• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精吸附U(VI)的動力學和熱力學

    2016-09-09 09:35:30荊鵬飛劉慧君胡勝勇雷蘭林馮志遠
    物理化學學報 2016年8期
    關鍵詞:南華大學甲酰志遠

    荊鵬飛 劉慧君 張 勤 胡勝勇 雷蘭林 馮志遠

    (南華大學化學化工學院,湖南衡陽421001)

    ?

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精吸附U(VI)的動力學和熱力學

    荊鵬飛劉慧君*張勤胡勝勇雷蘭林馮志遠

    (南華大學化學化工學院,湖南衡陽421001)

    β-環(huán)糊精與對甲苯磺酰氯在低溫堿性溶液中反應合成6-對甲苯磺酰酯-β-環(huán)糊精,并利用紅外光譜和核磁共振氫譜對其進行表征;聯(lián)苯甲酰與6-對甲苯磺酰酯-β-環(huán)糊精以摩爾比為1:2反應合成一種新型的聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精(BB β-CD)材料,并采用紫外可見分光光度法對其合成機理以及BB β-CD和聯(lián)苯甲酰對U(VI)的吸附行為進行研究;同時采用掃描電鏡對材料吸附U(VI)前后的外貌形態(tài)進行表征。通過間歇吸附法考察pH、反應時間、溫度以及干擾離子等因素對吸附過程的影響。結果表明,相比聯(lián)苯甲酰,BB β-CD能更有效地吸附U(VI),在pH=4.5,反應時間為60 min條件下,最大吸附量為12.16 mg·g-1,吸附率高達91.2%。動力學和熱力學擬合結果表明,吸附過程更符合準二級動力學速率方程,Langmuir等溫吸附模型比Freundlich等溫吸附模型更適合模擬吸附過程,且吸附是自發(fā)吸熱的過程。

    聯(lián)苯甲酰橋聯(lián)β-環(huán)糊精;鈾(VI)吸附;動力學;平衡;熱力學

    www.whxb.pku.edu.cn

    1 Introduction

    With the continuous development of the global atomic energy industry,uranium and its compounds are nuclear fuels in power generation,which plays an important role in the military,civilian nuclear science,and technology.But with the rapid development of the nuclear industry,a large amount of wastewater containing uranium has been discharged into the environment,which has resulted in widespread environmental contamination1-5.Therefore, the efficient separation of uranium from aqueous phase,especially from industrial effluents,has attracted high attention of researchers6-8.To remove U(VI)from aqueous solution,several methods,such as chemical precipitation9,evaporation concentration10,ion exchange11,film processing method12,adsorption and solvent extraction13-15,have been developed to date.Currently, adsorption is an attractive method due to its high efficiency and diversity of adsorption.Many different sorbents,such as alumina, sepiolite,activated carbon,carbon nanotube,silica gel,goethite, chitosan and so on,have been investigated16-22.However,how to get a quick and resultful material for the determination and adsorption of U(VI)is still a work badly in need for us to do.

    β-cyclodextrins(β-CD)is a cyclic oligosaccharide with seven glucose units containing a hydrophilic exterior and hydrophobic internal cavity.The cavity structure of β-cyclodextrin can selectively form BB β-CD with other guest molecules through hostguest interactions.Sun et al.23had studied the adsorption and desorption of U(VI)on functionalized graphene oxides.Liu et al.24had studied the selective adsorption of U(VI)from acidic solution by high performance of phosphate-functionalized graphene oxide. Li et al.25had studied the adsorption and recovery of U(VI)from low concentration uranium solution by amidoxime modified Aspergillus niger.Hosseini and Abedi26had studied the adsorption of Th(IV)and U(VI)on mixed-ligands impregnated resin containing antraquinones with that conventional one.However,the study on the adsorption of U(VI)on bridged β-cyclodextrin is rarely reported.

    Benzil consists of two carbonyl(C=O)groups,which can form complexes with metal ions,is a kind of good α-diketone and it is also an excellent metal-chelating agent.To the best of our knowledge,there was still no report of study on the adsorption of U(VI)by BB β-CD.Compared with the reported sorbents,BB β-CD has great application in the adsorption of U(VI)from low concentration U(VI)solution because of low toxicity,biocompatibility,biodegradability and collaborative adsorption with benzil27,28,and expands the adsorption range for U(VI).At the same time,BB β-CD is also a low-cost sorbent with high adsorption capacity for U(VI)from low concentration U(VI)solution.In our work,adsorption material of BB β-CD was prepared by the reaction of benzil and sulfated-β-CD with the molar ratio of 1:2. In order to find the optimum adsorption conditions,a series of factors,such as pH value,contact time,temperature,and interfering ions were carried out for investigating the chemical adsorption properties of the sorbent for U(VI).In addition,various kinetic and thermodynamics models are also applied to study the adsorption process.

    2 Experimental

    2.1Materials and methods

    β-cyclodextrin(purity≥98%),benzil(purity≥98%),ptoluenesufonyl chloride(p-TsCl,99%),sodium hydroxide(purity ≥97%).Ammonium uranyl tricarbonate((NH4)4[UO2(CO3)3]), hydrochloric acid,alcohol,acetonitrile,arsenazo III,nitric acid, etc.were analytical reagent and used without further purification. All reagents were purchased fromAladdin Chemical Reagent Co. Ltd.(Shanghai,China).

    U3900 UV-spectrophotometer(Hitachi Ltd,Japan),Shimadzu IR Prestige-21 FTIR(Shimadzu,Japan),Bruker AV-III 400 MHz NMR spectrometer(Bruker BioSpin,Switzerland),S-4800 Scanning Electron Microscope(Hitachi Ltd.,Japan),etc.

    2.2Synthesis of sulfated-β-CD

    5 g of β-CD was dissolved in 100 mL of water,3 g of sodium hydroxide,and 1.68 g of p-TsCl was also added under the condition of ice water bath.The mixture was stirred and reacted for 5 h.Then the unreacted p-TsCl was filtered,the filtrate was adjusted to pH 6-7 by 1 mol·L-1HCl and it was put into a fridge for 24 h at 4°C.The resulting precipitate was filtered and recrystallized 2 times in water,CH3CN/H2O(1/1,V/V)to give sulfatedβ-CD.

    2.3Preparation of BB β-CD

    BB β-CD was prepared by the reaction of benzil(0.1 g)and sulfated-β-CD(1.2374 g)with the molar ratio of 1:2 in water at 50°C for 4 h,then the mixture was put into a fridge overnight at 4°C.The resulting precipitate was filtered and washed 6 times with deionized water and ethanol and dried by vacuum evaporation at 60°C for 8 h to give BB β-CD.The synthesis routes of sulfated-β-CD and BB β-CD are showed in Fig.1.

    2.4Adsorption studies

    In order to obtain the optimization adsorption conditions,the effects of pH,contact time,temperature,and interfering ions were examined.In the batch adsorption experiments,15 mg BB β-CD was added to the 10 mL U(VI)solution in 25 mL flask for which concentration was 20 mg·L-1,pH value is 2.0-7.0,and time range is 20-180 min.In addition,the flasks were shaken using shakingwater bath for specified durations at desired temperatures(298-338 K).After equilibration,the residual concentration of U(VI) ions was determined by UV-spectrophotometer.The adsorption capacity Q(mg·g-1)of BB β-CD and the remove ratio R(%)of U(VI)were calculated was calculated by the following equations:

    Fig.1 Synthesis route of sulfated-β-CD and BB β-CD

    where C0and Ce(mg·L-1)are the initial and equilibrium concentrations,respectively.V(L)is the volume of the testing solution,and m(g)is the mass of sorbent.

    2.5Effect of interfering ions

    In order to explore the selective adsorption behavior of U(VI), some important different concentrations of interfering ions such as Na+,Mg2+,Fe3+,and Cu2+were added to 20 mg·L-1U(VI)solution,pH 4.5,shaking to adsorb for 60 min.Centrifuge and UV-spectrophotometer was employed to analyze the U(VI)concentration in the adsorbed solution.

    3 Results and discussion

    3.1Characterization analysis

    Fig.2(A)shows the FTIR spectra of β-CD,sulfated-β-CD,and BB β-CD.Compared with β-CD some new absorption peaks were found in the FTIR spectra of sulfated-β-CD.In the FTIR spectra of sulfated-β-CD,the peaks around 1177 and1364 cm-1resulted from symmetric stretching and antisymmetric stretching vibration of S=O.The peaks at 1599,1078,and 1028 cm-1were ascribed to the νC=Con benzene ring,the νC―O―Cand νC―Oof the template sulfated-β-CD.And the peaks of 837,815 cm-1were ascribed to the νC―Hon the benzene ring29.And compared with sulfated-β-CD, BB β-CD appeared characteristic bands at 1697 cm-1,which was ascribed to the νC=O.

    Fig.2 FTIR spectra of β-CD(1),sulfated-β-CD(2),BB β-CD(3)

    The FTIR spectra of BB β-CD and BB β-CD+U(VI)are respectively shown in Fig.2(B).As shown in Fig.2(B),the FTIR spectra of BB β-CD shows that the template does not change the adsorption peak of each chemical group very much,suggesting that the template only combines with the with hydrophobic interaction and hydrogen bonding interaction,but not forming chemical bonds.The FTIR spectra of BB β-CD+U(VI)displays significant shift in some peaks.The shift of the peak from 1697 to 1702 cm-1reflects the changes in the stretching frequency of carbonyl(C=O)upon binding of U(VI).This observation indicates the involvement of carbonyl(C=O)in the adsorption process30,31.

    Fig.3 shows the1HNMR(DMSO-d6,400 MHz,TMS)spectra of benzil,β-CD,sulfated-β-CD,and BB β-CD.As seen in Fig.3, the1HNMR spectra of benzil,β-CD,sulfated-β-CD,and BB β-CD have obvious difference and the change of chemical shifts of sulfated-β-CD and BB β-CD are shown in Table 1.As shown in Fig.3,the chemical shifts of sulfated-β-CD are different from those of β-CD,and the results of them are consistent with the reported sulfated-β-CD32.Compared with sulfated-β-CD,the chemical shifts of part protons(H3 and H5)of BB β-CD have obvious move and other protons have not apparent movement.Therefore,we canknow that the formation of the BB β-CD by insertion of the aromatic ring of the benzil into the sulfated-β-CD cavity can be confirmed by observing the chemical shifts induced in the H3 and H5 resonances of sulfated-β-CD due to the ring-current effects of the aromatic benzil.As shown in Table 1,the relatively large upfield shift is observed for H3 and H5 of sulfated-β-CD,which indicate that benzil molecule inserted into sulfated-β-CD cavity33. All of these proved that the synthesis of BB β-CD is reliable and successful.

    Fig.3 1HNMR spectra of benzil(a),β-CD(b), sulfated-β-CD(c),and BB β-CD(d)

    The UV-spectrophotometer analysis results shows the changes of absorb and wavelength about different molar ratios of benzil and sulfated-β-CD(Fig.4).Absorption wavelength moved to the maximal from 1:0 to 1:2,however,it went back when the molar ratio went to 1:2 and 1:2.5,and we can preliminarily conclude that the molar ratio of 1:2 is the best molar ratio.

    As the stirring time went on,the mixture solution slowly turned to clarify while it was turbidity at the beginning.Maybe it belonged to the reason that benzil did not dissolute in the water,so it was turbidity at the beginning,but as the stirring went on,the benzil went into the cavity of sulfated-β-CD to format BB β-CD. Besides UV-spectrophotometer,it is also very important to choose the best molar ratio by determining inclusion constants under different molar ratios of benzil and sulfated-β-CD,and the resultsare reported in Table 2.Here,it is the determination and calculation process of inclusion constant under the molar ratio of 1:2 of benzil and sulfated-β-CD.UV-spectrophotometer shows adsorption of benzil in 0.05 g BB β-CD is 2.068,according to the standard concentration of benzil in Fig.5,that means the concentration of benzil in 10 mLethanol is C=1.70×10-3mol·L-1. Defining the mass ratio of benzil and sulfated-β-CD in original sample is k0,and in the BB β-CD is k1,the inclusion constant is K, k1=1.70×10-3×10×10-3×210.23/0.05=0.0714,K=(k1/k0)× 100%=0.0714/0.07477×100%=95.49%.In addition,the determination and calculation process of inclusion constants under other molar ratios of benzil and sulfated-β-CD are the same.The results of UV-spectrophotometer analysis and the determination of inclusion constants show that the molar ratio of 1:2 of benzil and sulfated-β-CD is the best molar ratio.

    Table 1 Chemical shifts of part protons of sulfated-β-CD and BB β-CD

    Fig.4 UV absorption of different molar ratios of benzil and sulfated-β-CD

    SEM shows that the surface of BB β-CD was uneven and rough while that of BB β-CD absorbed U(VI)was homogeneous.The reason is that pores in BB β-CD provides necessary channel and adsorption space for the adsorption.Therefore,BB β-CD can effectively adsorb U(VI)(Fig.6).

    3.2Effect of pH

    pH is one of the important factors that affect the adsorption efficiency,and the effect of pH on the adsorption of U(VI)from aqueous solutions is showed in Fig.7.The results showed that the adsorption of U(VI)increased gradually as pH increases from 2.0 to 4.5,then decreases when the pH value is higher than 4.5.Because at low pH,it is difficult for diketone to chelate metal ions and there are two reasons to explain it.On the one hand,the lower uptake at low pH may be attributed to the higher acidities which made the protonation of O in BB β-CD on benzil by H+34,and formed positively charged BB β-CD surface which prevent the adsorption of metal ions due to electrostatic repulsion35-37.On the other hand,the low adsorption can be due to the competition of H+and metal ions in the solution for the adsorption sites of BB β-CD38.And when the pH continues to increase,U(VI)may hydrolyse to UO2OH+and(UO2)2(OH)22+)or precipitation39,resultingin a false impression or adsorption error40.In order to get quantitative adsorption of U(VI)at higher pH values while avoid hydrolysis and precipitation,pH 4.5 was considered as the optical value,and the adsorption capacity of U(VI)was 12.16 mg·g-1.

    Fig.5 Standard concentration of benzil

    Table 2 Inclusion constants under different molar ratios of benzil and sulfated-β-CD

    Fig.6 SEM spectra of BB β-CD(a)and BB β-CD+U(VI)(b) (a)BB β-CD;(b)BB β-CD+U(VI)

    Fig.7 Effect of pH on the adsorption of U(VI)

    3.3Effect of contact time and kinetic studies

    The effect of contact time was investigated to determine the equilibrium point,and the result was given in Fig.8.The results showed that the adsorption capacity of U(VI)gradually increased during the 20-120 min and then tended to equilibrate in the following contact time for benzil.However,the sorbent BB β-CD tended to equilibrate in 60 min.This observation is due to the fact that the hydrophobic space of β-CD inclusion hydrophobic benzene ring of benzil,two oxygen atoms of benzil exposed and U (VI)adsorbed quickly and fully.Therefore,the U(VI)can be easier adsorbed on BB β-CD than benzil.The BB β-CD in this study had good adsorption capacity at pH 4.5,and the adsorption equilibrium could reach a balance in 60 min.

    Fig.8 Effect of contact time on the adsorption of U(VI)

    To analyze the kinetic adsorption behaviors of U(VI)on BB β-CD,two kinetic models namely pseudo-first-order and pseudosecond-order models were used to fit the adsorption process.The pseudo-first-order kinetic model is given by the following equation41:

    where Qeand Qt(mg·g-1)are the amount of U(VI)adsorbed at equilibrium and at time t(min),respectively.K1(min-1)is the rate constant of pseudo-first-order,and t(min)is the reaction time. Values of Qeand K1were calculated from the intercept and slope values of the straight line by plotting lg(Qe-Qt)versus t are reported in Table 3 and as shown in Fig.9.The results showed that the linear plot of lg(Qe-Qt)and time followed pseudo-first-order kinetic model of U(VI)adsorption on BB β-CD.

    At the same time,the kinetic adsorption behaviors of U(VI)on BB β-CD was also described according to the pseudo-secondorder kinetic using the following equation42:

    where K2(mg·g-1·min-1)is the rate constant of pseudo-secondorder,and t(min)is the reaction time.Values of Qeand K2were calculated from the slope and intercept values of the straight line by plotting t/Qtversus t are reported in Table 3 and as shown in Fig.10.The results showed that the linear plot of t/Qtand time followed pseudo-second-order kinetic model of U(VI)adsorption on BB β-CD.The calculated Qevalue from pseudo-second-order kinetic equation agreed very well with the experimental Qevalue. The kinetic data showed that the adsorption of U(VI)followed pseudo-second-order kinetic model(R2=0.9944),and the experimental Qe(exp)value(12.16 mg·g-1)was close to the model Qevalue(12.165 mg·g-1).

    Table 3 Kinetic data for adsorption of U(VI)

    Fig.9 Pseudo-first-order plot for adsorption of U(VI)

    3.4Adsorption isotherms

    Generally speaking,adsorption isotherms can provide some significant information in optimizing the application of BB β-CD, Langmuir and Freundlich isotherms were used to simulate the adsorption isotherms of U(VI).According to the Langmuir isotherm model,adsorption process commonly occurs on the surface of sorbent until monolayer coverage is obtained.The linear equation of the Langmuir adsorption model can be expressed as follows43:

    where Qe(mg·g-1)and Qm(mg·g-1)are the equilibrium and maximum adsorption capacities,respectively.Ce(mg·L-1)is the equilibrium concentration of metal ions in solution,Ka(L·mg-1) is the Langmuir constant related to energy of adsorption.The values of Qmand Kacalculated from the intercept and slope values of the straight line by plotting 1/Qeversus 1/Ceare reported in Table 4 and as shown in Fig.11.The results showed that the linear plot of 1/Qeand 1/Cefollowed the Langmuir adsorption model of U(VI)adsorption on BB β-CD.

    Fig.10 Pseudo-second-order plot for adsorption of U(VI)

    Unlike the Langmuir adsorption model,the Freundlich adsorption model is an empirical model,which is based on heterogeneous surfaces and allows for several kinds of adsorption sites on the surface of adsorption material.The model can be represented by the following equation44,45:

    where Qe(mg·g-1)and Ce(mg·L-1)are the equilibrium concentrations of metal ions in solution,respectively.and KFand n are Freundlich constants,which mean adsorption capacity and adsorption intensity,respectively.The values of KFand n calculated from the intercept and slope values of the straight line by plotting lnQeversus lnCeare reported in Table 4 and as shown in Fig.12. The values of KFand n were found to be 1.01 and 1.35.The value of 1

    3.5Effect of temperature and adsorption

    thermodynamics

    The effect of temperature on the adsorption of U(VI)on thestudied BB β-CD were investigated at 298,308,318,328,and 338 K,respectively.Thermodynamic parameters were calculated to confirm the thermodynamic feasibility and the nature of the adsorption process.The thermodynamic parameters corresponding toU(VI)adsorptionontheBB β-CDcanbeexpressedusingvan′t Hoff equation46:

    Table 4 Isotherm model constant parameters for adsorption of U(VI)

    Fig.11 Langmuir plots for adsorption of U(VI)

    Fig.12 Freundlich plots for adsorption of U(VI)

    where C0and Ce(mg·L-1)are the initial and equilibrium concentrations,respectively.V(mL)is the volume of the testing solution,m(g)is the mass of sorbent,Kd(mL·g-1)is the distribution coefficient,ΔS0(J·mol-1·K-1)is standard entropy,ΔH0(kJ·mol-1) is the standard enthalpy,ΔG0(kJ·mol-1)is the standard Gibbs free energy,T(K)is the absolute temperature,and R(8.314 J·mol-1· K-1)is the gas constant.

    The curve of temperature and distribution coefficient is reported in Table 5 and as shown in Fig.13.As shown in Table 5,ΔH0is positive because the adsorption of U(VI)on BB β-CD is endothermic.The values of free energy are negative,and the decrease in the value of ΔG0with increase in temperature shows that the reaction is spontaneous and more favorable at higher temperature.

    Table 5 Thermodynamic parameters for the adsorption of U(VI)

    Fig.13 van′t Hoff plots for the adsorption of U(VI)

    Fig.14 Infection on the adsorption of U(VI)by interfering irons

    Fig.15 Possible adsorption mechanism of U(VI)

    3.6Interfering ions analysis

    In order to evaluate the selective adsorption of U(VI)by the BB β-CD,the effect of interfering ions on adsorption of U(VI)were carried out(Fig.14).The results showed that interfering ions had different influence on adsorption capacity of U(VI).Na+didn′t obviously affect the adsorption of U(VI).The adsorption of U(VI) could have the similar capacity when the concentration of Mg2+, Fe3+,and Cu2+were lower than 10 mg·L-1.The possible adsorption mechanism of U(VI)is shown in Fig.15.

    4 Conclusions

    Anovel BB β-CD was synthesised by the reaction of benzil and sulfated-β-CD with the molar ratio of 1:2,and it was successfully used for the adsorption of U(VI).The BB β-CD used as sorbent had good adsorption capacity(12.16 mg·g-1)and remove ratio (91.2%)of U(VI)at the optimum conditions.The adsorption capacity of U(VI)showed no obvious change in the presence of Na+,Mg2+,Fe3+,and Cu2+when concentration was lower than 10 mg·L-1.Kinetic study showed that the pseudo-second-order model was appropriate to describe the adsorption process,indicating the chemical adsorption.Among different models used for describing equilibrium isotherm data,Langmuir model is in good agreement with the experimental data with high R2(0.9907).The adsorption of U(VI)dependence on temperature was investigated and the thermodynamic parameters DH0,DS0,and DG0were calculated. The results showed that it was a feasible,spontaneous and endothermic adsorption process.In this paper,the raw materials are commercially available,the experimental method for the adsorption of U(VI)is reliable and feasible and it can provide certain reference value for future research.

    References

    (1)Olszewski,G.;Bory?o,A.;Skwarzec,B.J.Environ.Radioactiv. 2015,146,56.doi:10.1016/j.jenvrad.2015.04.001

    (2)Liu,P.H.;Wei,C.S.;Zhang,S.M.;Zhu,C.M.;Xie,S.R. Asian J.Chem.2015,27,1049.doi:10.14233/ ajchem.2015.18056

    (3)Cesare,M.D.;Cesare,N.D.;D'Onofrio,A.Appl.Radiat. Isotopes.2015,103,166.doi:10.1016/j.apradiso.2015.06.011

    (4)Bourgeois,D.;Burt-Pichat,B.;Goff,X.L.Anal.Bioanal. Chem.2015,407(22),6619.doi:10.1007/s00216-015-8835-7

    (5)Bonato,M.;Ragnarsdottir,K.V.Wat.Air Soil.Pollut.2012,223 (7),3845.doi:3846.10.1007/s11270-012-1153-1

    (6)Gu,Z.X.;Tu,C.N.;Wang,Y.;Yang,J.J.;Liu,N.;Liao,J.L.; Yang,Y.Y.;Tang,J.Acta Phys.-Chim.Sin.2015,31(Suppl), 95.[顧澤興,涂昌能,王云,楊吉軍,劉寧,廖家莉,楊遠友,唐軍.物理化學學報,2015,31(Suppl),95.]doi:10.3866/ PKU.WHXB2014Ac13

    (7)Yousif,A.M.;El-Afandy,A.H.;AbdelWahab,G.M.;Mubark, A.E.;Ibrahim,I.A.J.Radioanal.Nucl.Chem.2015,303(3), 1821.doi:10.1007/s10967-014-3688-7

    (8)Sun,T.X.;Shen,X.H.;Chen,Q.D.Acta Phys.-Chim.Sin. 2015,31(Suppl),32.[孫濤祥,沈興海,陳慶德.物理化學學報,2015,31(Suppl),32.]doi:10.3866/PKU.WHXB2014Ac10

    (9)Mellah,A.;Chegrouche,S.Barkat,M.Hydrometallurgy 2007, 85,163.doi:10.1016/j.hydromet.2006.08.011

    (10)Duff,M.C.;Morris,D.E.;Hunter,D.B.;Bertsch,P.M. Geochim.Cosmochim.Ac.2000,64(9),1535.doi:10.1016/ S0016-7037(99)00410-X

    (11)Zou,W.H.;Zhao,L.;Han,R.P.Chin.J.Chem.Eng.2009,17, 586.doi:10.1016/S1004-9541(08)60248-7

    (12)John,A.M.S.;Cattrall,R.W.;Kolev,S.D.J.Memb.Sci.2012, 409(4),242.doi:10.1016/j.memsci.2012.03.061

    (13)Gok,C.;Aytas,S.J.Hazard.Mater.2009,168(1),369.doi: 10.1016/j.jhazmat.2009.02.063

    (14)Joseph,C.;Schmeide,K.;Sachs,S.;Brendler,V.;Geipel,G.; Bernhard,G.Chem.Geol.2011,284(3),240.doi:10.1016/j. chemgeo.2011.03.001

    (15)Oshita,K.;Sabarudin,A.;Takayanagi,T.;Oshima,M.; Motomizu,S.Talanta 2009,79(2),1031.doi:10.1016/j. talanta.2009.03.035

    (16)Qian,L.;Ma,M.;Cheng,D.J.Radioanal.Nucl.Chem.2015, 303,161.doi:10.1007/s10967-014-3352-2

    (17)Branislava,M.M.;Milijan,J.;Mirjana,L.M.Radiat.Environ. Bioph.2015,54(2),217.doi:10.1007/s00411-015-0589-2

    (18)Ahmed,S.H.;Sharaby,C.M.;Gammal,E.M.E. Hydrometallurgy 2013,134,150.doi:10.1016/j. hydromet.2013.02.003

    (19)Tan,L.;Liu,Q.;Jing,X.Chem.Eng.J.2015,273,307. doi:10.1016/j.cej.2015.01.110

    (20)Basu,H.;Singhal,R.K.;Pimple,M.V.Int.J.Environ.Sci. Technol.2015,12,1899.doi:10.1007/s10967-014-3677-x

    (21)Sun,Y.;Yang,S.;Wang,Q.Radiochim.Acta 2014,102,797. doi:10.1515/ract-2013-2204

    (22)Chao,X.;Wang,J.;Yang,T.Carbohyd.Polym.2015,121,79. doi:10.1016/j.carbpol.2014.12.024

    (23)Sun,Y.B.;Yang,S.B.;Chen,Y.;Ding,C.C.;Cheng,W.C.; Wang,X.K.Environ.Sci.Technol.2015,49(7),4255. doi:10.1021/es505590j

    (24)Liu,X.;Li,J.;Wang,X.J.Nucl.Mater.2015,466(45),56. doi:10.1016/j.jnucmat.2015.07.027

    (25)Li,L.;Hu,N.;Ding,D.X.;Xin,X.;Wang,Y.D.;Xue,J.H.; Zhang,H.;Tan,Y.RSC Adv.2015,5,65827.doi:10.1039/ C5RA13516H

    (26)Hosseini,M.S.;Abedi,F.J.Radioanal.Nucl.Chem.2015,303, 2173.doi:10.1007/s10967-014-3366-9

    (27)Mirzajani,R.;Pourreza,N.;Najjar,S.S.A.Res.Chem. Intermediat.2014,40(8),2667.doi:10.1007/s11164-013-1120-5 (28)Ogoshi,T.;Harada,A.Sensors 2008,8,4961.doi:10.3390/ s8084961

    (29)Wang,Y.L.;Feng,R.S.;Guo,Y.J.Chin.J.Appl.Chem.2011, 28,1269.doi:10.3724/SP.J.1095.2011.00680

    (30)Xiao,Y.Q.;Xia,L.S.;Li,R.R.;Li,G.;Huang,X.Atom Energy Science and Technology 2015,49,2130.doi:10.7538/ yzk.2015.49.12.2130

    (31)Wang,J.S.;Zou,X.L.;Jia,L.Atom Energy Science and Technology 2015,49,255.doi:10.7538/yzk.2015.49.02.0255

    (32)Huang.Y.;Fan,X.D.Journal of Northwest University(Natural Science Edition)2003,33,41.doi:1000-274X(2003)01-0041-04

    (33)Ding,H.;Chao,J.;Zhang,G.Spectrochim.Acta A 2003,59, 3421.doi:10.1016/S1386-1425(03)00176-8

    (34)Ji,X.Z.;Liu,H.J.;Wang,L.L.J.Radioanal.Nucl.Chem. 2013,295,265.doi:10.1007/s10967-012-1979-4

    (35)Chen,S.P.;Hong,J.X.;Yang,H.X.J.Environ.Radioactiv. 2013,126,253.doi:10.1016/j.jenvrad.2013.09.002

    (36)Huang,G.L.;Zou,L.X.;Su,Y.;Lv,T.T.;Wang,L.L. J.Radioanal.Nucl.Chem.2016,307(2),1135.doi:10.1007/ s10967-015-4275-2

    (37)Hosseini,S.H.;Rahmanisani,A.;Jalalabadi,Y.Int.J.Environ. Anal.Chem.2015,95(4),277.doi:10.1080/ 03067319.2015.1016009

    (38)Chen,F.;Tan,N.;Long,W.;Yan,X.M.;Chen,F.Mar.Pollut. Bull.2013,74,213.doi:10.1016/j.marpolbul.2013.06.055

    (39)Long,D.J.;Liu,J.H.;Wang,X.M.Nuclear Power Engineering 2012,33,1.doi:10.1128/JVI.06957-11

    (40)Tong,K.S.;Kassim,M.J.;Azraa,A.Chem.Eng.J.2011,170, 145.doi:10.1016/j.cej.2011.03.044

    (41)Starvin,A.M.;Rao,T.P.Talanta 2004,63(2),225. doi:10.1016/j.talanta.2003.11.001

    (42)Li,Z.;Chen,F.;Yuan,L.;Liu,Y.;Zhao,Y.;Chai,Z.;Shi,W. Chem.Eng.J.2012,210,539.doi:10.1016/j.cej.2012.09.030

    (43)Zhou,L.M.;Shang,C.;Liu,Z.R.;Huang,G.L.Adesina,A.A. J.Colloid Interface Sci.2012,366(1),165.doi:10.1016/j. jcis.2011.09.069

    (44)Mellah,A.;Chegrouche,S.;Barkat,M.J.Colloid Interface Sci. 2006,296(2),434.doi:10.1016/j.jcis.2005.09.045

    (45)Oguz,E.J.Colloid Interface Sci.2005,281(1),62. doi:10.1016/j.jcis.2004.08.074

    (46)Aksoyoglu,S.J.Radioanal.Nucl.Chem.1989,134(2),393. doi:10.1007/BF02278276

    Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)

    JING Peng-FeiLIU Hui-Jun*ZHANG QinHU Sheng-Yong LEI Lan-LinFENG Zhi-Yuan
    (College of Chemistry and Chemical Engineering,University of South China,Hengyang 421001,Hunan Province,P.R.China)

    Sulfated β-cyclodextrin(β-CD)was prepared by the reaction of β-CD with p-toluenesulfonyl chloride at low temperature in aqueous sodium hydroxide.The product was analyzed by Fourier transform infrared spectroscopy(FTIR)and proton nuclear magnetic resonance(1H NMR).The novel benzil-bridged β-CD(BB β-CD)was acquired by the reaction of benzil with sulfated β-CD at a molar ratio of 1:2.UV spectrophotometry was used to study the synthetic mechanism of BB β-CD and benzil and their adsorption onto U(VI).Scanning electron microscopy(SEM)was used to analyze the surface properties of the materials.The adsorption of BB β-CD onto U(VI)was investigated as a function of pH,contact time, temperature,and interfering ions using the batch adsorption technique.It was found that the adsorption equilibrium of BB β-CD was reached faster than that of benzil.The optimum experimental conditions were pH=4.5 and shaking for 60 min,achieving the maximum adsorption capacity of 12.16 mg·g-1and a U(VI)removal ratio of 91.2%.Kinetic studies revealed that the adsorption reached equilibrium within 60 min for U(VI)and followed a pseudo-second-order rate equation.The isothermal data correlated with the Langmuir model better than with the Freundlich model.The thermodynamic data indicated the spontaneous and endothermic nature of the process.

    BB β-CD;Uranium(VI)adsorption;Kinetics;Equilibrium;Thermodynamics

    January 4,2016;Revised:April 20,2016;Published on Web:April 21,2016.

    O642;O643

    10.3866/PKU.WHXB201604212

    *Corresponding author.Email:liuhuijun@usc.edu.cn;Tel:+86-13607341186.

    The project was supported by the National Natural Science Foundation of China(11375084)and Hunan Provincial Innovation Foundation for Postgraduate,China(CX2015B399).

    國家自然科學基金(11375084)和湖南省研究生科研創(chuàng)新項目(CX2015B399)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    猜你喜歡
    南華大學甲酰志遠
    南華大學召開學習丁德馨同志先進事跡座談會
    N-氨甲酰谷氨酸對灘羊乏情期誘導同期發(fā)情效果的影響
    中國飼料(2021年17期)2021-11-02 08:15:14
    獲批57項!南華大學2021年度自然科學基金立項取得好成績
    喜訊!南華大學2021年省級一流本科課程認定再創(chuàng)佳績!
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    Wang Chuanshan
    大東方(2018年8期)2018-09-10 03:43:57
    N-氨基甲酰谷氨酸在仔豬生產(chǎn)中的應用
    廣東飼料(2016年5期)2016-12-01 03:43:22
    香噴噴的年喲
    新型meso-四(4-十四氨基甲酰苯基)卟啉及其金屬(Co)配合物的合成與液晶性能
    合成化學(2015年10期)2016-01-17 08:56:37
    成人影院久久| 日韩制服丝袜自拍偷拍| 国产一区二区三区综合在线观看 | 亚洲人与动物交配视频| 国产色婷婷99| 男女下面插进去视频免费观看 | 少妇精品久久久久久久| 色94色欧美一区二区| 国产精品 国内视频| 国产一区亚洲一区在线观看| 久久精品国产综合久久久 | 国产一区亚洲一区在线观看| 精品一区二区三区视频在线| 国产日韩欧美在线精品| 永久网站在线| 国产成人免费观看mmmm| 2021少妇久久久久久久久久久| 欧美亚洲日本最大视频资源| 老女人水多毛片| 高清毛片免费看| 亚洲成人手机| 精品国产国语对白av| 美女国产高潮福利片在线看| 女人被躁到高潮嗷嗷叫费观| 免费黄频网站在线观看国产| 国产免费又黄又爽又色| 亚洲,欧美精品.| 中国美白少妇内射xxxbb| 亚洲成av片中文字幕在线观看 | 亚洲欧美精品自产自拍| 亚洲内射少妇av| 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 捣出白浆h1v1| 国产精品秋霞免费鲁丝片| 久久青草综合色| 亚洲精品中文字幕在线视频| 国产白丝娇喘喷水9色精品| 中文字幕人妻熟女乱码| 嫩草影院入口| 亚洲av综合色区一区| 精品卡一卡二卡四卡免费| 日韩一本色道免费dvd| 亚洲av日韩在线播放| 国产免费现黄频在线看| 久久免费观看电影| 最新中文字幕久久久久| av免费在线看不卡| 国国产精品蜜臀av免费| 精品少妇内射三级| 亚洲人与动物交配视频| 新久久久久国产一级毛片| h视频一区二区三区| 亚洲精品美女久久久久99蜜臀 | 一级,二级,三级黄色视频| 午夜av观看不卡| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看国产h片| 美女福利国产在线| 日韩欧美精品免费久久| 久久精品夜色国产| 乱人伦中国视频| 97超碰精品成人国产| 肉色欧美久久久久久久蜜桃| 91国产中文字幕| 亚洲国产av新网站| 亚洲情色 制服丝袜| 在线 av 中文字幕| 欧美成人精品欧美一级黄| 91成人精品电影| 中国美白少妇内射xxxbb| 纵有疾风起免费观看全集完整版| 99热网站在线观看| www.色视频.com| 亚洲 欧美一区二区三区| 午夜激情av网站| 亚洲精品中文字幕在线视频| 午夜影院在线不卡| av在线老鸭窝| 精品国产一区二区三区久久久樱花| 男女边摸边吃奶| 女人精品久久久久毛片| 国国产精品蜜臀av免费| 久久精品久久精品一区二区三区| 国产精品熟女久久久久浪| 婷婷色麻豆天堂久久| 国产精品一区二区在线观看99| 国产精品99久久99久久久不卡 | av国产精品久久久久影院| 亚洲成人手机| 桃花免费在线播放| 丰满迷人的少妇在线观看| 亚洲精品国产av成人精品| 如何舔出高潮| 不卡视频在线观看欧美| 久久精品久久久久久噜噜老黄| 亚洲,一卡二卡三卡| 人妻系列 视频| 午夜福利视频在线观看免费| 成人亚洲精品一区在线观看| 国产麻豆69| 最近中文字幕高清免费大全6| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区三区| 亚洲国产日韩一区二区| 亚洲国产精品一区三区| 亚洲在久久综合| 国产老妇伦熟女老妇高清| 制服诱惑二区| 亚洲,欧美,日韩| 欧美 日韩 精品 国产| 精品第一国产精品| 国产黄频视频在线观看| 亚洲丝袜综合中文字幕| 啦啦啦中文免费视频观看日本| 久久精品aⅴ一区二区三区四区 | 晚上一个人看的免费电影| 男人操女人黄网站| 新久久久久国产一级毛片| 久久久国产一区二区| 十八禁网站网址无遮挡| 人妻系列 视频| 亚洲精品av麻豆狂野| 久久99精品国语久久久| 国产成人午夜福利电影在线观看| 亚洲美女搞黄在线观看| 肉色欧美久久久久久久蜜桃| 男女边吃奶边做爰视频| 三级国产精品片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黄色一级大片看看| 亚洲国产精品一区三区| 大香蕉97超碰在线| 99热网站在线观看| 深夜精品福利| 超碰97精品在线观看| 九九在线视频观看精品| 亚洲欧美中文字幕日韩二区| 两性夫妻黄色片 | 女人被躁到高潮嗷嗷叫费观| 国产精品三级大全| 日本与韩国留学比较| 久久精品熟女亚洲av麻豆精品| 搡老乐熟女国产| 国内精品宾馆在线| 国产精品不卡视频一区二区| 久久女婷五月综合色啪小说| 热99国产精品久久久久久7| av国产久精品久网站免费入址| 成人午夜精彩视频在线观看| 午夜老司机福利剧场| 久久99一区二区三区| 国产乱人偷精品视频| 最后的刺客免费高清国语| 国产欧美另类精品又又久久亚洲欧美| 久久亚洲国产成人精品v| 精品人妻熟女毛片av久久网站| 波多野结衣一区麻豆| 久久99热这里只频精品6学生| 久热久热在线精品观看| 国产熟女欧美一区二区| 男女国产视频网站| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 久久人人爽人人爽人人片va| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 天堂俺去俺来也www色官网| 国产探花极品一区二区| 一级毛片 在线播放| 热99国产精品久久久久久7| 欧美变态另类bdsm刘玥| 日韩伦理黄色片| 久久精品国产综合久久久 | 女人精品久久久久毛片| 最近2019中文字幕mv第一页| 性高湖久久久久久久久免费观看| 亚洲综合色网址| 男人爽女人下面视频在线观看| 考比视频在线观看| 又大又黄又爽视频免费| 国产精品嫩草影院av在线观看| 亚洲精品久久成人aⅴ小说| 婷婷色麻豆天堂久久| 亚洲欧美日韩卡通动漫| 成人综合一区亚洲| 哪个播放器可以免费观看大片| 毛片一级片免费看久久久久| 久久婷婷青草| 日韩伦理黄色片| 久久国内精品自在自线图片| 人人妻人人爽人人添夜夜欢视频| av片东京热男人的天堂| 少妇人妻精品综合一区二区| 色网站视频免费| 夫妻午夜视频| 久久久久久人妻| 中文字幕另类日韩欧美亚洲嫩草| 国产视频首页在线观看| 97在线人人人人妻| 婷婷色麻豆天堂久久| 美女福利国产在线| 赤兔流量卡办理| 91国产中文字幕| 高清不卡的av网站| 久久这里有精品视频免费| 大香蕉久久成人网| 毛片一级片免费看久久久久| 国产不卡av网站在线观看| 观看av在线不卡| videossex国产| 蜜桃国产av成人99| 国产精品.久久久| 少妇的丰满在线观看| 久久久久国产精品人妻一区二区| www.av在线官网国产| 免费人妻精品一区二区三区视频| 一本大道久久a久久精品| 亚洲欧美成人精品一区二区| 99久久中文字幕三级久久日本| 黄色视频在线播放观看不卡| 国产成人精品在线电影| 国产亚洲最大av| 狠狠精品人妻久久久久久综合| av.在线天堂| 久久ye,这里只有精品| 午夜精品国产一区二区电影| 精品福利永久在线观看| 国产成人a∨麻豆精品| 青春草视频在线免费观看| 亚洲天堂av无毛| 亚洲欧美清纯卡通| 欧美日本中文国产一区发布| 色哟哟·www| 欧美日韩亚洲高清精品| 天天操日日干夜夜撸| 9色porny在线观看| 天天影视国产精品| 99香蕉大伊视频| 大香蕉97超碰在线| 久久精品人人爽人人爽视色| 制服人妻中文乱码| 伊人久久国产一区二区| 中文欧美无线码| 大香蕉97超碰在线| 国产精品一区二区在线观看99| 国产精品欧美亚洲77777| 国产色爽女视频免费观看| 好男人视频免费观看在线| 欧美亚洲 丝袜 人妻 在线| 日本与韩国留学比较| av片东京热男人的天堂| 久久久久人妻精品一区果冻| 亚洲欧美日韩卡通动漫| 欧美精品av麻豆av| 国产日韩一区二区三区精品不卡| 在线观看美女被高潮喷水网站| 一二三四中文在线观看免费高清| 丝袜美足系列| 一二三四在线观看免费中文在 | 精品久久久精品久久久| 最近的中文字幕免费完整| 欧美 日韩 精品 国产| 秋霞伦理黄片| 黄色一级大片看看| av网站免费在线观看视频| 美女主播在线视频| 免费久久久久久久精品成人欧美视频 | 国产成人一区二区在线| 久久人妻熟女aⅴ| 十分钟在线观看高清视频www| 咕卡用的链子| 80岁老熟妇乱子伦牲交| 午夜av观看不卡| 多毛熟女@视频| 在线观看美女被高潮喷水网站| 国产精品 国内视频| 亚洲精品久久成人aⅴ小说| 制服丝袜香蕉在线| av免费观看日本| 色视频在线一区二区三区| 老司机亚洲免费影院| 亚洲少妇的诱惑av| videosex国产| 爱豆传媒免费全集在线观看| 久久午夜福利片| 婷婷色综合大香蕉| 咕卡用的链子| 午夜免费男女啪啪视频观看| 午夜福利在线观看免费完整高清在| 成人影院久久| 婷婷色av中文字幕| 国产在线免费精品| 亚洲精品,欧美精品| 亚洲av福利一区| 国产亚洲精品久久久com| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 色婷婷久久久亚洲欧美| 久久av网站| 国产成人91sexporn| 亚洲国产最新在线播放| 丝袜喷水一区| 精品国产露脸久久av麻豆| 观看av在线不卡| 美女xxoo啪啪120秒动态图| 男人爽女人下面视频在线观看| 熟妇人妻不卡中文字幕| 18+在线观看网站| 亚洲精品日韩在线中文字幕| 日韩中文字幕视频在线看片| 久久韩国三级中文字幕| 欧美丝袜亚洲另类| 少妇高潮的动态图| 人人澡人人妻人| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片| 在线亚洲精品国产二区图片欧美| 哪个播放器可以免费观看大片| 国产精品国产三级国产专区5o| a级毛片在线看网站| 国产老妇伦熟女老妇高清| 日本免费在线观看一区| 午夜福利影视在线免费观看| 色网站视频免费| 国产精品久久久久久av不卡| 国产精品.久久久| av国产精品久久久久影院| 人妻一区二区av| 97在线视频观看| 国产日韩欧美在线精品| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 观看av在线不卡| 婷婷成人精品国产| 欧美日韩视频精品一区| 亚洲精品中文字幕在线视频| 如日韩欧美国产精品一区二区三区| 国产精品99久久99久久久不卡 | 在线观看免费视频网站a站| 精品午夜福利在线看| 国产乱人偷精品视频| 精品国产一区二区久久| 高清毛片免费看| 如日韩欧美国产精品一区二区三区| 久久国内精品自在自线图片| 91精品三级在线观看| 成人免费观看视频高清| 精品一区二区三卡| 少妇被粗大猛烈的视频| 美女内射精品一级片tv| 在线观看人妻少妇| av.在线天堂| 中国国产av一级| 精品人妻一区二区三区麻豆| 国产极品天堂在线| 日本猛色少妇xxxxx猛交久久| 超碰97精品在线观看| 成人免费观看视频高清| av免费在线看不卡| 一二三四在线观看免费中文在 | 一级毛片黄色毛片免费观看视频| 亚洲国产欧美在线一区| 国产爽快片一区二区三区| 一级片免费观看大全| 一级毛片我不卡| av在线老鸭窝| 免费人妻精品一区二区三区视频| 老司机影院成人| 另类亚洲欧美激情| 极品人妻少妇av视频| 少妇猛男粗大的猛烈进出视频| 国产精品久久久av美女十八| 国产极品粉嫩免费观看在线| 麻豆乱淫一区二区| 亚洲精品一二三| 国产国语露脸激情在线看| 少妇人妻精品综合一区二区| 日本黄大片高清| 91精品伊人久久大香线蕉| 十八禁高潮呻吟视频| 久久久久久久久久久久大奶| 黄色毛片三级朝国网站| 深夜精品福利| 国产亚洲午夜精品一区二区久久| 男女午夜视频在线观看 | 51国产日韩欧美| 美女脱内裤让男人舔精品视频| 欧美国产精品一级二级三级| 欧美日韩亚洲高清精品| 纵有疾风起免费观看全集完整版| 两个人看的免费小视频| 青春草国产在线视频| 国产精品久久久久久久电影| 久久人人爽人人爽人人片va| 欧美xxxx性猛交bbbb| www.av在线官网国产| √禁漫天堂资源中文www| 老熟女久久久| 久久精品国产a三级三级三级| 在线天堂中文资源库| 少妇的逼好多水| 飞空精品影院首页| 国产成人精品无人区| 美女福利国产在线| 在线精品无人区一区二区三| 国产成人精品婷婷| 亚洲少妇的诱惑av| 汤姆久久久久久久影院中文字幕| 黄色毛片三级朝国网站| 天天影视国产精品| 午夜日本视频在线| 久久精品国产综合久久久 | av福利片在线| 国内精品宾馆在线| 少妇高潮的动态图| 日韩av免费高清视频| 欧美成人精品欧美一级黄| 插逼视频在线观看| 国产精品一区二区在线不卡| 久久精品国产鲁丝片午夜精品| 国产永久视频网站| 久久97久久精品| 久久久精品免费免费高清| 成人国语在线视频| 一区二区日韩欧美中文字幕 | 精品久久久精品久久久| 精品国产一区二区三区久久久樱花| 一区二区三区四区激情视频| 精品亚洲成a人片在线观看| 黄色 视频免费看| 欧美日韩一区二区视频在线观看视频在线| av一本久久久久| 十八禁高潮呻吟视频| 视频在线观看一区二区三区| 性色avwww在线观看| 深夜精品福利| 十分钟在线观看高清视频www| 97精品久久久久久久久久精品| 欧美日韩综合久久久久久| 男女边吃奶边做爰视频| 久久精品久久久久久久性| 国产av码专区亚洲av| 日韩成人av中文字幕在线观看| 亚洲图色成人| 香蕉国产在线看| 最近手机中文字幕大全| 国产精品人妻久久久久久| 国产欧美另类精品又又久久亚洲欧美| 国内精品宾馆在线| 国产黄色免费在线视频| 亚洲精品久久午夜乱码| 亚洲人成网站在线观看播放| 18禁裸乳无遮挡动漫免费视频| 欧美成人精品欧美一级黄| 丝袜人妻中文字幕| 人妻少妇偷人精品九色| 久久人妻熟女aⅴ| 午夜91福利影院| 伦理电影大哥的女人| 观看美女的网站| 在线观看免费视频网站a站| 五月玫瑰六月丁香| 成年av动漫网址| 久久99精品国语久久久| 五月天丁香电影| 黑丝袜美女国产一区| 日日爽夜夜爽网站| 亚洲精华国产精华液的使用体验| 女人精品久久久久毛片| 久久久久久人人人人人| 一区二区三区精品91| 久久久久国产精品人妻一区二区| 在线看a的网站| 99九九在线精品视频| 黄色一级大片看看| 午夜免费鲁丝| 18+在线观看网站| 免费av中文字幕在线| 精品亚洲乱码少妇综合久久| 99香蕉大伊视频| 婷婷成人精品国产| av播播在线观看一区| 黄网站色视频无遮挡免费观看| 国产永久视频网站| 欧美日韩av久久| 成人毛片a级毛片在线播放| a级毛片黄视频| 大话2 男鬼变身卡| 妹子高潮喷水视频| 亚洲一级一片aⅴ在线观看| 久久这里有精品视频免费| xxxhd国产人妻xxx| 一级毛片黄色毛片免费观看视频| 麻豆乱淫一区二区| 亚洲综合色惰| 97超碰精品成人国产| 男男h啪啪无遮挡| 寂寞人妻少妇视频99o| 韩国av在线不卡| 日韩精品有码人妻一区| 秋霞伦理黄片| 卡戴珊不雅视频在线播放| 欧美xxⅹ黑人| 国产69精品久久久久777片| 国产麻豆69| 两个人免费观看高清视频| 久久青草综合色| 亚洲欧美一区二区三区黑人 | 韩国精品一区二区三区 | 国产在线视频一区二区| av电影中文网址| 欧美亚洲 丝袜 人妻 在线| 亚洲伊人色综图| 一级a做视频免费观看| 黄色配什么色好看| 亚洲欧美中文字幕日韩二区| 街头女战士在线观看网站| 亚洲精品一区蜜桃| 成人影院久久| 插逼视频在线观看| 丰满饥渴人妻一区二区三| 桃花免费在线播放| 国产毛片在线视频| 国产精品久久久久成人av| 国产精品国产三级专区第一集| 乱人伦中国视频| 亚洲欧洲日产国产| 人人妻人人澡人人爽人人夜夜| 高清欧美精品videossex| 中文欧美无线码| av在线老鸭窝| 国产精品女同一区二区软件| 九九在线视频观看精品| 欧美成人午夜精品| 成人国产av品久久久| 男人爽女人下面视频在线观看| av播播在线观看一区| 日本91视频免费播放| 国产高清国产精品国产三级| 亚洲成色77777| a级毛片黄视频| 欧美日韩视频精品一区| 国产一区有黄有色的免费视频| 成人漫画全彩无遮挡| 色网站视频免费| 建设人人有责人人尽责人人享有的| 我的女老师完整版在线观看| a级片在线免费高清观看视频| 精品卡一卡二卡四卡免费| 日韩av不卡免费在线播放| 男人舔女人的私密视频| 国产国拍精品亚洲av在线观看| 岛国毛片在线播放| 51国产日韩欧美| 精品一区二区免费观看| 18+在线观看网站| 99九九在线精品视频| 在线观看免费日韩欧美大片| 亚洲国产精品国产精品| 久久ye,这里只有精品| 国产熟女欧美一区二区| 999精品在线视频| 777米奇影视久久| 日本黄色日本黄色录像| 黄色视频在线播放观看不卡| 日韩不卡一区二区三区视频在线| 国产精品人妻久久久久久| 日韩欧美精品免费久久| 亚洲精品,欧美精品| 免费少妇av软件| 丰满迷人的少妇在线观看| av有码第一页| 精品久久久精品久久久| 午夜日本视频在线| 十八禁高潮呻吟视频| 免费大片18禁| 国产有黄有色有爽视频| 亚洲成人一二三区av| 777米奇影视久久| 亚洲性久久影院| 嫩草影院入口| 制服丝袜香蕉在线| 蜜桃国产av成人99| 午夜激情久久久久久久| 高清视频免费观看一区二区| 大片免费播放器 马上看| 最近中文字幕2019免费版| 99热6这里只有精品| av免费在线看不卡| 国产在线视频一区二区| 9热在线视频观看99| 精品一区二区免费观看| 欧美人与善性xxx| 在线 av 中文字幕| 国产欧美日韩综合在线一区二区| h视频一区二区三区| 咕卡用的链子| 国产一区二区三区av在线| 日韩视频在线欧美| 久久韩国三级中文字幕| 欧美日韩成人在线一区二区| 国产xxxxx性猛交| 国产免费视频播放在线视频| 欧美日韩成人在线一区二区| 亚洲国产毛片av蜜桃av| 最近最新中文字幕免费大全7| 18+在线观看网站| 国产精品嫩草影院av在线观看| 精品国产一区二区久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 色婷婷久久久亚洲欧美| 最新中文字幕久久久久| 国产不卡av网站在线观看|