 亚洲人成网站在线播放欧美日韩| 国产免费一级a男人的天堂| 日本五十路高清| 男女做爰动态图高潮gif福利片| 波多野结衣高清作品| 我要看日韩黄色一级片| 欧美xxxx黑人xx丫x性爽| 性色avwww在线观看| 国产欧美日韩一区二区精品| 成人鲁丝片一二三区免费| 欧美国产日韩亚洲一区| 高潮久久久久久久久久久不卡| 欧美日本视频| 亚洲中文字幕一区二区三区有码在线看| 一级a爱片免费观看的视频| 亚洲激情在线av| 最近中文字幕高清免费大全6 | 99在线人妻在线中文字幕| 男人的好看免费观看在线视频| 亚洲欧美精品综合久久99| 好看av亚洲va欧美ⅴa在| 日韩中文字幕欧美一区二区| 人妻夜夜爽99麻豆av| 日本五十路高清| 国产蜜桃级精品一区二区三区| 亚洲av免费在线观看| 美女xxoo啪啪120秒动态图 | 欧美乱色亚洲激情| 日本成人三级电影网站| 亚洲专区中文字幕在线| 少妇被粗大猛烈的视频| 色吧在线观看| 亚洲av电影在线进入| 欧美黑人巨大hd| 久久久色成人| 成年免费大片在线观看| 国内久久婷婷六月综合欲色啪| 中文在线观看免费www的网站| 夜夜躁狠狠躁天天躁| 伦理电影大哥的女人| 国产极品精品免费视频能看的| 久久欧美精品欧美久久欧美| 男女做爰动态图高潮gif福利片| 国产欧美日韩精品亚洲av| 性色av乱码一区二区三区2| www.www免费av| 精品人妻熟女av久视频| 成年免费大片在线观看| 又爽又黄a免费视频| 亚洲成av人片在线播放无| 变态另类成人亚洲欧美熟女| 九九在线视频观看精品| 国产精品久久久久久亚洲av鲁大| 婷婷精品国产亚洲av在线| 99久久精品热视频| 亚洲av日韩精品久久久久久密| 91久久精品国产一区二区成人| 精品欧美国产一区二区三| 成年女人毛片免费观看观看9| 天堂网av新在线| 亚洲最大成人中文| 亚洲成人久久性| 亚洲精品成人久久久久久| 亚洲av免费在线观看| 免费大片18禁| 国产亚洲精品久久久com| 男人狂女人下面高潮的视频| 亚洲在线自拍视频| 99国产精品一区二区三区| 我的老师免费观看完整版| 欧美bdsm另类| 女生性感内裤真人,穿戴方法视频| 老鸭窝网址在线观看| 51国产日韩欧美| 丰满人妻熟妇乱又伦精品不卡| 中文字幕av在线有码专区| 精品不卡国产一区二区三区| av中文乱码字幕在线| 十八禁网站免费在线| 国产黄色小视频在线观看| 国产真实乱freesex| 亚洲不卡免费看| 在线播放无遮挡| 亚洲国产高清在线一区二区三| 18禁黄网站禁片免费观看直播| 国产欧美日韩精品亚洲av| 男女视频在线观看网站免费| x7x7x7水蜜桃| 淫妇啪啪啪对白视频| 免费无遮挡裸体视频| 国内少妇人妻偷人精品xxx网站| 黄色女人牲交| 一级毛片久久久久久久久女| 久9热在线精品视频| 中文字幕免费在线视频6| 日日夜夜操网爽| 伦理电影大哥的女人| 97碰自拍视频| 亚洲,欧美精品.| 嫩草影院新地址| 别揉我奶头~嗯~啊~动态视频| 人妻久久中文字幕网| 午夜日韩欧美国产| 91字幕亚洲| 69人妻影院| 精品久久久久久久久久久久久| 老熟妇乱子伦视频在线观看| 2021天堂中文幕一二区在线观| 欧美性猛交╳xxx乱大交人| 男人的好看免费观看在线视频| 一进一出抽搐动态| 又爽又黄无遮挡网站| 国产精品永久免费网站| 成人一区二区视频在线观看| 国产精品乱码一区二三区的特点| 欧美三级亚洲精品| 此物有八面人人有两片| 国产蜜桃级精品一区二区三区| 亚洲国产欧美人成| 日本黄色视频三级网站网址| 国产午夜福利久久久久久| 国产野战对白在线观看| 亚洲av美国av| 观看美女的网站| 国产欧美日韩一区二区精品| 亚洲av不卡在线观看| 成人欧美大片| 一个人看的www免费观看视频| 成人国产一区最新在线观看| 午夜福利欧美成人| 一二三四社区在线视频社区8| 欧美日韩乱码在线| av女优亚洲男人天堂| 久久伊人香网站| 在线播放无遮挡| 999久久久精品免费观看国产| 深夜精品福利| 性插视频无遮挡在线免费观看| 免费在线观看亚洲国产| 91九色精品人成在线观看| 一区二区三区高清视频在线| 少妇的逼好多水| 别揉我奶头~嗯~啊~动态视频| 免费在线观看日本一区| 12—13女人毛片做爰片一| 一二三四社区在线视频社区8| 99在线视频只有这里精品首页| 久久久精品大字幕| 日韩免费av在线播放| 综合色av麻豆| 久久99热6这里只有精品| 欧美日韩国产亚洲二区| 婷婷色综合大香蕉| 成人无遮挡网站| 男女那种视频在线观看| 国产高清视频在线播放一区| 午夜福利免费观看在线| 欧美丝袜亚洲另类 | 欧美3d第一页| 欧美激情久久久久久爽电影| 一区福利在线观看| 一区二区三区免费毛片| 国产在线精品亚洲第一网站| 成人特级黄色片久久久久久久| 亚州av有码| 熟女人妻精品中文字幕| 丁香六月欧美| 自拍偷自拍亚洲精品老妇| 深爱激情五月婷婷| 亚洲欧美精品综合久久99| 网址你懂的国产日韩在线| 精品一区二区免费观看| 1024手机看黄色片| 国产在线男女| 日韩欧美精品v在线| 欧美黑人巨大hd| 看片在线看免费视频| 免费av毛片视频| 国产精品亚洲av一区麻豆| 亚洲成人久久性| 国产精品久久视频播放| 亚洲国产精品合色在线| 偷拍熟女少妇极品色| 免费人成在线观看视频色| 一进一出好大好爽视频| 在线看三级毛片| 亚洲国产高清在线一区二区三| 性色av乱码一区二区三区2| 中文字幕免费在线视频6| 午夜福利在线观看免费完整高清在 | 色综合婷婷激情| 亚洲专区中文字幕在线| 久久久精品欧美日韩精品| 麻豆av噜噜一区二区三区| 欧美激情久久久久久爽电影| 亚洲av美国av| 国产真实乱freesex| 一个人看视频在线观看www免费| 在线免费观看的www视频| 成年免费大片在线观看| 中文亚洲av片在线观看爽| 免费观看人在逋| 成人美女网站在线观看视频| 97人妻精品一区二区三区麻豆| 成年人黄色毛片网站| 真人做人爱边吃奶动态| 91字幕亚洲| 在线观看美女被高潮喷水网站 | 亚洲午夜理论影院| 日韩欧美精品v在线| 亚洲国产精品成人综合色| av黄色大香蕉| 色哟哟哟哟哟哟| 综合色av麻豆| 99久国产av精品| 变态另类成人亚洲欧美熟女| 日本精品一区二区三区蜜桃| 一级作爱视频免费观看| 看黄色毛片网站| 日韩欧美精品v在线| 欧美成人a在线观看| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡| 欧美性猛交╳xxx乱大交人| 成熟少妇高潮喷水视频| 在线a可以看的网站| 男女床上黄色一级片免费看| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 国产不卡一卡二| 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| 成人国产一区最新在线观看| 色精品久久人妻99蜜桃| 一本综合久久免费| 国产av不卡久久| 在线播放国产精品三级| 欧美三级亚洲精品| 淫秽高清视频在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲经典国产精华液单 | 国产精品久久电影中文字幕| 久久精品91蜜桃| 丰满乱子伦码专区| 精品日产1卡2卡| 国产亚洲精品久久久久久毛片| 色哟哟·www| 久99久视频精品免费| 高潮久久久久久久久久久不卡| 97碰自拍视频| 狠狠狠狠99中文字幕| 免费观看的影片在线观看| 国产av一区在线观看免费| 国产爱豆传媒在线观看| 性色av乱码一区二区三区2| 午夜久久久久精精品| 亚洲 国产 在线| 欧美zozozo另类| 精品一区二区三区av网在线观看| 99国产极品粉嫩在线观看| 毛片一级片免费看久久久久 | 美女cb高潮喷水在线观看| 国产精品人妻久久久久久| 丰满人妻一区二区三区视频av| 日韩亚洲欧美综合| 久久久久久久久中文| 国产野战对白在线观看| 日韩av在线大香蕉| 国产在视频线在精品| 国产高清视频在线播放一区| 90打野战视频偷拍视频| 最新在线观看一区二区三区| 色5月婷婷丁香| 最新中文字幕久久久久| 国产精华一区二区三区| 国产av麻豆久久久久久久| 亚洲欧美日韩无卡精品| 亚洲黑人精品在线| 日本一本二区三区精品| 日韩免费av在线播放| 听说在线观看完整版免费高清| 一区二区三区免费毛片| 久久久国产成人免费| 国产白丝娇喘喷水9色精品| 国产精品爽爽va在线观看网站| 尤物成人国产欧美一区二区三区| 国产三级在线视频| 禁无遮挡网站| 欧美日韩瑟瑟在线播放| 亚洲内射少妇av| 国产在视频线在精品| 亚洲国产精品sss在线观看| 国产真实乱freesex| 在线观看66精品国产| 欧美一区二区亚洲| 人妻丰满熟妇av一区二区三区| 黄色女人牲交| 成人鲁丝片一二三区免费| 我的老师免费观看完整版| 精品久久久久久久末码| 91九色精品人成在线观看| 99热只有精品国产| 色av中文字幕| 亚洲精品在线观看二区| 男插女下体视频免费在线播放| 成人永久免费在线观看视频| 十八禁网站免费在线| 99热这里只有精品一区| 国产高清视频在线播放一区| 欧美黑人巨大hd| 久久久久久久久久成人| www.999成人在线观看| 亚洲avbb在线观看| 此物有八面人人有两片| 男插女下体视频免费在线播放| 国产精品99久久久久久久久| 波多野结衣高清作品| 国产成人啪精品午夜网站| 亚洲美女黄片视频| xxxwww97欧美| 亚洲精品一区av在线观看| 国产亚洲欧美98| 国产男靠女视频免费网站| 免费在线观看成人毛片| 国产精品影院久久| 99热6这里只有精品| 97碰自拍视频| 最近在线观看免费完整版| 国产精品一区二区性色av| 在现免费观看毛片| 不卡一级毛片| 最近在线观看免费完整版| 国产免费一级a男人的天堂| 午夜精品久久久久久毛片777| 99久久久亚洲精品蜜臀av| 简卡轻食公司| 91午夜精品亚洲一区二区三区 | 女人十人毛片免费观看3o分钟| 日韩欧美在线乱码| 男女床上黄色一级片免费看| 色尼玛亚洲综合影院| 亚洲自拍偷在线| 51国产日韩欧美| 边亲边吃奶的免费视频| 亚洲综合精品二区| 国产黄片美女视频| 欧美日韩视频高清一区二区三区二| 美女被艹到高潮喷水动态| 97超视频在线观看视频| 国产在线一区二区三区精| 婷婷色综合大香蕉| 国产亚洲一区二区精品| 日韩人妻高清精品专区| 日本欧美国产在线视频| 国产男女超爽视频在线观看| 国产av国产精品国产| 国产毛片在线视频| 亚洲精品国产色婷婷电影| 久久精品熟女亚洲av麻豆精品| 中国三级夫妇交换| tube8黄色片| 久久久成人免费电影| 亚洲久久久久久中文字幕| 国产 一区精品| 韩国高清视频一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲国产色片| 在线看a的网站| 国产亚洲av嫩草精品影院| 国产有黄有色有爽视频| 一区二区三区免费毛片| 成年版毛片免费区| 欧美zozozo另类| 久久久久久久久久人人人人人人| 大片免费播放器 马上看| 国产精品一区二区在线观看99| 免费观看无遮挡的男女| 国产伦在线观看视频一区| 欧美性猛交╳xxx乱大交人| 久久久欧美国产精品| 亚洲欧洲日产国产| 成年女人在线观看亚洲视频 | 熟妇人妻不卡中文字幕| 日韩伦理黄色片| 在线亚洲精品国产二区图片欧美 | 国内揄拍国产精品人妻在线| 欧美3d第一页| 亚洲精品久久久久久婷婷小说| 简卡轻食公司| av网站免费在线观看视频| 国产淫片久久久久久久久| 亚洲av日韩在线播放| 黄色怎么调成土黄色| 国产伦理片在线播放av一区| 在线观看国产h片| 亚洲精华国产精华液的使用体验| 激情五月婷婷亚洲| 小蜜桃在线观看免费完整版高清| 欧美国产精品一级二级三级 | 少妇被粗大猛烈的视频| 精品一区二区三区视频在线| 国产免费一级a男人的天堂| 天天躁日日操中文字幕| 午夜免费男女啪啪视频观看| 又粗又硬又长又爽又黄的视频| 可以在线观看毛片的网站| 午夜激情久久久久久久| 成年女人在线观看亚洲视频 | 亚洲av成人精品一区久久| 国产精品人妻久久久影院| 夜夜爽夜夜爽视频| 又粗又硬又长又爽又黄的视频| 久久精品熟女亚洲av麻豆精品| 一级a做视频免费观看| 波多野结衣巨乳人妻| av一本久久久久| 久久亚洲国产成人精品v| 免费大片18禁| 亚洲国产日韩一区二区| 在线观看免费高清a一片| 免费av不卡在线播放| 亚洲va在线va天堂va国产| 永久网站在线| 丝袜脚勾引网站| 国产黄色免费在线视频| 欧美3d第一页| 日韩伦理黄色片| 精品人妻一区二区三区麻豆| 日韩三级伦理在线观看| 夜夜爽夜夜爽视频| 国产一区二区亚洲精品在线观看| 国产精品国产av在线观看| 18禁在线播放成人免费| 亚洲欧美日韩东京热| 美女内射精品一级片tv| 肉色欧美久久久久久久蜜桃 | 插逼视频在线观看|