• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多頻帶通濾波器技術(shù)*

    2012-03-15 08:43:40褚慶昕陳付昌
    關(guān)鍵詞:通帶華南理工大學諧振器

    褚慶昕 陳付昌

    (華南理工大學電子與信息學院,廣東廣州510640)

    0 Introduction

    Emerging wireless standards result in new consumer systems,such as global system for mobile communication (GSM), wireless local-area network (WLAN),and worldwide interoperability for microwave access(WiMAX).The increasing demand for these applications in the communication market enables a single wireless system to support dualband or tri-band operations.Multiband bandpass filters are essential components of multiband systems.However,the conventional filter theory is based on the single-band assumption and it cannot be used to design multiband bandpass filters,so that novel technologies need to be developed for the design of multiband bandpass filters.

    In recent years,several techniques for the design of multiband filters have been proposed,which are classified as the multi-passband resonator technique[1-6],the SIR(Stepped Impedance Resonator)technique[7-14],the SLR(Stub-Loaded Resonator)technique[15-22]and the assembled resonator technique[23-27].Lately,the authors have presented several effective and simple methods for the design of multiband filters,including the multi-passband resonators for obtaining independentlycontrollable passband characteristics[3-6],the two-and tri-section SIRs for minimizing the size of the multiband filter[10-14],the SLRs for acquiring conveniently-controllable passband frequencies[17-19,21-22],the assembled resonators for obtaining improved stopband rejection characteristics of the tri-and quad-band bandpass filters[24-27],and a novel multistub-loaded resonator for designing high-order dualband bandpass filters[28].In this article,the authors overview these technologies.

    1 Multi-Passband Resonator Technology

    The first multi-passband resonator technique is to combine two(or more)sets of different resonators with common input and output.In Refs.[3-6],two sets of resonators were employed in parallel configurations to design dualband filters,and desired center frequency and bandwidth at each passband were obtained.However,all the resonators are half-wavelength(/2)resonators,leading to a large size.

    To achieve required bandwidth at each passband without increasing the circuit size,compact dual-and tri-band bandpass filters using/4 and/2 resonators were proposed[3].Fig.1 shows the geometry of the proposed dualband bandpass filter.The filter comprises two/4 hairpin resonators resonating at lower passbands and two/2 hairpin resonators resonating at higher passbands.All the resonators are employed in parallel configurations to obtain dual-passband responses.Therefore,the passband frequency and bandwidth of each passband can be controlled independently.As/4 resonators operate at lower passbands,the total size of the proposed filter is smaller than that of the filter using two sets of/2 resonators.

    Fig.1 Layout of the proposed dualband filter using multipassband resonator[3]

    An initial design example of the multi-passband resonator filter was presented in Ref.[3].Fig.2 shows the simulated and measured results of the dualband filter.The measured insertion losses(S21)in the two bands are respectively 1.1dB at 2.45GHz and 1.6dB at 5.25 GHz,while the measured return losses(S11) are respectively 16dB at 2.45GHz and 18dB at 5.25GHz, and the total size is less than 24mm×19.5mm,which means that this filter is smaller than the dualband filter using/2 stepped impedance resonators proposed in Ref.[10]with the same specification and substrate.

    Fig.2 Simulated and measured S-parameters of the dualband filter using multi-passband resonator[3]

    2 SIR Technology

    2.1 Two-Section SIR Technology

    Recently,more and more multiband filters have been realized with SIRs because of their multiband behavior[7-14].Fig.3 shows the basic structure of a twosection/2 SIR.

    Fig.3 Geometric diagram of two-section SIR

    The SIR consists of two lines of different characteristic impedances Z1and Z2and of electrical lengths θ1and θ2

    [10].For simplicity,θ1is chosen to be equal to θ2,the fundamental resonance occurs at

    where RZis the ratio of Z2to Z1,and θ0is the electrical length for fundamental frequency f0.The first spurious resonance occurs at

    where θs1is the electrical length for the first spurious frequency fSB1.From Eqs.(1)and(2),one can obtain

    It is clear from Eq.(3)that the spurious frequencies(fSB1,fSB2and fSB3)can be controlled by RZ,as shown in Fig.4.

    Fig.4 Solutions of frequency ratios for different RZ

    Fig.5 Simulated and measured S-parameters of the dualband filter using SIR[11]

    To demonstrate the application of the SIR,a dualband filter operated at 2.4 and 5.7 GHz was designed[11],with an overall size of about 21mm×30mm. Fig.5 shows the S-parameter simulation and measurement results of the designed filter.The filter with the first resonant frequency of 2.4 GHz is of an insertion loss less than 1.2 dB and a return loss greater than 19dB,while for the second passband with a center frequency of 5.7 GHz,the insertion loss and the return loss are respectively less than 1.8 dB and greater than 16 dB.In addition,the proposed dualband bandpass filter can generate two transmission zeros,which provides a better cutoff rate in the stopband and gives much improved selectivity.

    2.2 Tri-Section SIR Technology

    To obtain tri-passband response,tri-section SIR was used to design tri-band filters[14-16].Fig.6 shows the structure of the tri-section SIR.As shown in Fig.6,the SIR is symmetrical and it comprises three different characteristic impedances Z1,Z2and Z3.And,for practical application,it is preferable to have equal electrical length for each section.The condition for the fundamental resonance of the tri-section SIR can be derived as follows:

    Fig.6 Geometric diagram of tri-section SIR[14]

    It is clear form Eq.(4)that the spurious frequencies fSB1and fSB2can be controlled by tuning the characteristic impedance ratio RZ1(RZ1=Z3/Z2)and RZ2(RZ2=Z2/Z1),as shown in Fig.7.

    Fig.7 Solutions of frequency ratios for different RZ1and RZ2

    Ref.[14]presented a tri-band microstrip bandpass filter(BPF)operated at 1.57-GHz GPS channel and 2.4/5.25-GHz WLAN bands.The building block used to construct this tri-band BPF comprises two pseudo-interdigital tri-section SIRs.By properly determining the impedance ratio of the tri-section SIRs,three passbands at the desired frequencies can be obtained,as shown in Fig.8.Each resonator has a hairpin structure,which makes the filter more compact.The BPF realized on a printed circuit board occupies an area of about 31mm×28mm.

    Fig.8 Simulated and measured S-parameters of the tri-band filter using SIR[14]

    3 SLR Technology

    3.1 Single SLR Technology

    Lately,multiband filters using SLR have become more and more popular,mainly because of their easilycontrolled resonant frequencies.Dualband(or triband)filters were designed using centrally-loaded resonators proposed in Refs.[15-22].In Ref.[20],the open-loop resonators loaded by shunt stubs were proposed to design compact high-order dualband filters.

    The proposed resonator comprises a common microstrip half-wavelength resonator and an open stub shown in Fig.9(a),where L1and L2denote the lengths of the microstrip line and the short stub,respectively. The stub is shunted at the midpoint of the microstrip line.As the resonator is symmetrical to the T—T' plane,the odd-and the even-mode methods can be applied to analyze it.

    Fig.9 Structure of SLR

    For open stub-loaded resoantor,the odd-mode resonant frequencies can be deduced as follows: where c is the light speed in free space,and εeffdenotes the effective dielectric constant of the substrate. It can be observed that the odd-mode resonant frequencies are not influenced by the stub.The even-mode resonant frequencies can be obtained as follows:

    It can be observed that the even-mode resonant frequencies are determined by the lengths L1and L2as well as the impedance ratio.

    For the short stub-loaded resonator shown in Fig.9(b),the resonant frequencies are respectively

    By using the pseudo-interdigital short stub-loaded resonator,a dualband bandpass filter at 1.57/2.4GHz was developed[20].Fig.10 shows the corresponding simulated and measured results.The minimum insertion losses measured for the two passbands in the same sequence are respectively 0.7 and 0.5dB,and the return losses within the two passbands are both below-18dB.In addition,the proposed dualband bandpass filter can generate three transmission zeros,which provides a better cutoff rate in the stopband and gives much improved selectivity.The proposed filter is of a total size of less than 25mm×13mm.

    Fig.10 Simulated and measured S-parameters of the dualband filter using SLR[17]

    3.2 Short and Open SLR Technology

    Refs.[18-19]presented a novel open and short stub-loaded crossed resonator and its applications to triband bandpass filters.Based on the lossless transmission line model analysis,it is found that the first three resonance frequencies of the crossed resonator can be conveniently controlled.Benefiting from this feature,the resonator can be utilized to design tri-band bandpass filters.The proposed resonator comprises a common microstrip half-wavelength resonator,a short stub and an open stub,as shown in Fig.11.

    Fig.11 Structure of short and open stub-loaded resonator[18]

    For odd-mode excitation,the first odd-mode resonant frequency can be deduced as follows:

    For even-mode excitation,the first two resonant frequencies are respectively

    In order to demonstrate the proposed concept,an experimental tri-band bandpass filter at 1.57,2.4 and 3.5GHz was developed in Ref.[18].Fig.12 shows the corresponding simulated and measured results.The minimum insertion losses measured for the three passbands in the same sequence are respectively 0.8,0.5 and 1.2 dB,and the return losses within the three passbands are all below-16dB.In addition,the proposed tri-band bandpass filter can generate transmission zeros on both sizes of the passbands,which gives much improved selectivity.The proposed filter is of a meandered open stub to reduce the circuit size and a total size of less than 33mm×13mm.

    Fig.12 Simulated and measured S-parameters of the triband filter using SLR[18]

    4 Assembled Resonator Technology

    To obtain a tri-passband response based on the dualband filter layout[10],additional half-wavelength resonators are inserted,as illustrated in Fig.13.The proposed filter consists of two assembled resonators coupling in cascaded format,and each assembled resonator comprises a SIR(resonator A)and a common half-wavelength resonator(resonator B).Resonators A and B are placed together to form a compact structure without increasing the circuit size.Resonator A is designed to resonate at f1(the first passband frequency) and f3(the third passband frequency),and resonator B resonates at f2(the second passband frequency).

    Fig.13 Layout of the proposed tri-band filter using assembled resonators[26]

    Fig.14(a)shows the coupling structure of the triband filter,in which the solid lines represent the direct coupling routes.Resonators A and B are combined together to form an assembled resonator.As resonator A operates at two passbands,it can be divided into two resonators A1and A2.Resonator A1operates at the first passband and resonator A2operates at the third passband.So that the new coupling structure can be figured as Fig.14(b).Multi-path between the input and the output can be observed,which may introduce transmission zeros in the insertion loss response.

    Fig.14 Coupling structure of the proposed tri-band filter[26]

    Ref.[26]proposed a tri-band bandpass filter using the above-mentioned structure,and the corresponding simulated and measured frequency responses are shown in Fig.15.The minimum insertion losses measured for these three passbands are respectively 1.8,0.8 and 1.3 dB.The obtained transmission zeros are 2.19 and 2.64 GHz for the first passband,3.94 GHz for the second passband,and 4.58 and 5.70 GHz for the third passband,respectively.The total size is less than 24mm×22mm.

    Fig.15 Simulated and measured S-parameters of the triband filter using assembled resonator[26]

    To obtain quad-passband response,F(xiàn)ig.16 shows a novel assembled resonator for obtaining quad-passband response,which consists of two SIRs(SIRⅠand SIRⅡ)with different dimensions.SIRⅠis designed to resonate at f1(the first passband frequency)and f3(the third passband frequency),and SIRⅡresonates at f2(the second passband frequency)and f4(the fourth passband frequency).

    Fig.16 Basic structure and components of an assembled resonator[27]

    To increase the second spurious frequency of SIRⅠ,an open stub is loaded to the center of SIRⅠto adjust the resonant frequencies.The layout of the new structure is shown in Fig.17,and the open stub is meandered to reduce the circuit size.

    Fig.17 Layout of the quad-band filter using assembled resonator[27]

    Ref.[27]proposed a quad-band bandpass filter using assembled resonator.Fig.18 shows the corresponding simulated and measured frequency responses of the quad-band filter.The minimum insertion losses measured for these four passbands in the same sequence are 1.39,0.88,1.57 and 2.0 dB,respectively.The total size is less than 21.8mm×30.2mm,approximately 0.16g×0.23g,wheregis the guided wavelength on the substrate at the center frequency of the first passband.

    Fig.18 Simulated and measured S-parameters of the quadband filter using assembled resonator[27]

    5 High-Order Dualband Filter

    Recently,the authors presented several stub-loaded resonators for multiband bandpass filter application[17-19].The coupling between the stubs is added to obtain an extra degree of freedom in extracting coupling coefficients of the multiband filters,but these resonators are not suitable for building high-order filters. Based on their further investigation,the authors presented a novel multi-stub-loaded resonator suitable for high-order dualband filter applications[28].The novel resonator containing six open stubs(four fringe stubs and two center stubs)can be considered as a stubloaded SIR,as shown in Fig.19.It consists of many lines of different characteristic admittances(Y1,Y2,Y3)and of electrical lengths(θ1,θ2,θ3),so that the resonant frequencies of the proposed resonator can be conveniently controlled by tuning the stub parameters. The required bandwidth of the first passband is determined by the coupling between the fringe stubs,and the bandwidth of the second passband is dominated by the coupling between the center stubs,so that the characteristics of the two passbands can be controlled conveniently in wider ranges.As the six symmetric stubs can provide sufficient coupled sections between adjacent resonators,it is possible to build high-order dualband filters using the proposed resonators.The fabricated filter is of a size of about 80 mm×22 mm,approximately 0.93g×0.26g.

    Fig.19 Structure of the multi-stub-loaded resonator[28]

    The corresponding simulated and measured S-parameters are depicted in Fig.20.The minimum insertion losses measured for the two passbands in the same sequence are respectively 2.8 and 4.5 dB,which would be mainly attributed to the conductor and the dielectric loss.Below the first passband,minimum attenuation is 50dB from DC to 2.24 GHz.The two passbands are separated by a 50-dB stopband extended from 2.71 to 3.34GHz.

    Fig.20 Simulated and measured results of the sixth-order dualband filter[28]

    6 Conclusions

    This paper summarizes some effective approaches to multiband filters,especially several techniques using microstrip technology,including the multi-passband resonator technique,the SIR technique,the SLR technique and the assembled technique.Moreover,the high-order dualband bandpass filter designed using the multi-stub-loaded resonators is also introduced.The proposed multiband bandpass filters are useful for multi-standard wireless applications and may attract more and more interests from both academia and industry.

    [1] Chen C Y,Hsu C Y.A simple and effective method for microstrip dual-band filters design[J].IEEE Microwave Wireless Component Lett,2006,16(5):246-248.

    [2] Chen C F,Huang T Y,Wu R B.Design of dual-and triplepassband filters using alternately cascaded multiband resonators[J].IEEE Trans on Microwave Theory Tech,2006,54(9):3550-3558.

    [3] Chen F C,Chu Q X,Tu Z H.Design of compact dual-and tri-band bandpass filters using/4 and/2 resonators[J].Microw Opt Technol Lett,2009,51(3):628-631.

    [4] Chu Q X,Ye L H.Design of compact dual-band bandpass filter using/4 resonators[C]∥Proceedings of Asia Pacific Microwave Conference.Hong Kong:IEEE,2008:1-4.

    [5] Chu Qing-xin,Ye Liang-hua,Chen Fu-chang.Design of compact dual-band bandpass filter[J].Journal of South China University of Technology:Natural Science Edition,2010,38(6):7-10.褚慶昕,葉亮華,陳付昌.小型雙頻帶通濾波器的設(shè)計[J].華南理工大學學報:自然科學版,2010,38(6):7-10.

    [6] Chen F C,Chu Q X.Design of dual-band CT filter with source-load coupling[J].Journal of Electromagnetic Waves and Applications,2011,25(1):15-22.

    [7] Kuo J T,Yeh T H,Yeh C C.Design of microstrip bandpass filters with a dual-passband response[J].IEEE Trans on Microwave Theory Tech,2005,53(4):1331-1337.

    [8] Sun S,Zhu L.Compact dual-band microstrip bandpass filter without external feeds[J].IEEE Microwave Wireless Component Lett,2005,15(10):644-646.

    [9] Zhang Y P,Sun M.Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling schemes[J].IEEE Trans on Microwave Theory Tech,2006,54(10):3779-3785.

    [10] Chu Q X,Chen F C.A compact dual-band bandpass filter using meandering stepped impedance resonators[J]. IEEE Microwave Wireless Component Lett,2008,18 (5):320-322.

    [11] Chu Q X,Chen F C.A novel dual-band bandpass filter using stepped impedance resonators with transmission zeros[J].Microw Opt Technol Lett,2008,50(6):1466-1468.

    [12] Chen F C,Chu Q X.A compact dual-band filter using S-shaped stepped impedance resonators[C]∥Proceedings of International Conference on Microwave and Millimeter Wave Technology.Nanjing:IEEE,2008:1255-1257.

    [13] Chu Q X,Lin X M.Advanced triple-band bandpass filter using tri-section SIR[J].Electronics Lett,2008,44 (4):295-296.

    [14] Chen F C,Chu Q X.Compact triple-band bandpass filter using pseudo-interdigital tri-section stepped impedance resonators[J].Microw Opt Technol Lett,2008,50(9): 2462-2465.

    [15] Zhang X Y,Chen J X,Xue Q.Dual-band bandpass filter using stub-loaded resonators[J].IEEE Microwave Wireless Component Lett,2007,17(8):583-585.

    [16] Zhou M Q,Tang X H,Xiao F.Compact dual band bandpass filter using novel E-type resonators with controllable bandwidths[J].IEEE Microwave Wireless Component Lett,2008,18(12):779-781.

    [17] Chen F C,Chu Q X,Tu Z H.Design of compact dualband bandpass filter using short stub loaded resonator[J].Microw Opt Technol Lett,2009,51(4):959-963.

    [18] Chen F C,Chu Q X,Tu Z H.Tri-band bandpass filter using stub loaded resonators[J].Electronics Lett,2008,44(12):747-748.

    [19] Chen F C,Chu Q X,Tu Z H,et al.A novel crossed resonator and its applications to bandpass filters[J]. IEEE Trans on Microwave Theory Tech,2009,57(7): 1753-1759.

    [20] Mondal P,Mandal M K.Design of dual-band bandpass filters using stub-loaded open-loop resonators[J].IEEE Trans on Microwave Theory Tech,2008,56(1):150-155.

    [21] Wu X H,Chu Q X,Tian X K.Dual-band bandpass filter using novel side-stub-loaded resonator[J].Microw Opt Technol Lett,2012,54(2):362-364.

    [22] Chu Q X,Wu X H,Chen F C.Novel compact tri-band bandpass filter with controllable bandwidths[J].IEEE MicrowaveWirelessComponentLett,2008,21(12): 655-658.

    [23] Lee C H,Hsu C I G,Jhuang H K.Design of a new triband microstrip BPF using combined quarter-wavelength SIRs[J].IEEE Microwave Wireless Component Lett,2006,16(11):594-596

    [24] Chen F C,Chu Q X.Tri-band bandpass filter using assembled multiband resonators[C]∥Proceedings of Asia Pacific Microwave Conference.Hong Kong:IEEE,2008: 1-4.

    [25] Chen Fu-chang,Chu Qing-xin.Design of triple-band filter based on assembled multiband Resonator[J].Journal of South China University of Technology:Natural Science Edition,2009,37(1):10-14.陳付昌,褚慶昕.基于組合多通帶諧振器的三頻濾波器設(shè)計[J].華南理工大學學報:自然科學版,2009,37(1):10-14.

    [26] Chen F C,Chu Q X.Design of compact tri-band bandpass filters using assembled resonators[J].IEEE Trans on Microwave Theory Tech,2009,57(1):165-171.

    [27] Chen F C,Chu Q X.Design of quad-band bandpass filter using assembled resonators[J].Microw Opt Technol Lett,2011,53(6):1305-1308.

    [28] Chen F C,Chu Q X.Novel multistub loaded resonator and its application to high-order dual-band filters[J]. IEEE Trans on Microwave Theory Tech,2010,58(6): 1551-1556.

    猜你喜歡
    通帶華南理工大學諧振器
    預應力對電梯鋼絲繩中彈性波傳播特性的影響
    基于多模諧振器的超寬帶濾波器設(shè)計
    多諧振器無芯片RFID標簽設(shè)計
    關(guān)于寬帶石英濾波器配套諧振器的選用
    電子制作(2018年14期)2018-08-21 01:38:10
    本期作者
    世界建筑(2018年5期)2018-05-25 09:51:38
    基于T型諧振器的窄帶帶通濾波器設(shè)計
    電子制作(2018年1期)2018-04-04 01:48:28
    當機器人遇上人工智能——記華南理工大學自動化科學與工程學院副教授張智軍
    二維周期介質(zhì)阻帶分析與應用研究
    移動通信(2017年5期)2017-03-30 09:44:24
    基于寬譜光源的可調(diào)多通帶微波光子學濾波器研究
    焦唯、王琪斐美術(shù)作品
    一级毛片黄色毛片免费观看视频| 99热网站在线观看| 男女无遮挡免费网站观看| 最近的中文字幕免费完整| 日韩人妻高清精品专区| 午夜福利网站1000一区二区三区| 大香蕉久久成人网| 亚洲精品aⅴ在线观看| 天天影视国产精品| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av天美| 亚洲国产精品999| 久久人妻熟女aⅴ| 日本与韩国留学比较| 亚洲国产精品一区二区三区在线| 亚洲成色77777| 十八禁高潮呻吟视频| 精品国产国语对白av| 丝袜美足系列| 午夜91福利影院| 在线免费观看不下载黄p国产| 狠狠精品人妻久久久久久综合| 国产一级毛片在线| 男人添女人高潮全过程视频| 三级国产精品欧美在线观看| 日韩av免费高清视频| 中文字幕精品免费在线观看视频 | 国产日韩欧美视频二区| 一区二区三区乱码不卡18| 亚洲av综合色区一区| 国产精品人妻久久久久久| 在线精品无人区一区二区三| 边亲边吃奶的免费视频| 夫妻午夜视频| a级毛色黄片| 一区二区日韩欧美中文字幕 | 建设人人有责人人尽责人人享有的| 大片电影免费在线观看免费| 亚洲精品视频女| 另类亚洲欧美激情| 赤兔流量卡办理| 女性生殖器流出的白浆| 久久国产精品男人的天堂亚洲 | 久久久久久久久久人人人人人人| 精品国产乱码久久久久久小说| 一级片'在线观看视频| 一边亲一边摸免费视频| 伦理电影大哥的女人| 看十八女毛片水多多多| 久久久精品免费免费高清| 国产精品麻豆人妻色哟哟久久| 一级爰片在线观看| 十八禁高潮呻吟视频| 国产精品国产av在线观看| 99精国产麻豆久久婷婷| 超色免费av| 91成人精品电影| 一区二区三区免费毛片| av国产精品久久久久影院| 人人澡人人妻人| 九色成人免费人妻av| 亚洲欧美成人综合另类久久久| www.色视频.com| 狂野欧美激情性xxxx在线观看| 亚洲成人手机| 日本欧美国产在线视频| 亚洲欧美中文字幕日韩二区| 少妇 在线观看| 国产乱人偷精品视频| 色网站视频免费| 18禁动态无遮挡网站| 国产av码专区亚洲av| 国产男人的电影天堂91| 51国产日韩欧美| 久久久久久久久久久免费av| 如何舔出高潮| 国产成人a∨麻豆精品| 黑人猛操日本美女一级片| 我的女老师完整版在线观看| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲高清精品| 欧美激情极品国产一区二区三区 | 国产成人精品久久久久久| 精品久久久久久久久亚洲| 青青草视频在线视频观看| 美女内射精品一级片tv| 国产精品久久久久久精品古装| 国产淫语在线视频| 亚洲av国产av综合av卡| 欧美性感艳星| 婷婷成人精品国产| 欧美+日韩+精品| 18在线观看网站| 高清av免费在线| 精品一区二区三区视频在线| kizo精华| 成人国产麻豆网| 亚洲,一卡二卡三卡| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 又大又黄又爽视频免费| videossex国产| 熟妇人妻不卡中文字幕| 成人亚洲欧美一区二区av| 亚洲怡红院男人天堂| 国产白丝娇喘喷水9色精品| 欧美精品人与动牲交sv欧美| 热re99久久精品国产66热6| 国国产精品蜜臀av免费| 午夜av观看不卡| 欧美激情极品国产一区二区三区 | 熟女人妻精品中文字幕| 黄色怎么调成土黄色| 国产精品.久久久| 内地一区二区视频在线| 少妇猛男粗大的猛烈进出视频| 多毛熟女@视频| 看十八女毛片水多多多| 三级国产精品片| 成人漫画全彩无遮挡| 亚洲国产精品专区欧美| 成人国语在线视频| 男人爽女人下面视频在线观看| 久久国产精品男人的天堂亚洲 | 精品国产一区二区久久| 99久国产av精品国产电影| 久久久久久久亚洲中文字幕| 伊人亚洲综合成人网| 国国产精品蜜臀av免费| 中文字幕亚洲精品专区| 全区人妻精品视频| 91国产中文字幕| 国产精品一区二区在线观看99| 人妻 亚洲 视频| 精品卡一卡二卡四卡免费| 久久青草综合色| 十八禁高潮呻吟视频| 亚洲经典国产精华液单| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美中文字幕日韩二区| 热99久久久久精品小说推荐| 少妇丰满av| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品| 日韩一本色道免费dvd| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 国产精品一区二区在线观看99| 97超视频在线观看视频| 韩国av在线不卡| a级片在线免费高清观看视频| 一区二区三区精品91| 一级二级三级毛片免费看| 国产精品久久久久久久久免| 一级毛片黄色毛片免费观看视频| 有码 亚洲区| 亚洲av综合色区一区| 看十八女毛片水多多多| 欧美精品国产亚洲| 最后的刺客免费高清国语| a 毛片基地| 中文精品一卡2卡3卡4更新| 男女边吃奶边做爰视频| 永久网站在线| 街头女战士在线观看网站| 日日撸夜夜添| 国产精品三级大全| 亚洲综合色网址| 水蜜桃什么品种好| 久久狼人影院| 在线天堂最新版资源| 国产成人免费观看mmmm| 91精品伊人久久大香线蕉| 亚洲精品中文字幕在线视频| 纯流量卡能插随身wifi吗| 极品少妇高潮喷水抽搐| 精品一区二区三卡| 丝袜喷水一区| 欧美xxxx性猛交bbbb| 新久久久久国产一级毛片| 久久av网站| 国产男女超爽视频在线观看| 91aial.com中文字幕在线观看| 国产男女内射视频| 亚洲国产最新在线播放| 飞空精品影院首页| 欧美老熟妇乱子伦牲交| 亚洲国产精品999| 91久久精品电影网| 亚洲国产精品专区欧美| 国产高清国产精品国产三级| 搡女人真爽免费视频火全软件| 久久久久久伊人网av| 一本色道久久久久久精品综合| 一区在线观看完整版| 午夜av观看不卡| 最黄视频免费看| 国产视频首页在线观看| 人妻人人澡人人爽人人| 一本久久精品| 亚洲精品日本国产第一区| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区国产| 久久久久久久大尺度免费视频| 另类精品久久| 久久精品国产a三级三级三级| 亚洲欧美成人精品一区二区| 视频区图区小说| 久久97久久精品| 精品亚洲成a人片在线观看| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看| 久久午夜福利片| 欧美丝袜亚洲另类| 国产欧美日韩一区二区三区在线 | 亚洲国产精品999| 内地一区二区视频在线| 中文字幕免费在线视频6| 精品亚洲乱码少妇综合久久| av视频免费观看在线观看| 久久久久久久久久久免费av| 亚洲美女黄色视频免费看| 欧美性感艳星| 日韩精品免费视频一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 99热这里只有是精品在线观看| 亚洲中文av在线| 2018国产大陆天天弄谢| 国产深夜福利视频在线观看| 婷婷色麻豆天堂久久| 好男人视频免费观看在线| 久久婷婷青草| 少妇丰满av| 最近的中文字幕免费完整| 国产白丝娇喘喷水9色精品| 男女国产视频网站| 青春草视频在线免费观看| 91国产中文字幕| 亚洲av福利一区| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 亚洲av电影在线观看一区二区三区| 亚洲图色成人| 日本av免费视频播放| 国产老妇伦熟女老妇高清| 欧美激情 高清一区二区三区| 成人国语在线视频| 日本黄色片子视频| 国产在线免费精品| 男女国产视频网站| 高清在线视频一区二区三区| 欧美最新免费一区二区三区| 黑人猛操日本美女一级片| 新久久久久国产一级毛片| 欧美日韩在线观看h| 亚洲av免费高清在线观看| 99re6热这里在线精品视频| av福利片在线| 亚洲人与动物交配视频| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 男女无遮挡免费网站观看| 26uuu在线亚洲综合色| 国产精品99久久99久久久不卡 | 免费黄色在线免费观看| 交换朋友夫妻互换小说| 亚洲四区av| 久久鲁丝午夜福利片| 丰满乱子伦码专区| 亚洲丝袜综合中文字幕| 我的女老师完整版在线观看| 国产在线一区二区三区精| 国产精品一国产av| 国产精品久久久久久精品电影小说| 成人免费观看视频高清| 校园人妻丝袜中文字幕| 国产精品不卡视频一区二区| √禁漫天堂资源中文www| 国产亚洲av片在线观看秒播厂| 22中文网久久字幕| av一本久久久久| 十八禁高潮呻吟视频| av免费观看日本| 欧美日韩av久久| 全区人妻精品视频| 精品久久久精品久久久| 大陆偷拍与自拍| 校园人妻丝袜中文字幕| 欧美人与善性xxx| 日韩av免费高清视频| 亚洲美女搞黄在线观看| 久久99蜜桃精品久久| 大香蕉97超碰在线| 精品国产一区二区三区久久久樱花| 午夜免费鲁丝| 在线精品无人区一区二区三| 亚洲国产精品一区三区| 人妻 亚洲 视频| 精品久久蜜臀av无| 精品亚洲乱码少妇综合久久| 日韩制服骚丝袜av| 中文字幕免费在线视频6| 街头女战士在线观看网站| 最近2019中文字幕mv第一页| 国产永久视频网站| a级毛片黄视频| 亚洲人成77777在线视频| 天堂8中文在线网| h视频一区二区三区| 久久久久久伊人网av| 18禁观看日本| 美女主播在线视频| 啦啦啦啦在线视频资源| 亚洲精品,欧美精品| 狂野欧美激情性bbbbbb| 男的添女的下面高潮视频| 99久久精品国产国产毛片| 久久国产精品大桥未久av| 国产黄片视频在线免费观看| 亚洲国产精品999| 丰满乱子伦码专区| 久久久欧美国产精品| 国产男人的电影天堂91| 夜夜爽夜夜爽视频| 2018国产大陆天天弄谢| 秋霞伦理黄片| 一级片'在线观看视频| 欧美xxxx性猛交bbbb| 日本-黄色视频高清免费观看| 18禁在线无遮挡免费观看视频| 亚洲久久久国产精品| 午夜激情久久久久久久| 亚洲丝袜综合中文字幕| 国国产精品蜜臀av免费| 赤兔流量卡办理| 日本猛色少妇xxxxx猛交久久| 免费少妇av软件| 99热网站在线观看| 三上悠亚av全集在线观看| 欧美日韩在线观看h| 韩国高清视频一区二区三区| 一区二区三区精品91| 秋霞在线观看毛片| 亚洲一区二区三区欧美精品| 秋霞在线观看毛片| 日韩一本色道免费dvd| 久久久久精品性色| 91午夜精品亚洲一区二区三区| 久久久久精品性色| 亚洲av欧美aⅴ国产| 国产精品久久久久久av不卡| videosex国产| 免费观看性生交大片5| 91精品三级在线观看| 青青草视频在线视频观看| 久久亚洲国产成人精品v| 成人影院久久| 少妇被粗大的猛进出69影院 | 观看美女的网站| 欧美一级a爱片免费观看看| av播播在线观看一区| 九九久久精品国产亚洲av麻豆| 七月丁香在线播放| 日韩亚洲欧美综合| 亚洲性久久影院| 国产极品粉嫩免费观看在线 | 狂野欧美白嫩少妇大欣赏| 日韩熟女老妇一区二区性免费视频| 一级a做视频免费观看| 丝袜在线中文字幕| 高清午夜精品一区二区三区| 久久ye,这里只有精品| 99久久人妻综合| 蜜臀久久99精品久久宅男| 99久久精品国产国产毛片| 久久久久久久久久成人| 五月玫瑰六月丁香| 女的被弄到高潮叫床怎么办| 亚洲第一区二区三区不卡| 一级毛片电影观看| 97在线人人人人妻| a级毛片在线看网站| 精品卡一卡二卡四卡免费| 亚洲无线观看免费| 日韩av免费高清视频| 内地一区二区视频在线| 这个男人来自地球电影免费观看 | 久久这里有精品视频免费| 26uuu在线亚洲综合色| 欧美亚洲日本最大视频资源| 国产永久视频网站| 国语对白做爰xxxⅹ性视频网站| av视频免费观看在线观看| 有码 亚洲区| 考比视频在线观看| 国产片内射在线| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 91精品三级在线观看| av国产精品久久久久影院| 国产探花极品一区二区| 99久久综合免费| 九九在线视频观看精品| 99久国产av精品国产电影| 亚洲av成人精品一二三区| 在线播放无遮挡| 国产精品国产三级国产av玫瑰| 99热全是精品| 国产av码专区亚洲av| 最近中文字幕高清免费大全6| 80岁老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃国产av成人99| 国产精品 国内视频| 亚洲精品国产av成人精品| 国产伦理片在线播放av一区| 3wmmmm亚洲av在线观看| 丝袜美足系列| 青春草视频在线免费观看| 日本wwww免费看| 久久久久网色| 肉色欧美久久久久久久蜜桃| 精品少妇内射三级| 99re6热这里在线精品视频| 97在线视频观看| 黄色欧美视频在线观看| 精品一区二区免费观看| 黄色视频在线播放观看不卡| 久久国产精品大桥未久av| 久久97久久精品| 伦精品一区二区三区| 精品午夜福利在线看| 男人添女人高潮全过程视频| 亚洲国产精品一区三区| 性高湖久久久久久久久免费观看| 亚洲综合精品二区| 日韩一本色道免费dvd| 韩国高清视频一区二区三区| 日韩不卡一区二区三区视频在线| 精品久久久噜噜| 大片电影免费在线观看免费| 色5月婷婷丁香| 一二三四中文在线观看免费高清| 老司机影院毛片| 一级毛片我不卡| 边亲边吃奶的免费视频| 超碰97精品在线观看| 少妇人妻 视频| 伊人久久国产一区二区| 又粗又硬又长又爽又黄的视频| 国产又色又爽无遮挡免| 久久青草综合色| 大陆偷拍与自拍| 亚洲欧美中文字幕日韩二区| 国产精品无大码| 在线亚洲精品国产二区图片欧美 | 亚洲不卡免费看| 亚洲av男天堂| 两个人免费观看高清视频| 在线观看国产h片| 国产成人精品福利久久| 国内精品宾馆在线| 免费人妻精品一区二区三区视频| 成人午夜精彩视频在线观看| 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| 精品国产一区二区三区久久久樱花| 一本一本综合久久| 视频在线观看一区二区三区| 999精品在线视频| 99热国产这里只有精品6| 国产在线一区二区三区精| xxx大片免费视频| 18+在线观看网站| 免费大片18禁| 国产精品一区二区在线观看99| 欧美 亚洲 国产 日韩一| 男的添女的下面高潮视频| 男人爽女人下面视频在线观看| 欧美+日韩+精品| 亚洲经典国产精华液单| 精品一区在线观看国产| 午夜影院在线不卡| av免费在线看不卡| 欧美亚洲日本最大视频资源| 亚洲av欧美aⅴ国产| 高清欧美精品videossex| 九草在线视频观看| 国精品久久久久久国模美| 久久久欧美国产精品| 色哟哟·www| 乱码一卡2卡4卡精品| 成人国产麻豆网| 婷婷成人精品国产| 一级毛片黄色毛片免费观看视频| .国产精品久久| 精品少妇久久久久久888优播| 国产一区有黄有色的免费视频| 成人手机av| 亚洲精品第二区| 纵有疾风起免费观看全集完整版| 国产片特级美女逼逼视频| 日韩在线高清观看一区二区三区| 亚洲综合色网址| 久久久国产欧美日韩av| 亚洲国产av影院在线观看| 国产69精品久久久久777片| 你懂的网址亚洲精品在线观看| 一区二区三区免费毛片| 另类亚洲欧美激情| av播播在线观看一区| 曰老女人黄片| 日本-黄色视频高清免费观看| 国模一区二区三区四区视频| 女性生殖器流出的白浆| 99九九线精品视频在线观看视频| 人妻 亚洲 视频| 男女边吃奶边做爰视频| 人妻 亚洲 视频| 国产片内射在线| 午夜福利,免费看| 亚洲精品久久午夜乱码| 亚洲欧美成人精品一区二区| 校园人妻丝袜中文字幕| 91精品三级在线观看| 亚洲,一卡二卡三卡| 久久精品人人爽人人爽视色| 中文字幕av电影在线播放| 另类亚洲欧美激情| 一级二级三级毛片免费看| 亚洲精品美女久久av网站| 王馨瑶露胸无遮挡在线观看| 亚洲成色77777| 午夜老司机福利剧场| 夜夜看夜夜爽夜夜摸| 最近2019中文字幕mv第一页| 亚洲一区二区三区欧美精品| 亚洲人与动物交配视频| 91国产中文字幕| 国产欧美日韩一区二区三区在线 | 人妻少妇偷人精品九色| 大香蕉久久成人网| 亚洲国产成人一精品久久久| 99热网站在线观看| 男人添女人高潮全过程视频| 国产视频首页在线观看| 十八禁网站网址无遮挡| 久久久久久久精品精品| 看免费成人av毛片| xxxhd国产人妻xxx| 高清视频免费观看一区二区| 天美传媒精品一区二区| 一个人免费看片子| 一级毛片 在线播放| 九九在线视频观看精品| 满18在线观看网站| 一本久久精品| 狠狠婷婷综合久久久久久88av| 国产亚洲最大av| 蜜桃在线观看..| 在线观看三级黄色| 久久久国产欧美日韩av| 精品午夜福利在线看| av在线老鸭窝| 少妇人妻 视频| 久久精品夜色国产| 人人妻人人澡人人爽人人夜夜| 9色porny在线观看| 美女中出高潮动态图| 一区二区三区精品91| 天堂俺去俺来也www色官网| 亚洲av中文av极速乱| 国产黄色视频一区二区在线观看| 少妇精品久久久久久久| 少妇人妻 视频| 日韩一区二区三区影片| 婷婷色综合大香蕉| 狂野欧美激情性bbbbbb| av网站免费在线观看视频| 精品一区二区三区视频在线| 男女免费视频国产| videossex国产| 久久久国产精品麻豆| 在线观看美女被高潮喷水网站| 日韩,欧美,国产一区二区三区| 99久久综合免费| 人妻 亚洲 视频| 日韩成人av中文字幕在线观看| 精品一区二区三卡| 精品国产一区二区久久| a级毛色黄片| 国产黄频视频在线观看| 国产69精品久久久久777片| 汤姆久久久久久久影院中文字幕| 国产在视频线精品| 色网站视频免费| 亚洲欧美中文字幕日韩二区| 人体艺术视频欧美日本| 亚洲av免费高清在线观看| 天天影视国产精品| 啦啦啦在线观看免费高清www| 日韩欧美一区视频在线观看| 黑人欧美特级aaaaaa片| 乱码一卡2卡4卡精品| 久久久久视频综合| 久久婷婷青草| 精品久久久久久久久av| 国产色婷婷99| 97超视频在线观看视频| 国产日韩欧美在线精品| 大话2 男鬼变身卡| 欧美3d第一页| 日韩伦理黄色片| 久久精品久久久久久久性| 久久国产精品大桥未久av|