• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精吸附U(VI)的動力學和熱力學

    2016-09-09 09:35:30荊鵬飛劉慧君胡勝勇雷蘭林馮志遠
    物理化學學報 2016年8期
    關鍵詞:南華大學甲酰志遠

    荊鵬飛 劉慧君 張 勤 胡勝勇 雷蘭林 馮志遠

    (南華大學化學化工學院,湖南衡陽421001)

    ?

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精吸附U(VI)的動力學和熱力學

    荊鵬飛劉慧君*張勤胡勝勇雷蘭林馮志遠

    (南華大學化學化工學院,湖南衡陽421001)

    β-環(huán)糊精與對甲苯磺酰氯在低溫堿性溶液中反應合成6-對甲苯磺酰酯-β-環(huán)糊精,并利用紅外光譜和核磁共振氫譜對其進行表征;聯(lián)苯甲酰與6-對甲苯磺酰酯-β-環(huán)糊精以摩爾比為1:2反應合成一種新型的聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精(BB β-CD)材料,并采用紫外可見分光光度法對其合成機理以及BB β-CD和聯(lián)苯甲酰對U(VI)的吸附行為進行研究;同時采用掃描電鏡對材料吸附U(VI)前后的外貌形態(tài)進行表征。通過間歇吸附法考察pH、反應時間、溫度以及干擾離子等因素對吸附過程的影響。結果表明,相比聯(lián)苯甲酰,BB β-CD能更有效地吸附U(VI),在pH=4.5,反應時間為60 min條件下,最大吸附量為12.16 mg·g-1,吸附率高達91.2%。動力學和熱力學擬合結果表明,吸附過程更符合準二級動力學速率方程,Langmuir等溫吸附模型比Freundlich等溫吸附模型更適合模擬吸附過程,且吸附是自發(fā)吸熱的過程。

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精;鈾(VI)吸附;動力學;平衡;熱力學

    www.whxb.pku.edu.cn

    1 Introduction

    With the continuous development of the global atomic energy industry,uranium and its compounds are nuclear fuels in power generation,which plays an important role in the military,civilian nuclear science,and technology.But with the rapid development of the nuclear industry,a large amount of wastewater containing uranium has been discharged into the environment,which has resulted in widespread environmental contamination1-5.Therefore, the efficient separation of uranium from aqueous phase,especially from industrial effluents,has attracted high attention of researchers6-8.To remove U(VI)from aqueous solution,several methods,such as chemical precipitation9,evaporation concentration10,ion exchange11,film processing method12,adsorption and solvent extraction13-15,have been developed to date.Currently, adsorption is an attractive method due to its high efficiency and diversity of adsorption.Many different sorbents,such as alumina, sepiolite,activated carbon,carbon nanotube,silica gel,goethite, chitosan and so on,have been investigated16-22.However,how to get a quick and resultful material for the determination and adsorption of U(VI)is still a work badly in need for us to do.

    β-cyclodextrins(β-CD)is a cyclic oligosaccharide with seven glucose units containing a hydrophilic exterior and hydrophobic internal cavity.The cavity structure of β-cyclodextrin can selectively form BB β-CD with other guest molecules through hostguest interactions.Sun et al.23had studied the adsorption and desorption of U(VI)on functionalized graphene oxides.Liu et al.24had studied the selective adsorption of U(VI)from acidic solution by high performance of phosphate-functionalized graphene oxide. Li et al.25had studied the adsorption and recovery of U(VI)from low concentration uranium solution by amidoxime modified Aspergillus niger.Hosseini and Abedi26had studied the adsorption of Th(IV)and U(VI)on mixed-ligands impregnated resin containing antraquinones with that conventional one.However,the study on the adsorption of U(VI)on bridged β-cyclodextrin is rarely reported.

    Benzil consists of two carbonyl(C=O)groups,which can form complexes with metal ions,is a kind of good α-diketone and it is also an excellent metal-chelating agent.To the best of our knowledge,there was still no report of study on the adsorption of U(VI)by BB β-CD.Compared with the reported sorbents,BB β-CD has great application in the adsorption of U(VI)from low concentration U(VI)solution because of low toxicity,biocompatibility,biodegradability and collaborative adsorption with benzil27,28,and expands the adsorption range for U(VI).At the same time,BB β-CD is also a low-cost sorbent with high adsorption capacity for U(VI)from low concentration U(VI)solution.In our work,adsorption material of BB β-CD was prepared by the reaction of benzil and sulfated-β-CD with the molar ratio of 1:2. In order to find the optimum adsorption conditions,a series of factors,such as pH value,contact time,temperature,and interfering ions were carried out for investigating the chemical adsorption properties of the sorbent for U(VI).In addition,various kinetic and thermodynamics models are also applied to study the adsorption process.

    2 Experimental

    2.1Materials and methods

    β-cyclodextrin(purity≥98%),benzil(purity≥98%),ptoluenesufonyl chloride(p-TsCl,99%),sodium hydroxide(purity ≥97%).Ammonium uranyl tricarbonate((NH4)4[UO2(CO3)3]), hydrochloric acid,alcohol,acetonitrile,arsenazo III,nitric acid, etc.were analytical reagent and used without further purification. All reagents were purchased fromAladdin Chemical Reagent Co. Ltd.(Shanghai,China).

    U3900 UV-spectrophotometer(Hitachi Ltd,Japan),Shimadzu IR Prestige-21 FTIR(Shimadzu,Japan),Bruker AV-III 400 MHz NMR spectrometer(Bruker BioSpin,Switzerland),S-4800 Scanning Electron Microscope(Hitachi Ltd.,Japan),etc.

    2.2Synthesis of sulfated-β-CD

    5 g of β-CD was dissolved in 100 mL of water,3 g of sodium hydroxide,and 1.68 g of p-TsCl was also added under the condition of ice water bath.The mixture was stirred and reacted for 5 h.Then the unreacted p-TsCl was filtered,the filtrate was adjusted to pH 6-7 by 1 mol·L-1HCl and it was put into a fridge for 24 h at 4°C.The resulting precipitate was filtered and recrystallized 2 times in water,CH3CN/H2O(1/1,V/V)to give sulfatedβ-CD.

    2.3Preparation of BB β-CD

    BB β-CD was prepared by the reaction of benzil(0.1 g)and sulfated-β-CD(1.2374 g)with the molar ratio of 1:2 in water at 50°C for 4 h,then the mixture was put into a fridge overnight at 4°C.The resulting precipitate was filtered and washed 6 times with deionized water and ethanol and dried by vacuum evaporation at 60°C for 8 h to give BB β-CD.The synthesis routes of sulfated-β-CD and BB β-CD are showed in Fig.1.

    2.4Adsorption studies

    In order to obtain the optimization adsorption conditions,the effects of pH,contact time,temperature,and interfering ions were examined.In the batch adsorption experiments,15 mg BB β-CD was added to the 10 mL U(VI)solution in 25 mL flask for which concentration was 20 mg·L-1,pH value is 2.0-7.0,and time range is 20-180 min.In addition,the flasks were shaken using shakingwater bath for specified durations at desired temperatures(298-338 K).After equilibration,the residual concentration of U(VI) ions was determined by UV-spectrophotometer.The adsorption capacity Q(mg·g-1)of BB β-CD and the remove ratio R(%)of U(VI)were calculated was calculated by the following equations:

    Fig.1 Synthesis route of sulfated-β-CD and BB β-CD

    where C0and Ce(mg·L-1)are the initial and equilibrium concentrations,respectively.V(L)is the volume of the testing solution,and m(g)is the mass of sorbent.

    2.5Effect of interfering ions

    In order to explore the selective adsorption behavior of U(VI), some important different concentrations of interfering ions such as Na+,Mg2+,Fe3+,and Cu2+were added to 20 mg·L-1U(VI)solution,pH 4.5,shaking to adsorb for 60 min.Centrifuge and UV-spectrophotometer was employed to analyze the U(VI)concentration in the adsorbed solution.

    3 Results and discussion

    3.1Characterization analysis

    Fig.2(A)shows the FTIR spectra of β-CD,sulfated-β-CD,and BB β-CD.Compared with β-CD some new absorption peaks were found in the FTIR spectra of sulfated-β-CD.In the FTIR spectra of sulfated-β-CD,the peaks around 1177 and1364 cm-1resulted from symmetric stretching and antisymmetric stretching vibration of S=O.The peaks at 1599,1078,and 1028 cm-1were ascribed to the νC=Con benzene ring,the νC―O―Cand νC―Oof the template sulfated-β-CD.And the peaks of 837,815 cm-1were ascribed to the νC―Hon the benzene ring29.And compared with sulfated-β-CD, BB β-CD appeared characteristic bands at 1697 cm-1,which was ascribed to the νC=O.

    Fig.2 FTIR spectra of β-CD(1),sulfated-β-CD(2),BB β-CD(3)

    The FTIR spectra of BB β-CD and BB β-CD+U(VI)are respectively shown in Fig.2(B).As shown in Fig.2(B),the FTIR spectra of BB β-CD shows that the template does not change the adsorption peak of each chemical group very much,suggesting that the template only combines with the with hydrophobic interaction and hydrogen bonding interaction,but not forming chemical bonds.The FTIR spectra of BB β-CD+U(VI)displays significant shift in some peaks.The shift of the peak from 1697 to 1702 cm-1reflects the changes in the stretching frequency of carbonyl(C=O)upon binding of U(VI).This observation indicates the involvement of carbonyl(C=O)in the adsorption process30,31.

    Fig.3 shows the1HNMR(DMSO-d6,400 MHz,TMS)spectra of benzil,β-CD,sulfated-β-CD,and BB β-CD.As seen in Fig.3, the1HNMR spectra of benzil,β-CD,sulfated-β-CD,and BB β-CD have obvious difference and the change of chemical shifts of sulfated-β-CD and BB β-CD are shown in Table 1.As shown in Fig.3,the chemical shifts of sulfated-β-CD are different from those of β-CD,and the results of them are consistent with the reported sulfated-β-CD32.Compared with sulfated-β-CD,the chemical shifts of part protons(H3 and H5)of BB β-CD have obvious move and other protons have not apparent movement.Therefore,we canknow that the formation of the BB β-CD by insertion of the aromatic ring of the benzil into the sulfated-β-CD cavity can be confirmed by observing the chemical shifts induced in the H3 and H5 resonances of sulfated-β-CD due to the ring-current effects of the aromatic benzil.As shown in Table 1,the relatively large upfield shift is observed for H3 and H5 of sulfated-β-CD,which indicate that benzil molecule inserted into sulfated-β-CD cavity33. All of these proved that the synthesis of BB β-CD is reliable and successful.

    Fig.3 1HNMR spectra of benzil(a),β-CD(b), sulfated-β-CD(c),and BB β-CD(d)

    The UV-spectrophotometer analysis results shows the changes of absorb and wavelength about different molar ratios of benzil and sulfated-β-CD(Fig.4).Absorption wavelength moved to the maximal from 1:0 to 1:2,however,it went back when the molar ratio went to 1:2 and 1:2.5,and we can preliminarily conclude that the molar ratio of 1:2 is the best molar ratio.

    As the stirring time went on,the mixture solution slowly turned to clarify while it was turbidity at the beginning.Maybe it belonged to the reason that benzil did not dissolute in the water,so it was turbidity at the beginning,but as the stirring went on,the benzil went into the cavity of sulfated-β-CD to format BB β-CD. Besides UV-spectrophotometer,it is also very important to choose the best molar ratio by determining inclusion constants under different molar ratios of benzil and sulfated-β-CD,and the resultsare reported in Table 2.Here,it is the determination and calculation process of inclusion constant under the molar ratio of 1:2 of benzil and sulfated-β-CD.UV-spectrophotometer shows adsorption of benzil in 0.05 g BB β-CD is 2.068,according to the standard concentration of benzil in Fig.5,that means the concentration of benzil in 10 mLethanol is C=1.70×10-3mol·L-1. Defining the mass ratio of benzil and sulfated-β-CD in original sample is k0,and in the BB β-CD is k1,the inclusion constant is K, k1=1.70×10-3×10×10-3×210.23/0.05=0.0714,K=(k1/k0)× 100%=0.0714/0.07477×100%=95.49%.In addition,the determination and calculation process of inclusion constants under other molar ratios of benzil and sulfated-β-CD are the same.The results of UV-spectrophotometer analysis and the determination of inclusion constants show that the molar ratio of 1:2 of benzil and sulfated-β-CD is the best molar ratio.

    Table 1 Chemical shifts of part protons of sulfated-β-CD and BB β-CD

    Fig.4 UV absorption of different molar ratios of benzil and sulfated-β-CD

    SEM shows that the surface of BB β-CD was uneven and rough while that of BB β-CD absorbed U(VI)was homogeneous.The reason is that pores in BB β-CD provides necessary channel and adsorption space for the adsorption.Therefore,BB β-CD can effectively adsorb U(VI)(Fig.6).

    3.2Effect of pH

    pH is one of the important factors that affect the adsorption efficiency,and the effect of pH on the adsorption of U(VI)from aqueous solutions is showed in Fig.7.The results showed that the adsorption of U(VI)increased gradually as pH increases from 2.0 to 4.5,then decreases when the pH value is higher than 4.5.Because at low pH,it is difficult for diketone to chelate metal ions and there are two reasons to explain it.On the one hand,the lower uptake at low pH may be attributed to the higher acidities which made the protonation of O in BB β-CD on benzil by H+34,and formed positively charged BB β-CD surface which prevent the adsorption of metal ions due to electrostatic repulsion35-37.On the other hand,the low adsorption can be due to the competition of H+and metal ions in the solution for the adsorption sites of BB β-CD38.And when the pH continues to increase,U(VI)may hydrolyse to UO2OH+and(UO2)2(OH)22+)or precipitation39,resultingin a false impression or adsorption error40.In order to get quantitative adsorption of U(VI)at higher pH values while avoid hydrolysis and precipitation,pH 4.5 was considered as the optical value,and the adsorption capacity of U(VI)was 12.16 mg·g-1.

    Fig.5 Standard concentration of benzil

    Table 2 Inclusion constants under different molar ratios of benzil and sulfated-β-CD

    Fig.6 SEM spectra of BB β-CD(a)and BB β-CD+U(VI)(b) (a)BB β-CD;(b)BB β-CD+U(VI)

    Fig.7 Effect of pH on the adsorption of U(VI)

    3.3Effect of contact time and kinetic studies

    The effect of contact time was investigated to determine the equilibrium point,and the result was given in Fig.8.The results showed that the adsorption capacity of U(VI)gradually increased during the 20-120 min and then tended to equilibrate in the following contact time for benzil.However,the sorbent BB β-CD tended to equilibrate in 60 min.This observation is due to the fact that the hydrophobic space of β-CD inclusion hydrophobic benzene ring of benzil,two oxygen atoms of benzil exposed and U (VI)adsorbed quickly and fully.Therefore,the U(VI)can be easier adsorbed on BB β-CD than benzil.The BB β-CD in this study had good adsorption capacity at pH 4.5,and the adsorption equilibrium could reach a balance in 60 min.

    Fig.8 Effect of contact time on the adsorption of U(VI)

    To analyze the kinetic adsorption behaviors of U(VI)on BB β-CD,two kinetic models namely pseudo-first-order and pseudosecond-order models were used to fit the adsorption process.The pseudo-first-order kinetic model is given by the following equation41:

    where Qeand Qt(mg·g-1)are the amount of U(VI)adsorbed at equilibrium and at time t(min),respectively.K1(min-1)is the rate constant of pseudo-first-order,and t(min)is the reaction time. Values of Qeand K1were calculated from the intercept and slope values of the straight line by plotting lg(Qe-Qt)versus t are reported in Table 3 and as shown in Fig.9.The results showed that the linear plot of lg(Qe-Qt)and time followed pseudo-first-order kinetic model of U(VI)adsorption on BB β-CD.

    At the same time,the kinetic adsorption behaviors of U(VI)on BB β-CD was also described according to the pseudo-secondorder kinetic using the following equation42:

    where K2(mg·g-1·min-1)is the rate constant of pseudo-secondorder,and t(min)is the reaction time.Values of Qeand K2were calculated from the slope and intercept values of the straight line by plotting t/Qtversus t are reported in Table 3 and as shown in Fig.10.The results showed that the linear plot of t/Qtand time followed pseudo-second-order kinetic model of U(VI)adsorption on BB β-CD.The calculated Qevalue from pseudo-second-order kinetic equation agreed very well with the experimental Qevalue. The kinetic data showed that the adsorption of U(VI)followed pseudo-second-order kinetic model(R2=0.9944),and the experimental Qe(exp)value(12.16 mg·g-1)was close to the model Qevalue(12.165 mg·g-1).

    Table 3 Kinetic data for adsorption of U(VI)

    Fig.9 Pseudo-first-order plot for adsorption of U(VI)

    3.4Adsorption isotherms

    Generally speaking,adsorption isotherms can provide some significant information in optimizing the application of BB β-CD, Langmuir and Freundlich isotherms were used to simulate the adsorption isotherms of U(VI).According to the Langmuir isotherm model,adsorption process commonly occurs on the surface of sorbent until monolayer coverage is obtained.The linear equation of the Langmuir adsorption model can be expressed as follows43:

    where Qe(mg·g-1)and Qm(mg·g-1)are the equilibrium and maximum adsorption capacities,respectively.Ce(mg·L-1)is the equilibrium concentration of metal ions in solution,Ka(L·mg-1) is the Langmuir constant related to energy of adsorption.The values of Qmand Kacalculated from the intercept and slope values of the straight line by plotting 1/Qeversus 1/Ceare reported in Table 4 and as shown in Fig.11.The results showed that the linear plot of 1/Qeand 1/Cefollowed the Langmuir adsorption model of U(VI)adsorption on BB β-CD.

    Fig.10 Pseudo-second-order plot for adsorption of U(VI)

    Unlike the Langmuir adsorption model,the Freundlich adsorption model is an empirical model,which is based on heterogeneous surfaces and allows for several kinds of adsorption sites on the surface of adsorption material.The model can be represented by the following equation44,45:

    where Qe(mg·g-1)and Ce(mg·L-1)are the equilibrium concentrations of metal ions in solution,respectively.and KFand n are Freundlich constants,which mean adsorption capacity and adsorption intensity,respectively.The values of KFand n calculated from the intercept and slope values of the straight line by plotting lnQeversus lnCeare reported in Table 4 and as shown in Fig.12. The values of KFand n were found to be 1.01 and 1.35.The value of 1

    3.5Effect of temperature and adsorption

    thermodynamics

    The effect of temperature on the adsorption of U(VI)on thestudied BB β-CD were investigated at 298,308,318,328,and 338 K,respectively.Thermodynamic parameters were calculated to confirm the thermodynamic feasibility and the nature of the adsorption process.The thermodynamic parameters corresponding toU(VI)adsorptionontheBB β-CDcanbeexpressedusingvan′t Hoff equation46:

    Table 4 Isotherm model constant parameters for adsorption of U(VI)

    Fig.11 Langmuir plots for adsorption of U(VI)

    Fig.12 Freundlich plots for adsorption of U(VI)

    where C0and Ce(mg·L-1)are the initial and equilibrium concentrations,respectively.V(mL)is the volume of the testing solution,m(g)is the mass of sorbent,Kd(mL·g-1)is the distribution coefficient,ΔS0(J·mol-1·K-1)is standard entropy,ΔH0(kJ·mol-1) is the standard enthalpy,ΔG0(kJ·mol-1)is the standard Gibbs free energy,T(K)is the absolute temperature,and R(8.314 J·mol-1· K-1)is the gas constant.

    The curve of temperature and distribution coefficient is reported in Table 5 and as shown in Fig.13.As shown in Table 5,ΔH0is positive because the adsorption of U(VI)on BB β-CD is endothermic.The values of free energy are negative,and the decrease in the value of ΔG0with increase in temperature shows that the reaction is spontaneous and more favorable at higher temperature.

    Table 5 Thermodynamic parameters for the adsorption of U(VI)

    Fig.13 van′t Hoff plots for the adsorption of U(VI)

    Fig.14 Infection on the adsorption of U(VI)by interfering irons

    Fig.15 Possible adsorption mechanism of U(VI)

    3.6Interfering ions analysis

    In order to evaluate the selective adsorption of U(VI)by the BB β-CD,the effect of interfering ions on adsorption of U(VI)were carried out(Fig.14).The results showed that interfering ions had different influence on adsorption capacity of U(VI).Na+didn′t obviously affect the adsorption of U(VI).The adsorption of U(VI) could have the similar capacity when the concentration of Mg2+, Fe3+,and Cu2+were lower than 10 mg·L-1.The possible adsorption mechanism of U(VI)is shown in Fig.15.

    4 Conclusions

    Anovel BB β-CD was synthesised by the reaction of benzil and sulfated-β-CD with the molar ratio of 1:2,and it was successfully used for the adsorption of U(VI).The BB β-CD used as sorbent had good adsorption capacity(12.16 mg·g-1)and remove ratio (91.2%)of U(VI)at the optimum conditions.The adsorption capacity of U(VI)showed no obvious change in the presence of Na+,Mg2+,Fe3+,and Cu2+when concentration was lower than 10 mg·L-1.Kinetic study showed that the pseudo-second-order model was appropriate to describe the adsorption process,indicating the chemical adsorption.Among different models used for describing equilibrium isotherm data,Langmuir model is in good agreement with the experimental data with high R2(0.9907).The adsorption of U(VI)dependence on temperature was investigated and the thermodynamic parameters DH0,DS0,and DG0were calculated. The results showed that it was a feasible,spontaneous and endothermic adsorption process.In this paper,the raw materials are commercially available,the experimental method for the adsorption of U(VI)is reliable and feasible and it can provide certain reference value for future research.

    References

    (1)Olszewski,G.;Bory?o,A.;Skwarzec,B.J.Environ.Radioactiv. 2015,146,56.doi:10.1016/j.jenvrad.2015.04.001

    (2)Liu,P.H.;Wei,C.S.;Zhang,S.M.;Zhu,C.M.;Xie,S.R. Asian J.Chem.2015,27,1049.doi:10.14233/ ajchem.2015.18056

    (3)Cesare,M.D.;Cesare,N.D.;D'Onofrio,A.Appl.Radiat. Isotopes.2015,103,166.doi:10.1016/j.apradiso.2015.06.011

    (4)Bourgeois,D.;Burt-Pichat,B.;Goff,X.L.Anal.Bioanal. Chem.2015,407(22),6619.doi:10.1007/s00216-015-8835-7

    (5)Bonato,M.;Ragnarsdottir,K.V.Wat.Air Soil.Pollut.2012,223 (7),3845.doi:3846.10.1007/s11270-012-1153-1

    (6)Gu,Z.X.;Tu,C.N.;Wang,Y.;Yang,J.J.;Liu,N.;Liao,J.L.; Yang,Y.Y.;Tang,J.Acta Phys.-Chim.Sin.2015,31(Suppl), 95.[顧澤興,涂昌能,王云,楊吉軍,劉寧,廖家莉,楊遠友,唐軍.物理化學學報,2015,31(Suppl),95.]doi:10.3866/ PKU.WHXB2014Ac13

    (7)Yousif,A.M.;El-Afandy,A.H.;AbdelWahab,G.M.;Mubark, A.E.;Ibrahim,I.A.J.Radioanal.Nucl.Chem.2015,303(3), 1821.doi:10.1007/s10967-014-3688-7

    (8)Sun,T.X.;Shen,X.H.;Chen,Q.D.Acta Phys.-Chim.Sin. 2015,31(Suppl),32.[孫濤祥,沈興海,陳慶德.物理化學學報,2015,31(Suppl),32.]doi:10.3866/PKU.WHXB2014Ac10

    (9)Mellah,A.;Chegrouche,S.Barkat,M.Hydrometallurgy 2007, 85,163.doi:10.1016/j.hydromet.2006.08.011

    (10)Duff,M.C.;Morris,D.E.;Hunter,D.B.;Bertsch,P.M. Geochim.Cosmochim.Ac.2000,64(9),1535.doi:10.1016/ S0016-7037(99)00410-X

    (11)Zou,W.H.;Zhao,L.;Han,R.P.Chin.J.Chem.Eng.2009,17, 586.doi:10.1016/S1004-9541(08)60248-7

    (12)John,A.M.S.;Cattrall,R.W.;Kolev,S.D.J.Memb.Sci.2012, 409(4),242.doi:10.1016/j.memsci.2012.03.061

    (13)Gok,C.;Aytas,S.J.Hazard.Mater.2009,168(1),369.doi: 10.1016/j.jhazmat.2009.02.063

    (14)Joseph,C.;Schmeide,K.;Sachs,S.;Brendler,V.;Geipel,G.; Bernhard,G.Chem.Geol.2011,284(3),240.doi:10.1016/j. chemgeo.2011.03.001

    (15)Oshita,K.;Sabarudin,A.;Takayanagi,T.;Oshima,M.; Motomizu,S.Talanta 2009,79(2),1031.doi:10.1016/j. talanta.2009.03.035

    (16)Qian,L.;Ma,M.;Cheng,D.J.Radioanal.Nucl.Chem.2015, 303,161.doi:10.1007/s10967-014-3352-2

    (17)Branislava,M.M.;Milijan,J.;Mirjana,L.M.Radiat.Environ. Bioph.2015,54(2),217.doi:10.1007/s00411-015-0589-2

    (18)Ahmed,S.H.;Sharaby,C.M.;Gammal,E.M.E. Hydrometallurgy 2013,134,150.doi:10.1016/j. hydromet.2013.02.003

    (19)Tan,L.;Liu,Q.;Jing,X.Chem.Eng.J.2015,273,307. doi:10.1016/j.cej.2015.01.110

    (20)Basu,H.;Singhal,R.K.;Pimple,M.V.Int.J.Environ.Sci. Technol.2015,12,1899.doi:10.1007/s10967-014-3677-x

    (21)Sun,Y.;Yang,S.;Wang,Q.Radiochim.Acta 2014,102,797. doi:10.1515/ract-2013-2204

    (22)Chao,X.;Wang,J.;Yang,T.Carbohyd.Polym.2015,121,79. doi:10.1016/j.carbpol.2014.12.024

    (23)Sun,Y.B.;Yang,S.B.;Chen,Y.;Ding,C.C.;Cheng,W.C.; Wang,X.K.Environ.Sci.Technol.2015,49(7),4255. doi:10.1021/es505590j

    (24)Liu,X.;Li,J.;Wang,X.J.Nucl.Mater.2015,466(45),56. doi:10.1016/j.jnucmat.2015.07.027

    (25)Li,L.;Hu,N.;Ding,D.X.;Xin,X.;Wang,Y.D.;Xue,J.H.; Zhang,H.;Tan,Y.RSC Adv.2015,5,65827.doi:10.1039/ C5RA13516H

    (26)Hosseini,M.S.;Abedi,F.J.Radioanal.Nucl.Chem.2015,303, 2173.doi:10.1007/s10967-014-3366-9

    (27)Mirzajani,R.;Pourreza,N.;Najjar,S.S.A.Res.Chem. Intermediat.2014,40(8),2667.doi:10.1007/s11164-013-1120-5 (28)Ogoshi,T.;Harada,A.Sensors 2008,8,4961.doi:10.3390/ s8084961

    (29)Wang,Y.L.;Feng,R.S.;Guo,Y.J.Chin.J.Appl.Chem.2011, 28,1269.doi:10.3724/SP.J.1095.2011.00680

    (30)Xiao,Y.Q.;Xia,L.S.;Li,R.R.;Li,G.;Huang,X.Atom Energy Science and Technology 2015,49,2130.doi:10.7538/ yzk.2015.49.12.2130

    (31)Wang,J.S.;Zou,X.L.;Jia,L.Atom Energy Science and Technology 2015,49,255.doi:10.7538/yzk.2015.49.02.0255

    (32)Huang.Y.;Fan,X.D.Journal of Northwest University(Natural Science Edition)2003,33,41.doi:1000-274X(2003)01-0041-04

    (33)Ding,H.;Chao,J.;Zhang,G.Spectrochim.Acta A 2003,59, 3421.doi:10.1016/S1386-1425(03)00176-8

    (34)Ji,X.Z.;Liu,H.J.;Wang,L.L.J.Radioanal.Nucl.Chem. 2013,295,265.doi:10.1007/s10967-012-1979-4

    (35)Chen,S.P.;Hong,J.X.;Yang,H.X.J.Environ.Radioactiv. 2013,126,253.doi:10.1016/j.jenvrad.2013.09.002

    (36)Huang,G.L.;Zou,L.X.;Su,Y.;Lv,T.T.;Wang,L.L. J.Radioanal.Nucl.Chem.2016,307(2),1135.doi:10.1007/ s10967-015-4275-2

    (37)Hosseini,S.H.;Rahmanisani,A.;Jalalabadi,Y.Int.J.Environ. Anal.Chem.2015,95(4),277.doi:10.1080/ 03067319.2015.1016009

    (38)Chen,F.;Tan,N.;Long,W.;Yan,X.M.;Chen,F.Mar.Pollut. Bull.2013,74,213.doi:10.1016/j.marpolbul.2013.06.055

    (39)Long,D.J.;Liu,J.H.;Wang,X.M.Nuclear Power Engineering 2012,33,1.doi:10.1128/JVI.06957-11

    (40)Tong,K.S.;Kassim,M.J.;Azraa,A.Chem.Eng.J.2011,170, 145.doi:10.1016/j.cej.2011.03.044

    (41)Starvin,A.M.;Rao,T.P.Talanta 2004,63(2),225. doi:10.1016/j.talanta.2003.11.001

    (42)Li,Z.;Chen,F.;Yuan,L.;Liu,Y.;Zhao,Y.;Chai,Z.;Shi,W. Chem.Eng.J.2012,210,539.doi:10.1016/j.cej.2012.09.030

    (43)Zhou,L.M.;Shang,C.;Liu,Z.R.;Huang,G.L.Adesina,A.A. J.Colloid Interface Sci.2012,366(1),165.doi:10.1016/j. jcis.2011.09.069

    (44)Mellah,A.;Chegrouche,S.;Barkat,M.J.Colloid Interface Sci. 2006,296(2),434.doi:10.1016/j.jcis.2005.09.045

    (45)Oguz,E.J.Colloid Interface Sci.2005,281(1),62. doi:10.1016/j.jcis.2004.08.074

    (46)Aksoyoglu,S.J.Radioanal.Nucl.Chem.1989,134(2),393. doi:10.1007/BF02278276

    Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)

    JING Peng-FeiLIU Hui-Jun*ZHANG QinHU Sheng-Yong LEI Lan-LinFENG Zhi-Yuan
    (College of Chemistry and Chemical Engineering,University of South China,Hengyang 421001,Hunan Province,P.R.China)

    Sulfated β-cyclodextrin(β-CD)was prepared by the reaction of β-CD with p-toluenesulfonyl chloride at low temperature in aqueous sodium hydroxide.The product was analyzed by Fourier transform infrared spectroscopy(FTIR)and proton nuclear magnetic resonance(1H NMR).The novel benzil-bridged β-CD(BB β-CD)was acquired by the reaction of benzil with sulfated β-CD at a molar ratio of 1:2.UV spectrophotometry was used to study the synthetic mechanism of BB β-CD and benzil and their adsorption onto U(VI).Scanning electron microscopy(SEM)was used to analyze the surface properties of the materials.The adsorption of BB β-CD onto U(VI)was investigated as a function of pH,contact time, temperature,and interfering ions using the batch adsorption technique.It was found that the adsorption equilibrium of BB β-CD was reached faster than that of benzil.The optimum experimental conditions were pH=4.5 and shaking for 60 min,achieving the maximum adsorption capacity of 12.16 mg·g-1and a U(VI)removal ratio of 91.2%.Kinetic studies revealed that the adsorption reached equilibrium within 60 min for U(VI)and followed a pseudo-second-order rate equation.The isothermal data correlated with the Langmuir model better than with the Freundlich model.The thermodynamic data indicated the spontaneous and endothermic nature of the process.

    BB β-CD;Uranium(VI)adsorption;Kinetics;Equilibrium;Thermodynamics

    January 4,2016;Revised:April 20,2016;Published on Web:April 21,2016.

    O642;O643

    10.3866/PKU.WHXB201604212

    *Corresponding author.Email:liuhuijun@usc.edu.cn;Tel:+86-13607341186.

    The project was supported by the National Natural Science Foundation of China(11375084)and Hunan Provincial Innovation Foundation for Postgraduate,China(CX2015B399).

    國家自然科學基金(11375084)和湖南省研究生科研創(chuàng)新項目(CX2015B399)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    猜你喜歡
    南華大學甲酰志遠
    南華大學召開學習丁德馨同志先進事跡座談會
    N-氨甲酰谷氨酸對灘羊乏情期誘導同期發(fā)情效果的影響
    中國飼料(2021年17期)2021-11-02 08:15:14
    獲批57項!南華大學2021年度自然科學基金立項取得好成績
    喜訊!南華大學2021年省級一流本科課程認定再創(chuàng)佳績!
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    Wang Chuanshan
    大東方(2018年8期)2018-09-10 03:43:57
    N-氨基甲酰谷氨酸在仔豬生產(chǎn)中的應用
    廣東飼料(2016年5期)2016-12-01 03:43:22
    香噴噴的年喲
    新型meso-四(4-十四氨基甲酰苯基)卟啉及其金屬(Co)配合物的合成與液晶性能
    合成化學(2015年10期)2016-01-17 08:56:37
    91麻豆av在线| av有码第一页| 国产麻豆成人av免费视频| 18禁黄网站禁片午夜丰满| 亚洲第一欧美日韩一区二区三区| 国内久久婷婷六月综合欲色啪| 免费观看精品视频网站| 亚洲va日本ⅴa欧美va伊人久久| 欧美绝顶高潮抽搐喷水| 一区二区三区国产精品乱码| 波多野结衣av一区二区av| 婷婷六月久久综合丁香| av有码第一页| 国产高清有码在线观看视频 | 在线观看免费午夜福利视频| 日本vs欧美在线观看视频| 免费在线观看亚洲国产| 熟女少妇亚洲综合色aaa.| 免费一级毛片在线播放高清视频 | 一区二区三区激情视频| 亚洲va日本ⅴa欧美va伊人久久| 国产熟女xx| 成人特级黄色片久久久久久久| 无遮挡黄片免费观看| 99热只有精品国产| 香蕉丝袜av| 一个人免费在线观看的高清视频| 在线免费观看的www视频| 亚洲熟妇中文字幕五十中出| 最近最新中文字幕大全电影3 | 亚洲国产高清在线一区二区三 | 美女 人体艺术 gogo| 精品熟女少妇八av免费久了| 国产国语露脸激情在线看| 精品无人区乱码1区二区| 两人在一起打扑克的视频| 亚洲男人的天堂狠狠| 窝窝影院91人妻| 在线十欧美十亚洲十日本专区| 日本黄色视频三级网站网址| www.自偷自拍.com| 亚洲自拍偷在线| 一区二区日韩欧美中文字幕| www日本在线高清视频| 亚洲成人免费电影在线观看| 精品久久久久久成人av| 人人妻人人爽人人添夜夜欢视频| 老汉色av国产亚洲站长工具| 妹子高潮喷水视频| av欧美777| 欧美激情 高清一区二区三区| 欧美av亚洲av综合av国产av| 一a级毛片在线观看| 1024香蕉在线观看| 久久精品国产清高在天天线| 变态另类丝袜制服| 国产精品av久久久久免费| 亚洲aⅴ乱码一区二区在线播放 | 女同久久另类99精品国产91| 悠悠久久av| 免费看a级黄色片| 国产精品免费一区二区三区在线| 亚洲人成电影观看| 看免费av毛片| 日本五十路高清| 国产精品爽爽va在线观看网站 | 法律面前人人平等表现在哪些方面| 超碰成人久久| 一进一出好大好爽视频| 欧美色视频一区免费| 国内精品久久久久精免费| 久久婷婷成人综合色麻豆| 国产精品一区二区三区四区久久 | 欧美中文日本在线观看视频| 不卡av一区二区三区| 在线视频色国产色| 国产精品久久视频播放| 精品一区二区三区av网在线观看| 精品电影一区二区在线| 制服丝袜大香蕉在线| 少妇的丰满在线观看| 搞女人的毛片| 在线观看一区二区三区| 十八禁人妻一区二区| 国产日韩一区二区三区精品不卡| 悠悠久久av| videosex国产| 精品久久蜜臀av无| av免费在线观看网站| 久热这里只有精品99| 中国美女看黄片| 欧美大码av| 在线观看www视频免费| 亚洲熟妇中文字幕五十中出| 桃色一区二区三区在线观看| 黄色成人免费大全| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 亚洲av片天天在线观看| 波多野结衣av一区二区av| 满18在线观看网站| 精品第一国产精品| 日韩精品青青久久久久久| 国产精品精品国产色婷婷| 十分钟在线观看高清视频www| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人av激情在线播放| 色哟哟哟哟哟哟| 亚洲成av片中文字幕在线观看| 一级作爱视频免费观看| 超碰成人久久| 91精品三级在线观看| 国产国语露脸激情在线看| 女人爽到高潮嗷嗷叫在线视频| 亚洲自拍偷在线| 亚洲一码二码三码区别大吗| 夜夜躁狠狠躁天天躁| 嫩草影视91久久| 俄罗斯特黄特色一大片| 欧美国产日韩亚洲一区| 老熟妇仑乱视频hdxx| 成人免费观看视频高清| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三| 午夜福利视频1000在线观看 | 国产伦人伦偷精品视频| 久久人妻av系列| 国产成人欧美| 欧美日韩乱码在线| 亚洲在线自拍视频| 村上凉子中文字幕在线| 久久性视频一级片| 国产伦一二天堂av在线观看| 国产一卡二卡三卡精品| 欧美日韩一级在线毛片| 天天一区二区日本电影三级 | 日日爽夜夜爽网站| 色在线成人网| 在线观看免费日韩欧美大片| 国产亚洲精品一区二区www| 免费少妇av软件| 欧美成人一区二区免费高清观看 | 日日干狠狠操夜夜爽| 国产精品久久电影中文字幕| 国产99白浆流出| 国产三级黄色录像| 亚洲精品国产一区二区精华液| 亚洲五月色婷婷综合| 亚洲精品美女久久av网站| 性少妇av在线| 午夜两性在线视频| 国产伦人伦偷精品视频| 中文字幕久久专区| 亚洲少妇的诱惑av| a在线观看视频网站| 脱女人内裤的视频| 日韩免费av在线播放| 长腿黑丝高跟| 亚洲精品在线美女| 国产欧美日韩一区二区三区在线| ponron亚洲| 在线免费观看的www视频| 搡老妇女老女人老熟妇| 禁无遮挡网站| 国产精品一区二区免费欧美| 日本黄色视频三级网站网址| 亚洲欧美激情在线| 女人高潮潮喷娇喘18禁视频| 女生性感内裤真人,穿戴方法视频| 十八禁人妻一区二区| 亚洲av电影不卡..在线观看| 国产成人精品久久二区二区免费| 999久久久精品免费观看国产| 亚洲成人国产一区在线观看| 久久天躁狠狠躁夜夜2o2o| 精品欧美一区二区三区在线| 精品久久久精品久久久| 久久人人97超碰香蕉20202| 中文字幕人妻丝袜一区二区| 又大又爽又粗| xxx96com| 在线视频色国产色| 女警被强在线播放| 国产免费男女视频| 一二三四社区在线视频社区8| 日韩一卡2卡3卡4卡2021年| 免费无遮挡裸体视频| 国产一区二区三区综合在线观看| 大码成人一级视频| 亚洲 国产 在线| 男女下面插进去视频免费观看| 精品国产乱子伦一区二区三区| 欧美日本亚洲视频在线播放| 在线观看午夜福利视频| 亚洲午夜理论影院| 88av欧美| e午夜精品久久久久久久| 国产精品一区二区精品视频观看| 国产欧美日韩精品亚洲av| 十分钟在线观看高清视频www| 亚洲人成网站在线播放欧美日韩| 一夜夜www| 欧美久久黑人一区二区| 亚洲国产看品久久| 99久久精品国产亚洲精品| 一级a爱视频在线免费观看| 亚洲中文av在线| 国产亚洲欧美精品永久| 老司机靠b影院| 久久精品国产亚洲av高清一级| 国产精品一区二区免费欧美| 久热这里只有精品99| 国产精品美女特级片免费视频播放器 | 精品久久久久久,| 青草久久国产| 久久精品亚洲熟妇少妇任你| 19禁男女啪啪无遮挡网站| 老司机福利观看| 少妇粗大呻吟视频| 十八禁人妻一区二区| 一本综合久久免费| 99精品欧美一区二区三区四区| 国产成人欧美在线观看| 天天躁夜夜躁狠狠躁躁| 久久性视频一级片| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| 中文字幕最新亚洲高清| 亚洲欧美日韩无卡精品| 国产熟女午夜一区二区三区| 又紧又爽又黄一区二区| 国产成人精品无人区| 国产精品野战在线观看| 亚洲男人天堂网一区| 国产精品亚洲av一区麻豆| 身体一侧抽搐| 99riav亚洲国产免费| 香蕉久久夜色| 国产亚洲欧美在线一区二区| 亚洲在线自拍视频| 亚洲视频免费观看视频| 国产成人啪精品午夜网站| 亚洲全国av大片| 亚洲国产精品成人综合色| 高清在线国产一区| 亚洲最大成人中文| 婷婷精品国产亚洲av在线| 18禁美女被吸乳视频| 久久人人爽av亚洲精品天堂| 欧美激情久久久久久爽电影 | 91国产中文字幕| 高清在线国产一区| 美女国产高潮福利片在线看| 久久狼人影院| 制服诱惑二区| 好看av亚洲va欧美ⅴa在| 国产成+人综合+亚洲专区| 黑人操中国人逼视频| 无限看片的www在线观看| 欧美大码av| 亚洲电影在线观看av| 国产精品香港三级国产av潘金莲| 久久久久久久午夜电影| 日韩有码中文字幕| 欧美久久黑人一区二区| 精品国产亚洲在线| 精品一品国产午夜福利视频| 亚洲性夜色夜夜综合| av片东京热男人的天堂| 亚洲va日本ⅴa欧美va伊人久久| 在线十欧美十亚洲十日本专区| 激情在线观看视频在线高清| 亚洲专区国产一区二区| 成人国产一区最新在线观看| 国产男靠女视频免费网站| 亚洲黑人精品在线| 丝袜人妻中文字幕| 怎么达到女性高潮| 999精品在线视频| 欧美激情 高清一区二区三区| 男人操女人黄网站| 成人欧美大片| 神马国产精品三级电影在线观看 | 亚洲欧美激情在线| 国产黄a三级三级三级人| 日韩一卡2卡3卡4卡2021年| 亚洲va日本ⅴa欧美va伊人久久| 两个人免费观看高清视频| 欧美色视频一区免费| 黑人操中国人逼视频| 精品国产一区二区三区四区第35| 这个男人来自地球电影免费观看| 久久青草综合色| 国产野战对白在线观看| 1024视频免费在线观看| 中文字幕久久专区| 乱人伦中国视频| cao死你这个sao货| 黄片播放在线免费| 亚洲精品一区av在线观看| 人成视频在线观看免费观看| 91老司机精品| 亚洲精品一区av在线观看| 亚洲av第一区精品v没综合| 成人18禁在线播放| 在线观看www视频免费| 色综合站精品国产| 欧美丝袜亚洲另类 | 欧美一级a爱片免费观看看 | 精品国产乱子伦一区二区三区| 最好的美女福利视频网| 一级片免费观看大全| 中文字幕久久专区| 亚洲国产精品999在线| 无人区码免费观看不卡| 大型黄色视频在线免费观看| 国产麻豆成人av免费视频| 身体一侧抽搐| 99在线视频只有这里精品首页| 亚洲专区国产一区二区| 麻豆av在线久日| 欧美不卡视频在线免费观看 | 亚洲狠狠婷婷综合久久图片| 色播在线永久视频| or卡值多少钱| 91在线观看av| 91av网站免费观看| 老司机深夜福利视频在线观看| 日韩视频一区二区在线观看| 欧美日本视频| 国产精品av久久久久免费| 午夜日韩欧美国产| 国产精品av久久久久免费| 色播在线永久视频| 极品教师在线免费播放| 久久精品亚洲精品国产色婷小说| 大陆偷拍与自拍| 亚洲国产欧美网| 久久香蕉国产精品| 国产成人精品久久二区二区免费| 国产精品自产拍在线观看55亚洲| 91九色精品人成在线观看| 国产亚洲欧美在线一区二区| 亚洲国产欧美网| 90打野战视频偷拍视频| 国产熟女xx| 亚洲狠狠婷婷综合久久图片| 午夜福利影视在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 在线十欧美十亚洲十日本专区| 精品国产乱码久久久久久男人| 99久久99久久久精品蜜桃| 亚洲精品粉嫩美女一区| 国产av一区在线观看免费| 色在线成人网| 午夜免费成人在线视频| 日本欧美视频一区| 狠狠狠狠99中文字幕| 久久午夜综合久久蜜桃| 亚洲国产看品久久| 日本vs欧美在线观看视频| 久久久久久人人人人人| 十八禁人妻一区二区| 一边摸一边抽搐一进一出视频| 丝袜美腿诱惑在线| 脱女人内裤的视频| 亚洲国产精品sss在线观看| 69精品国产乱码久久久| 97人妻天天添夜夜摸| АⅤ资源中文在线天堂| 国产激情久久老熟女| 韩国精品一区二区三区| a级毛片在线看网站| 国产成人免费无遮挡视频| 国产不卡一卡二| 久久香蕉激情| 午夜激情av网站| 久久久精品欧美日韩精品| 久久国产精品人妻蜜桃| 亚洲国产精品sss在线观看| 男人操女人黄网站| 色老头精品视频在线观看| 国产黄a三级三级三级人| √禁漫天堂资源中文www| 日韩精品青青久久久久久| 丝袜人妻中文字幕| 国产伦一二天堂av在线观看| www.999成人在线观看| 国产成人欧美在线观看| 女人被躁到高潮嗷嗷叫费观| 麻豆av在线久日| 久久精品亚洲精品国产色婷小说| 天堂√8在线中文| 久久伊人香网站| 午夜精品国产一区二区电影| 久久久精品国产亚洲av高清涩受| 亚洲成人精品中文字幕电影| 精品久久久久久成人av| 亚洲成人国产一区在线观看| 亚洲色图综合在线观看| 久久精品人人爽人人爽视色| 熟妇人妻久久中文字幕3abv| 亚洲国产精品成人综合色| 一二三四在线观看免费中文在| 丝袜人妻中文字幕| 亚洲国产欧美日韩在线播放| 极品人妻少妇av视频| 涩涩av久久男人的天堂| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 啦啦啦韩国在线观看视频| 久久久久久久午夜电影| 熟妇人妻久久中文字幕3abv| 国产精品 国内视频| 一边摸一边做爽爽视频免费| 99精品久久久久人妻精品| 黑人巨大精品欧美一区二区蜜桃| 欧美黄色淫秽网站| 亚洲国产看品久久| 久久人妻av系列| 久久久水蜜桃国产精品网| 一区二区三区国产精品乱码| 51午夜福利影视在线观看| 色老头精品视频在线观看| 中国美女看黄片| 亚洲一区二区三区色噜噜| 别揉我奶头~嗯~啊~动态视频| 韩国精品一区二区三区| 精品午夜福利视频在线观看一区| 国产三级在线视频| 三级毛片av免费| 亚洲一区二区三区色噜噜| 色精品久久人妻99蜜桃| 久久久久国产精品人妻aⅴ院| 黄色视频,在线免费观看| 中文字幕av电影在线播放| 88av欧美| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 午夜精品久久久久久毛片777| 亚洲欧美日韩另类电影网站| 51午夜福利影视在线观看| 欧美一区二区精品小视频在线| 人成视频在线观看免费观看| 女人爽到高潮嗷嗷叫在线视频| 美女高潮到喷水免费观看| 50天的宝宝边吃奶边哭怎么回事| 精品人妻在线不人妻| 成年女人毛片免费观看观看9| 乱人伦中国视频| 99精品久久久久人妻精品| 日本黄色视频三级网站网址| 国产精品久久视频播放| 9热在线视频观看99| 午夜亚洲福利在线播放| 91九色精品人成在线观看| 国产成人精品在线电影| 伊人久久大香线蕉亚洲五| aaaaa片日本免费| 国产真人三级小视频在线观看| 级片在线观看| 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| a级毛片在线看网站| 亚洲三区欧美一区| 久久久国产成人免费| 亚洲精品一区av在线观看| 免费久久久久久久精品成人欧美视频| 亚洲久久久国产精品| 精品卡一卡二卡四卡免费| 日日干狠狠操夜夜爽| 中文亚洲av片在线观看爽| 日韩有码中文字幕| 99re在线观看精品视频| 精品第一国产精品| 天天添夜夜摸| 在线观看66精品国产| av福利片在线| 国产真人三级小视频在线观看| 国产aⅴ精品一区二区三区波| 女生性感内裤真人,穿戴方法视频| 熟妇人妻久久中文字幕3abv| 嫁个100分男人电影在线观看| 精品电影一区二区在线| 欧美日韩亚洲国产一区二区在线观看| 国产精品二区激情视频| 女人爽到高潮嗷嗷叫在线视频| 国产av精品麻豆| 国产精品亚洲美女久久久| 亚洲性夜色夜夜综合| 咕卡用的链子| 中文字幕另类日韩欧美亚洲嫩草| 女人爽到高潮嗷嗷叫在线视频| or卡值多少钱| 黄色毛片三级朝国网站| 天堂√8在线中文| 99精品在免费线老司机午夜| 岛国视频午夜一区免费看| 国产精品一区二区在线不卡| 久热这里只有精品99| 亚洲国产精品久久男人天堂| 日韩欧美一区视频在线观看| 美女扒开内裤让男人捅视频| 久久狼人影院| 熟女少妇亚洲综合色aaa.| 午夜福利欧美成人| 色av中文字幕| 午夜a级毛片| 成人三级做爰电影| 啦啦啦免费观看视频1| 色av中文字幕| 在线观看免费视频网站a站| 精品久久久久久成人av| avwww免费| 校园春色视频在线观看| 亚洲片人在线观看| www.熟女人妻精品国产| 亚洲成人国产一区在线观看| 国产在线精品亚洲第一网站| 男女床上黄色一级片免费看| 99精品在免费线老司机午夜| 久久久国产精品麻豆| 老司机在亚洲福利影院| 国产精品美女特级片免费视频播放器 | 黄色视频,在线免费观看| 一二三四在线观看免费中文在| bbb黄色大片| 久久精品aⅴ一区二区三区四区| 中文字幕av电影在线播放| 久久久久久久精品吃奶| 成人av一区二区三区在线看| 校园春色视频在线观看| 国产亚洲欧美在线一区二区| 国产精品99久久99久久久不卡| 操出白浆在线播放| 男女做爰动态图高潮gif福利片 | 99精品欧美一区二区三区四区| 国产伦一二天堂av在线观看| 欧美成狂野欧美在线观看| 欧美av亚洲av综合av国产av| av天堂久久9| 欧美日韩亚洲综合一区二区三区_| 亚洲成人免费电影在线观看| 久久久国产成人精品二区| 欧美激情 高清一区二区三区| 国产伦一二天堂av在线观看| 欧美乱妇无乱码| 日本欧美视频一区| 丁香六月欧美| av超薄肉色丝袜交足视频| 日韩欧美国产一区二区入口| 国产精品一区二区在线不卡| 中文字幕另类日韩欧美亚洲嫩草| 身体一侧抽搐| 亚洲男人的天堂狠狠| 久久精品人人爽人人爽视色| 亚洲五月色婷婷综合| 桃色一区二区三区在线观看| 国产精品二区激情视频| 国产精品国产高清国产av| 国产麻豆成人av免费视频| 日韩欧美一区二区三区在线观看| 黑人操中国人逼视频| 午夜福利视频1000在线观看 | 久久久久久久久免费视频了| 日日干狠狠操夜夜爽| 国产欧美日韩一区二区三区在线| 国产精品永久免费网站| 亚洲九九香蕉| 老司机靠b影院| 日韩欧美在线二视频| 免费高清在线观看日韩| 精品国产亚洲在线| 自拍欧美九色日韩亚洲蝌蚪91| 美女高潮到喷水免费观看| 变态另类成人亚洲欧美熟女 | 此物有八面人人有两片| 电影成人av| 91麻豆av在线| 国产高清激情床上av| 欧美中文综合在线视频| 男女下面进入的视频免费午夜 | 成人亚洲精品一区在线观看| 亚洲av片天天在线观看| 香蕉丝袜av| 免费无遮挡裸体视频| 一本久久中文字幕| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 国产精品香港三级国产av潘金莲| 级片在线观看| 国产精品日韩av在线免费观看 | 男女之事视频高清在线观看| 亚洲专区国产一区二区| 久久久国产成人免费| 男女午夜视频在线观看| 欧美另类亚洲清纯唯美| 欧美黄色片欧美黄色片| 丝袜美足系列| 两个人视频免费观看高清| 一边摸一边做爽爽视频免费| 日本一区二区免费在线视频| 久久久国产欧美日韩av| 成人18禁在线播放| 久久久水蜜桃国产精品网| 国产伦一二天堂av在线观看| 久久天躁狠狠躁夜夜2o2o| 99久久久亚洲精品蜜臀av| 久久久久久亚洲精品国产蜜桃av| 久久婷婷人人爽人人干人人爱 | 国产一区二区三区综合在线观看| 国产精品99久久99久久久不卡| 欧美丝袜亚洲另类 | 美女国产高潮福利片在线看|