• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Stochastic Study on the Wicking Phenomena

    2012-02-08 06:57:24WENGMingLUKASDavid

    WENG Ming(翁 鳴),LUKAS David

    1 Key Laboratory of Advanced Textile Materials and Manufacturing Technology,Ministry of Education,Zhejiang Sci-Tech University,Hangzhou 310018,China

    2 Faculty of Textile Engineering,Technical University of Liberec,Liberec 46117,Czech

    Introduction

    Wicking phenomena plays an important role in application fields such asunderground watercontrol,papermaking,composite fabrication,and textile finishing[1-3].Underlying the complexity of real systems,the inherent physics of wicking phenomenon can be regarded as the replacement of gas with liquid into the interspaces constructed by solid materials.

    A classical theory of wicking in a cylindrical capillary is the equation proposed by Washburn[4].It was pointed out that,in the derivation of the Washburn equation,the capillary force was assumed to be the unique driving force forwicking[4-6].However,this assumption is valid only when a precursor film of the liquid exists ahead of the flow front,otherwise,an additional driving force is available from the change of the solid surface free energy,which altersthewicking dynamics.Therefore,a modified model by considering the spreading pressure was proposed by Good[5],while Chibowski et al.analyzed the effect ofthe additional force under four distinct experimental conditions[6].

    Besides the Washburn equation and its modified forms,stochastic models originated from the Ising model have also aroused great interest in the study of wicking phenomena.The Ising model was proposed to solve ferromagnetic problems regarding phase transition and critical phenomena[7,8].The remarkable feature of the Ising model lies in its simplicity and exact solution of the issues in one-and two-dimension.

    Since 1980's,the Ising model has been extensively used to study the equilibrium properties and phase transitions with respect to the motion of a droplet on a planar solid surface[9-13].Based on Manna's study[13],Lukas et al.proposed a modified Ising model combined with Monte Carlo method to mimic the scenarios of liquid wicking in homogeneous fibrous network[14,15]as well as in fiber bundles[16].Assuming that the dominant interactions between liquid-liquid and liquid-solid phases are apolar,Zhong et al.introduced Lifshitz-van der Waals theory to characterize the interaction energies in the spin system and studied the wicking dynamics of water in fibrous assemblies[17].A model in consideration of polar interactions was developed in our previous study[18].Since the Ising model is restricted to twophase systems,when it is applied to the three-phase wicking system composed of air,liquid,and solid,an additional spin variable or two sets of spin variables are required.

    In this paper,we will propose a stochastic approach based on the Potts model which is a generalized Ising model readily to describe multiphase systems.Both apolar and polar interactions are incorporated into the model so that it is applicable to the study of wicking behavior resulted from diverse gas-liquid-solid coupling interactions.An experimental verification of the model is also reported.

    1 Model Description

    In this section,we will develop a stochastic approach based on the Potts model and Monte Carlo method to study the properties of wicking systems in thermodynamic equilibrium.

    The Potts model is a generalization of the Ising model.A 3-state Potts model is constituted by spins each taking on one state or one of three disparate spin values.The Hamiltonian of the Potts model is formulated as[10]

    A wicking system is a three-phase system hence could be studied by a 3-state Potts model.A 3D 3-state Potts model consisting of L×W ×H cubic cells is illustrated in Fig.1.Each of the cells represents a“spin”and is assigned with a spin value σi=0,1,or 2,denoting its state of being exclusively occupied by gas,liquid,or solid.For simplicity,the spin values 0,1,and 2 are used as subscripts in the following text.A gravitational field is applied to the system in negative z-direction.

    The Hamiltonian of the wicking system is assumed to be the total potential energy pertinent to the nearest neighboring spinspin interaction on mutual interface,and the spin-external field interaction on the center ofeach spin.Therefore,the Hamiltonian of the system in Fig.1 can be expressed as

    where J is a 3 ×3 coupling constant matrix with elements J(σi,σj)denoting the strength of potential energy per unit area between pair spins(σi,σj)and Aijis the interaction area;k1is a coefficient accounting for the discretization of the real system;G(σi)is the intensity of the gravitational filed at vertex i;and zithe coordinate of spin i in z direction.The first summation runs over all nearest neighboring spin pairs in the system and each pair for once,while the second runs over all individual spins.

    The constant G( σi)is defined as G(σi)= [δσi,0ρ0+δσi,1ρ1+ δσi,2ρ2]g · dV,where ρ0,ρ1,and ρ2are the densities of gas,liquid,and solid,g is the gravitational acceleration,g=9.8 m/s2,and dV is the volume of one unit cell.

    The coupling constant matrix J is defined as the strength of potential energies resulted from the interactions between the nearest neighboring spin pairs which can be evaluated via the energy change during a thermodynamic process.We assume that the interaction from gas spin is week enough to be neglected,i.e.,J(0,0)=0,and J is a symmetric matrix with J(σi,σj)=J(σj,σi).Therefore,the interaction energy for two combined phase σiand σj(σi≠σj)is the adhesion energy,which is equal to the energy change during an isothermal formation of a unit interface.So we have

    In the case of σj= σi,the interaction energy turns into cohesion energyand Eq.(4)reduces to

    By simultaneously solving Eqs.(4)and(5),all elements J(σi,σj)in matrix J can be determined.Among the infinite solutions,we assume,in this paper,

    where γσi,σjis the interfacial free energy on unit area between pair spins(σi,σj)and δ is the Kronecker delta.

    Equation(5)implies that the interfacial potential energy is herein assumed to be the interfacial free energy,or the energy excess resulted from the unbalanced forces on both sides of the interface.

    By substituting Eq.(5)into Eq.(2),we obtain the formula of the Potts model

    In the application of the modified Potts model described by Eq.(7),energy contributions of both aploar and polar spin-spin interactions are to be considered.According to the theory proposed by Fowkes[19]and Good[20],the interfacial free energy between phases σiand σj( σi,σj∈{0,1,2})can be broken down into its separate components

    where the superscript LW and AB represent the apolar Lifshitzvan der Waals interaction and the polar electron acceptor-electron donor or Lewis acid-base interaction,respectively.For condensed phases,the cohesion energy of phase σi( σi∈ {1,2})is calculated by equation

    With Eqs.(6)-(9),the change in Hamiltonian accompanying wicking process involving apolar and polar components can be well determined.

    In addition to the change in Hamiltonian,the apparent curvature of the liquid surface will change the thermodynamics of wickingby causing an additionalenergy change in the process[20].This extra energy change is introduced here as the work done by external pressure p to the system.

    where k2is a coefficient for the discrete system as k1;dV is the volume of a unit cell;dA is the variation in the area of liquid surface.

    To sum up,the total energy change of the spin system accompanying the wicking process is

    The evolution of the spin system corresponding to the wicking process is assumed to be a stochastic process.According to Metropolis,it may be realized by an importance sampling scheme along a Markov chain constructed in the phase space.Each state of the system is described by a set of spin variables xi=(σ1,σ2,… ,σN)and correlates only with the previous state xi-1.The transition probability of the system from state xito the next xi+1depends on the energy difference between the two states and can be expressed as

    where β is a constant.

    In this paper,we restrict our study to the equilibrium wicking height of the liquid column in a cylindrical capillary.In terms of the criterion described by Eq.(12),the spin system changes its states until it reaches an equilibrium state when the maximum height of the liquid spins fluctuates about a mean value.

    2 Materials and Methods

    To verify the model developed above,vertical wicking experiments of four liquids in a set of capillaries were performed.The radii of the capillaries were in the range of 0.17-1.35 mm.Two apolar liquids(heptane,octane)and two polar liquids(water,formamide)were selected to constitute different coupling interactions in the wicking system.The materials used for experiments including commercial glass capillary for viscometer,distilled water,analytical grade heptane,octane,formamide werepurchased from localcompanies in Shanghai.The specifications of the liquids were taken from Refs.[21,22]as summarized in Table 1.

    Table 1 The specifications of the testing liquids

    The radii of capillaries were determined by a photographic technique.Photos of capillary cross-sections(×50 times)were taken by an electron microscope.Eight groups of data of radius were recorded for each capillary cross-section with 45 degree intervals and the average values were used for subsequent calculation.Before the wicking experiment,the capillaries were cleaned by distilled water,dried at 150℃ for 2 h and then kept in a desiccator for 24 h at room temperature(20℃).Each capillary was held vertically on a frame with the lower end dipping into a liquid reservoir.The equilibrium height of the liquid column in the capillary was recorded.All the experiments were performed at room temperate(20±2)℃.

    3 Simulation and Discussion

    In the simulation,the spin system is created by generating coaxial cylindrical ring unit cells with the same volume.In such a system,the radial thickness of the cell decreases with the increasing distance to the central axis.Each cell is assigned with a spin variable σi=0,1,or 2 according to its phase state.The outmost cell represents the capillary wall,and the bottom of the system is filled with liquid.The system is divided into 8×1 500 cells for all the simulations.The radical dimensions of the cells are calculated from the radii of the testing capillaries and the height of each cell represents 0.1 mm in the real system.

    The parameters used in the simulation are listed in Table 2.The cohesion energies of the liquids are calculated from the data in Table 1 via Eq.(9)and the adhesion energies are decided experimentally by Eq.(10).

    Table 2 Parameters used for simulation

    It should be noted that for strong polar liquid such as water,polar AB interaction contributes 120 mJ/m2to the total cohesion energy 145.6 mJ/m2.Therefore,when considering interaction energies in a wicking system involving water,the energy contributions from polar interactions could not be neglected.

    The simulation results as well as the experimental results are shown in Fig.2.All the simulations are carried out at β =2.5.The coefficients k1=1.07 and k2=1.00 are determined by the simulation to accommodate the experimental data of water and heptane.The height of the central cell is recorded as the wicking height of the liquid and the equilibrium height is taken to be reached after it fluctuates within the range of 0.2 mm for 107spin flip trials.An average of equilibrium wicking height is obtained from 103spin flip trials.Then,the wicking heights of formamide and octane are predicted at the same condition.

    Figure 2 shows that the simulation results agree well with the experimental results.An equilibrium wicking height is reached for each experiment,which indicates that the effect of gravity can not be neglected in the case of vertical wicking.The equilibrium wicking height decreases with increasing capillary radius,but varies in a distinctive way for each liquid.By considering both apolar and polar interactions in the system and the work done by externalpressure,the stochastic modelcan describe the equilibrium wicking height of liquids with different properties.

    The results above reveal the advantages of the proposed approach.It describes the intricate interactions involved in a three-phase system in a simple form,yet yields realistic results.And,the parameters in the model have clear physical meanings.After deciding the parameters from two testing liquids,the model can be used to predict the wicking behavior of liquids with different properties.

    The proposed technique provides useful information of the mechanisms of wicking behavior and also a useful tool for studying more practical issues with respect to wicking phenomena.

    4 Conclusions

    In this paper,a stochastic approach based on 3D 3-state Potts model with combination of Monte Carlo method is proposed to study the phenomena of liquid wicking in capillaries.In the model,the potential energy between spins is characterized by interfacial free energy.Both apolar Lifshitz-van der Waals interaction and polar acid-base interaction are considered for six types of interactions between two of the three phases:gas,liquid,and solid.The work done by the external pressure is also taken into account as the effect of the curvature of the liquid surface on the thermodynamics of wicking.

    The dynamics of wicking is viewed as the replacement of gas with liquid inside the capillary,which is governed by the difference in total energy of the spin system for two consequent states.The equilibrium height is the balance between the driving force and the gravity.The modelisverified bywicking experiments of apolar and polar liquids in capillaries of different radii.The good agreement between simulation and experimental results shows that the new model is an attractive tool in this area and it may be used for studying more practical issues.

    [1]Fan Z S,Neff J C,Harden J W,et al.Water and Heat Transport in Boreal Soils:Implications for Soil Response to Climate Change[J].Science of the Total Environment,2011,409(10):1836-1842.

    [2]Nithya E,Radhai R,Rajendran R,et al.Synergetic Effect of DC Air Plasma and Cellulase Enzyme Treatment on the Hydrophilicity of Cotton Fabric[J].Carbohydrate Polymers,2011,83(4):1652-1658.

    [3]Park C H,Lebel A,Saouab A,et al.Modeling and Simulation of Voids and Saturation in Liquid Composite Molding Processes[J].Composites Part A:Applied Science and Manufacturing,2011,42(6):658-668.

    [4]Washburn E W.The Dynamics of Capillary Flow[J].Physical Review,1921,17(3):273-283.

    [5]Good R J.The Rate of Penetration of a Fluid into a Porous Body Initially Devoid of Adsorbed Material(1,2)[J].Journal of Colloid and Interface Science,1973,42(3):473-477.

    [6]Chibowski E,González-Caballero F.Theory and Practice of Thin-Layer Wicking[J].Langmuir,1993,9(1):330-340.

    [7]Ising E.Beitrag zur Theorie des Ferromagnetismus[J].Zeitschrift fur Physik,1925,31(1):253-258.

    [8]Lim C,Nebus J.Vorticity,Statistical Mechanics,and Monte Carlo Simulation[M].New York:Springer Science+Business Media,LLC,2007.

    [9]Abraham D B.Solvable Model with a Roughening Transition for a Planar Ising Ferromagnet[J].Physical Review Letters,1980,44(18):1165-1168.

    [10]Selke W.Droplets in Two-Dimensional Ising and Potts Models[J].Journal of Statistical Physics,1989,56(5/6):609-620.

    [11]de Coninck J,Dunlop F.Wetting Phenomena[M].New York:Springer-Verlag Berlin Heidelberg,1988:29-39.

    [12]Binder K.The Monte Carlo Method in Condensed Matter Physics[M].2nd ed.New York:Spinger-Verlag,1992:329-354.

    [13]Manna S S,Herrmann H J,Landau D P.A Stochastic Method to Determine the Shape of a Drop on a Wall[J].Journal of Statistical Physics,1992,66(3/4):1155-1163.

    [14]Lukas D,Glazyrina E,Pan N.Computer Simulation of Liquid Wetting Dynamics in Fiber Structures Using the Ising Model[J].Journal of the Textile Institute,1997,88(2):149-161.

    [15]Lukas D,Soukupova V,Pan N,et al.Computer Simulation of 3-D Liquid Transport in Fibrous Materials[J].Simulation,2004,80(11):547-557.

    [16]Lukas D,Pan N.Wetting of a Fiber Bundle in Fibrous Structures[J].Polymer Composties,2003,24(3):314-322.

    [17]Zhong W,Ding X,Tang Z L.Modeling and Analyzing Liquid Wetting in Fibrous Assemblies [J].Textile Research Journal,2001,71(9):762-766.

    [18]Weng M,Ding X.The Effect of Surface Free Energy of Liquid on Wicking in a Fiber Bundle[C].Proceedings of the 2nd International Textile Clothing & Design Conference,Dubrovnik,Croatia,2004:467-470.

    [19]Fowkes F M,Mostafa M A.Acid-Base Interactions in Polymer Adsorption[J].Industrial Engineering Chemistry Product Research and Development,1978,17(1):3-7.

    [20]Good R J,van Oss C J.The Modern Theory of Contact Angles and the Hydrogen Bond Components of Surface Energies[M]//Schrader M E,Loeb G I.Modern Approaches to Wettability,Theory and Applications.New York:Plenum Press,1992.

    [21]Chibowski E.Solid Surface Free Energy Components Determinations by the Thin-Layer Wicking Technique[J].Journal of Adhesion Science and Technology,1992,6(9):1069-1090.

    [22]Lide D R.Handbook of Chemistry and Physics:a Ready-Reference Book of Chemical and Physical Data[M].73rd ed.Boston:CRC Press,Inc.,1992.

    久久人妻av系列| 色播在线永久视频| 日日摸夜夜添夜夜添小说| 不卡av一区二区三区| 不卡一级毛片| 他把我摸到了高潮在线观看 | 国产精品久久久久成人av| 少妇粗大呻吟视频| 国产午夜精品久久久久久| 久久天躁狠狠躁夜夜2o2o| 大码成人一级视频| 国产精品久久久久久精品电影小说| 黄网站色视频无遮挡免费观看| 欧美精品高潮呻吟av久久| 高清视频免费观看一区二区| 丝袜人妻中文字幕| av一本久久久久| 欧美性长视频在线观看| 欧美在线黄色| 极品教师在线免费播放| 无人区码免费观看不卡 | 极品教师在线免费播放| 可以免费在线观看a视频的电影网站| 午夜日韩欧美国产| 老熟女久久久| 在线天堂中文资源库| 久久久久国内视频| 久久人人爽av亚洲精品天堂| 精品一区二区三区视频在线观看免费 | aaaaa片日本免费| 成人18禁高潮啪啪吃奶动态图| 欧美 亚洲 国产 日韩一| 天天躁夜夜躁狠狠躁躁| 十八禁网站免费在线| 欧美亚洲 丝袜 人妻 在线| 成人18禁在线播放| 97人妻天天添夜夜摸| 丁香六月天网| 人人妻人人澡人人爽人人夜夜| 日韩有码中文字幕| 真人做人爱边吃奶动态| 午夜免费成人在线视频| 亚洲欧美一区二区三区黑人| 午夜成年电影在线免费观看| 国产精品98久久久久久宅男小说| 一本一本久久a久久精品综合妖精| 久久久久国内视频| av国产精品久久久久影院| 999久久久精品免费观看国产| 亚洲精品一二三| 日韩人妻精品一区2区三区| 少妇的丰满在线观看| 精品高清国产在线一区| www.自偷自拍.com| 亚洲中文av在线| 美女主播在线视频| 色播在线永久视频| 亚洲美女黄片视频| 一级片免费观看大全| 日韩中文字幕视频在线看片| 在线 av 中文字幕| 国产91精品成人一区二区三区 | 国产欧美日韩一区二区三区在线| 亚洲久久久国产精品| 在线观看免费日韩欧美大片| 亚洲欧美日韩高清在线视频 | 女人精品久久久久毛片| 99国产精品一区二区三区| 波多野结衣av一区二区av| 人人妻人人澡人人爽人人夜夜| 精品国产一区二区久久| 99国产精品99久久久久| 在线观看一区二区三区激情| 亚洲一区二区三区欧美精品| 欧美久久黑人一区二区| 亚洲全国av大片| 性高湖久久久久久久久免费观看| 在线av久久热| 老司机亚洲免费影院| 国产野战对白在线观看| 一夜夜www| 亚洲国产欧美在线一区| 国产日韩欧美视频二区| 亚洲成av片中文字幕在线观看| 亚洲熟女精品中文字幕| 天天躁日日躁夜夜躁夜夜| 老熟妇仑乱视频hdxx| 在线天堂中文资源库| 久久九九热精品免费| 淫妇啪啪啪对白视频| 美女视频免费永久观看网站| 国产精品av久久久久免费| 久久这里只有精品19| 黄色毛片三级朝国网站| 久久精品国产a三级三级三级| 99精国产麻豆久久婷婷| 国产男女内射视频| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 欧美日韩福利视频一区二区| 丝袜美足系列| 国产男靠女视频免费网站| 亚洲九九香蕉| 午夜激情久久久久久久| 黄色成人免费大全| 精品人妻在线不人妻| 国产精品久久久久久人妻精品电影 | 久久久久久人人人人人| 久久人妻福利社区极品人妻图片| www.熟女人妻精品国产| 欧美成人午夜精品| 久久毛片免费看一区二区三区| 久久久久国内视频| 国产成人精品久久二区二区免费| 天天躁狠狠躁夜夜躁狠狠躁| 男女下面插进去视频免费观看| 成年女人毛片免费观看观看9 | 超碰97精品在线观看| 国产在线视频一区二区| 最新在线观看一区二区三区| 在线观看66精品国产| 人妻一区二区av| 久久香蕉激情| 久久精品国产综合久久久| av线在线观看网站| 久久免费观看电影| 精品国产乱子伦一区二区三区| 黄色 视频免费看| 亚洲精品美女久久av网站| 免费观看a级毛片全部| 热re99久久国产66热| 十八禁高潮呻吟视频| 肉色欧美久久久久久久蜜桃| 久久影院123| 久久久久久人人人人人| 一夜夜www| √禁漫天堂资源中文www| 757午夜福利合集在线观看| 热99久久久久精品小说推荐| 99香蕉大伊视频| 日日爽夜夜爽网站| 老熟女久久久| 国产成人精品无人区| www.精华液| 水蜜桃什么品种好| 久久精品人人爽人人爽视色| 两人在一起打扑克的视频| 岛国在线观看网站| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 每晚都被弄得嗷嗷叫到高潮| 最近最新中文字幕大全免费视频| 精品国内亚洲2022精品成人 | 久久精品aⅴ一区二区三区四区| 在线观看免费日韩欧美大片| 欧美日韩国产mv在线观看视频| 久久久国产欧美日韩av| 日韩大码丰满熟妇| 久久精品亚洲精品国产色婷小说| 午夜福利,免费看| 欧美人与性动交α欧美精品济南到| 9191精品国产免费久久| 一区二区日韩欧美中文字幕| 亚洲熟女精品中文字幕| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 久久久国产一区二区| 国产亚洲一区二区精品| 免费观看av网站的网址| 久久久久久久久免费视频了| 波多野结衣av一区二区av| av网站免费在线观看视频| 久久国产精品人妻蜜桃| tube8黄色片| 麻豆av在线久日| 黄色a级毛片大全视频| 亚洲精品在线观看二区| 国产精品成人在线| www日本在线高清视频| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 超碰成人久久| 他把我摸到了高潮在线观看 | 国产淫语在线视频| 黄色片一级片一级黄色片| 老司机亚洲免费影院| 热99久久久久精品小说推荐| 国产成人一区二区三区免费视频网站| 亚洲欧美激情在线| 国产伦人伦偷精品视频| 两个人看的免费小视频| 乱人伦中国视频| 狠狠狠狠99中文字幕| 黄片播放在线免费| 日韩成人在线观看一区二区三区| 波多野结衣一区麻豆| 亚洲成人手机| 国产欧美日韩一区二区三| 国产国语露脸激情在线看| 香蕉久久夜色| 日韩欧美三级三区| 久久久国产一区二区| 12—13女人毛片做爰片一| 18禁美女被吸乳视频| 国产精品一区二区免费欧美| 日韩视频在线欧美| 国产麻豆69| 免费日韩欧美在线观看| 精品人妻熟女毛片av久久网站| 国产成人免费观看mmmm| 免费在线观看影片大全网站| 亚洲精华国产精华精| 真人做人爱边吃奶动态| 国产免费av片在线观看野外av| 操出白浆在线播放| 亚洲成人免费电影在线观看| 满18在线观看网站| 啦啦啦在线免费观看视频4| 天天躁狠狠躁夜夜躁狠狠躁| 又大又爽又粗| 国产成+人综合+亚洲专区| 国产伦理片在线播放av一区| 18禁裸乳无遮挡动漫免费视频| 妹子高潮喷水视频| a级毛片在线看网站| 啦啦啦在线免费观看视频4| 国产精品久久久av美女十八| 69精品国产乱码久久久| 岛国在线观看网站| 久久中文字幕人妻熟女| 日日夜夜操网爽| 亚洲精品久久成人aⅴ小说| 国产欧美日韩一区二区精品| 一级黄色大片毛片| 天堂中文最新版在线下载| 亚洲欧美日韩高清在线视频 | 日本av手机在线免费观看| 亚洲第一av免费看| 国产成人免费观看mmmm| 91字幕亚洲| 午夜福利在线观看吧| 黑人操中国人逼视频| 国产免费av片在线观看野外av| 国产一区二区在线观看av| 手机成人av网站| 大香蕉久久网| 久久国产精品人妻蜜桃| 欧美变态另类bdsm刘玥| 亚洲国产欧美在线一区| 国产亚洲精品第一综合不卡| 成人黄色视频免费在线看| 国产精品国产高清国产av | 黄色片一级片一级黄色片| 亚洲专区国产一区二区| 高清黄色对白视频在线免费看| 午夜免费鲁丝| 亚洲国产看品久久| 亚洲伊人久久精品综合| 大型黄色视频在线免费观看| 麻豆国产av国片精品| 下体分泌物呈黄色| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 久久久国产欧美日韩av| 99热国产这里只有精品6| 一级黄色大片毛片| 老鸭窝网址在线观看| 91精品国产国语对白视频| 少妇被粗大的猛进出69影院| 欧美中文综合在线视频| 亚洲国产成人一精品久久久| 91国产中文字幕| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 91老司机精品| av视频免费观看在线观看| 国产精品亚洲av一区麻豆| 国产欧美日韩一区二区三区在线| 一区二区三区精品91| 女性被躁到高潮视频| 一个人免费在线观看的高清视频| 啦啦啦在线免费观看视频4| 久久亚洲精品不卡| 777米奇影视久久| 女人被躁到高潮嗷嗷叫费观| 久久久久国内视频| 久热爱精品视频在线9| 肉色欧美久久久久久久蜜桃| 99久久99久久久精品蜜桃| 天堂动漫精品| 久久人妻av系列| avwww免费| 日韩大片免费观看网站| 免费看a级黄色片| 黄片大片在线免费观看| 亚洲欧美激情在线| 18在线观看网站| 成人永久免费在线观看视频 | 五月天丁香电影| 午夜福利在线免费观看网站| 99精品在免费线老司机午夜| 日韩欧美三级三区| 久久国产精品人妻蜜桃| 日韩欧美一区二区三区在线观看 | 9色porny在线观看| av视频免费观看在线观看| 日韩中文字幕视频在线看片| 精品人妻1区二区| 久久久国产成人免费| 国产视频一区二区在线看| 最近最新中文字幕大全免费视频| 欧美国产精品va在线观看不卡| 国产欧美亚洲国产| 亚洲色图综合在线观看| 欧美黄色片欧美黄色片| 色尼玛亚洲综合影院| 天天影视国产精品| av片东京热男人的天堂| 亚洲 国产 在线| tocl精华| 不卡一级毛片| 欧美成狂野欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 男女之事视频高清在线观看| 高清欧美精品videossex| 91成年电影在线观看| 亚洲精品av麻豆狂野| 1024香蕉在线观看| 国产男女内射视频| 两个人免费观看高清视频| 国产精品亚洲av一区麻豆| 亚洲伊人色综图| 国产av又大| 麻豆乱淫一区二区| 91国产中文字幕| 欧美日韩av久久| 香蕉丝袜av| 美女福利国产在线| 老汉色av国产亚洲站长工具| 久久人妻av系列| 国产精品国产av在线观看| 国产精品久久电影中文字幕 | 高清视频免费观看一区二区| 50天的宝宝边吃奶边哭怎么回事| 99精品欧美一区二区三区四区| 一级片'在线观看视频| 免费黄频网站在线观看国产| 老司机午夜福利在线观看视频 | 久久九九热精品免费| 一边摸一边做爽爽视频免费| 麻豆av在线久日| 在线 av 中文字幕| 久久久久久久久久久久大奶| 欧美精品啪啪一区二区三区| 最近最新中文字幕大全免费视频| 成年人午夜在线观看视频| 久久人妻熟女aⅴ| 久久精品国产综合久久久| 欧美激情极品国产一区二区三区| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三| av一本久久久久| 欧美变态另类bdsm刘玥| 国产日韩一区二区三区精品不卡| 宅男免费午夜| 久久午夜综合久久蜜桃| kizo精华| 久久久久久久久免费视频了| 人人妻人人爽人人添夜夜欢视频| 国产一区二区 视频在线| 考比视频在线观看| 亚洲国产中文字幕在线视频| 考比视频在线观看| 正在播放国产对白刺激| 久久av网站| 人人澡人人妻人| 一进一出好大好爽视频| 两个人看的免费小视频| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看 | 欧美国产精品一级二级三级| 国产高清激情床上av| 午夜成年电影在线免费观看| a级片在线免费高清观看视频| 国产男女内射视频| 蜜桃在线观看..| 中文字幕最新亚洲高清| kizo精华| xxxhd国产人妻xxx| 成年人免费黄色播放视频| 我的亚洲天堂| 亚洲熟妇熟女久久| 成人精品一区二区免费| 国内毛片毛片毛片毛片毛片| 美女国产高潮福利片在线看| 母亲3免费完整高清在线观看| 手机成人av网站| 母亲3免费完整高清在线观看| 国产精品免费视频内射| 国产黄色免费在线视频| 国产一区二区三区视频了| 久9热在线精品视频| 欧美 日韩 精品 国产| 国产国语露脸激情在线看| 三上悠亚av全集在线观看| 久久午夜亚洲精品久久| 老熟妇仑乱视频hdxx| 午夜老司机福利片| 一个人免费看片子| 欧美日韩亚洲国产一区二区在线观看 | 国产深夜福利视频在线观看| e午夜精品久久久久久久| 亚洲美女黄片视频| 亚洲avbb在线观看| 日韩欧美三级三区| 美女福利国产在线| 大陆偷拍与自拍| 国产精品久久久久成人av| 亚洲一码二码三码区别大吗| 成年版毛片免费区| 国产成人影院久久av| 亚洲精品在线美女| 别揉我奶头~嗯~啊~动态视频| 自线自在国产av| 国产成人一区二区三区免费视频网站| 欧美av亚洲av综合av国产av| 欧美国产精品一级二级三级| 国产精品免费一区二区三区在线 | 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 99国产综合亚洲精品| 亚洲av成人一区二区三| 国产成人精品无人区| 手机成人av网站| a在线观看视频网站| 蜜桃国产av成人99| 最黄视频免费看| 99久久人妻综合| 可以免费在线观看a视频的电影网站| 久久精品熟女亚洲av麻豆精品| www.熟女人妻精品国产| 国产视频一区二区在线看| 这个男人来自地球电影免费观看| 欧美黄色片欧美黄色片| 国产日韩一区二区三区精品不卡| 精品人妻熟女毛片av久久网站| 一级毛片女人18水好多| 黑丝袜美女国产一区| 中文字幕精品免费在线观看视频| 欧美在线一区亚洲| 丰满饥渴人妻一区二区三| 欧美精品一区二区免费开放| 99久久人妻综合| 777米奇影视久久| 国产欧美日韩一区二区三| 久久99热这里只频精品6学生| videosex国产| 午夜福利影视在线免费观看| 久久天躁狠狠躁夜夜2o2o| 国产一区二区三区视频了| 久久这里只有精品19| videos熟女内射| 熟女少妇亚洲综合色aaa.| 久久亚洲精品不卡| 久久青草综合色| 久久国产精品大桥未久av| 国产亚洲精品一区二区www | 多毛熟女@视频| 日本精品一区二区三区蜜桃| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 免费日韩欧美在线观看| 亚洲一区二区三区欧美精品| 纯流量卡能插随身wifi吗| 免费不卡黄色视频| 午夜福利一区二区在线看| 精品第一国产精品| 亚洲中文av在线| 欧美人与性动交α欧美软件| 日韩人妻精品一区2区三区| 亚洲欧美激情在线| 精品一区二区三区四区五区乱码| 99re在线观看精品视频| 天堂8中文在线网| 国产成人精品在线电影| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇精品久久久久久久| 国产精品一区二区在线不卡| 黄色视频不卡| 岛国在线观看网站| 波多野结衣一区麻豆| 亚洲av成人不卡在线观看播放网| 婷婷丁香在线五月| 男女床上黄色一级片免费看| 91九色精品人成在线观看| 亚洲av欧美aⅴ国产| 婷婷成人精品国产| 菩萨蛮人人尽说江南好唐韦庄| 日韩精品免费视频一区二区三区| 国产日韩一区二区三区精品不卡| 国产精品.久久久| 五月天丁香电影| 欧美乱妇无乱码| 极品少妇高潮喷水抽搐| 在线播放国产精品三级| 久久久国产精品麻豆| 免费在线观看视频国产中文字幕亚洲| 黄片大片在线免费观看| 亚洲少妇的诱惑av| 欧美另类亚洲清纯唯美| 啦啦啦 在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区精品91| 97在线人人人人妻| 伦理电影免费视频| 免费高清在线观看日韩| 精品福利观看| 国产国语露脸激情在线看| 亚洲国产毛片av蜜桃av| 青青草视频在线视频观看| 黄色视频,在线免费观看| 侵犯人妻中文字幕一二三四区| 一区在线观看完整版| 国产在线观看jvid| 我的亚洲天堂| 亚洲九九香蕉| 久久久精品区二区三区| 极品人妻少妇av视频| 国产淫语在线视频| 丁香六月欧美| 国产伦人伦偷精品视频| 蜜桃国产av成人99| 久久久久久亚洲精品国产蜜桃av| 精品乱码久久久久久99久播| 久久精品亚洲精品国产色婷小说| 久久性视频一级片| 国产在线观看jvid| 精品国内亚洲2022精品成人 | 久久九九热精品免费| 久久久国产欧美日韩av| 搡老乐熟女国产| 老司机影院毛片| 一边摸一边做爽爽视频免费| 一区二区av电影网| 一进一出好大好爽视频| 咕卡用的链子| 一级,二级,三级黄色视频| 久久久久久久大尺度免费视频| 日韩中文字幕视频在线看片| 欧美激情 高清一区二区三区| 大片免费播放器 马上看| 视频在线观看一区二区三区| 嫩草影视91久久| 久久久久精品国产欧美久久久| 人人妻人人澡人人爽人人夜夜| 亚洲欧美日韩另类电影网站| 国产欧美日韩综合在线一区二区| 久久国产精品男人的天堂亚洲| 搡老乐熟女国产| 精品国产乱码久久久久久男人| 女同久久另类99精品国产91| 女人精品久久久久毛片| 宅男免费午夜| 咕卡用的链子| 日韩大码丰满熟妇| tube8黄色片| 亚洲精品久久午夜乱码| 大型av网站在线播放| 国产欧美日韩一区二区三区在线| 午夜激情久久久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一av免费看| 窝窝影院91人妻| 电影成人av| 老熟妇仑乱视频hdxx| svipshipincom国产片| 成在线人永久免费视频| 午夜两性在线视频| 精品久久蜜臀av无| 亚洲久久久国产精品| 亚洲一区中文字幕在线| 国产熟女午夜一区二区三区| 久久国产精品男人的天堂亚洲| 人人妻人人添人人爽欧美一区卜| 99国产综合亚洲精品| 亚洲熟女毛片儿| 精品欧美一区二区三区在线| 亚洲精品粉嫩美女一区| 国产精品1区2区在线观看. | 成人18禁在线播放| 国产精品av久久久久免费| 亚洲成人免费电影在线观看| 亚洲国产欧美在线一区| 日韩熟女老妇一区二区性免费视频| 欧美日韩精品网址| 黄色片一级片一级黄色片| 1024香蕉在线观看| 美国免费a级毛片| 超色免费av| 亚洲美女黄片视频| 亚洲色图综合在线观看| 久久精品成人免费网站| 国产一区有黄有色的免费视频| 日日摸夜夜添夜夜添小说| 丝袜人妻中文字幕| 91成人精品电影| 丰满迷人的少妇在线观看| 国产免费福利视频在线观看| 大型黄色视频在线免费观看| 最近最新中文字幕大全电影3 | 欧美日韩成人在线一区二区| 精品亚洲成国产av| 亚洲精品久久午夜乱码| 亚洲精品自拍成人| 色在线成人网|