黃健盛,李崇明,穆 斌,穆世江,封 麗,張 韻
(1.重慶市環(huán)境科學研究院,重慶401147;2.重慶市農業(yè)機械鑒定站,重慶402160;3.重慶星河房地產開發(fā)有限公司,重慶402260)
通常情況下,微生物燃料電池(microbial fuel cell,MFC)由陽極室、陽極、陰極、陰極室(單室型MFC中無陰極室)、陰陽極分隔材料(多為質子交換膜、離子交換膜或不用)、外電路組成。自Potter于1910年提出MFC的概念以來[1],研究者們設計出結構形式多樣的MFC,其目的是為了從MFC中得到更高的產電效率,提高MFC處理廢水的能力,降低造價并改善其實際應用能力。現從構造、原理、影響因素、應用及尚需解決的問題等方面對微生物燃料電池技術進行闡述。
從微生物燃料電池極室構造上,把其分為雙室微生物燃料電池(double chambers microbial fuel cell,DCMFC)、單室微生物燃料電池(single chamber microbial fuel cell,SCMFC)和電池組微生物燃料電池(multiple chambers microbial fuel cell,MCMFC)以及其他形式的微生物燃料電池。
隨著MFC的發(fā)展,研究者們或從分隔材料、或從陽極液的流向等方面對DCMFC進行了改進,以提高DCMFC產電及廢水處理能力,從而提高實際應用能力。相繼出現了經典H型DCMFC[2]、鹽橋DCMFC[3]、無膜DCMFC[4-5]、平板DCMFC[6]、微型DCMFC[7-9]、升流式DCMFC[10-11]、陰極鐵離子氧化DCMFC[12]。各結構形式見圖1。
對于DCMFC,因其系統(tǒng)內阻較高,因而DCMFC系統(tǒng)適用于確定一種特殊底物是否能用于產電,或接種后是否能形成微生物群落,但此種MFC系統(tǒng)很難區(qū)別不同的微生物或底物是否能提高反應器的性能。為了克服DCMFC系統(tǒng)存在的不足,Liu和Logan等研究人員設計出SCMFC,用于測試影響MFC功率輸出的因素。目前出現的SCMFC如圖2所示,包括管型SCMFC[13]、典型SCMFC[14]、新管型SCMFC[15-17]、旋轉陰極SCMFC[18-19]、石墨纖維刷陽極SCMFC[20]、滲析管SCMFC[21]、折流型SCMFC[22]等。
圖1 雙室微生物燃料電池結構形式:(A)典型DCMFC[2];(B)鹽橋式MFC[3];(C)無膜DCMFC[4];(D)平板型DCMFC[6];(E)微型DCMFC[7];(F)升流式DCMFC[10];(G)亞鐵離子氧化型DCMFC[12];(H)厭氧折流板反應器DCMFC[5]。
圖2 單室微生物燃料電池結構形式:(A)管型SCMFC[13];(B、D、E)新管型SCMFC[15-17];(C)石墨纖維刷陽極SCMFC[20];(F、G)旋轉陰極SCMFC[18-19];(H)滲透管SCMFC[21];(I)典型SCMFC[14];(J)折流型SCMFC[22]。
基于提高MFC的產電能力,Aelterman等[23]建造了如圖3(A)所示的6-電池組MFC,Shimoyama等[24]設計了如圖3(B)所示的12-盒式陰極MFC。
隨著MFC技術的發(fā)展,其在反應器結構形式上除了前述的雙室型MFC、單室型MFC以及多室型MFC外,還出現了其他各種結構形式的MFC(見圖4、5),如沉積型MFC[25-28]、管型膜陰極MFC[29]。
圖3 電池組MFC:(A)6-電池組MFC[23];(B)12-盒電極電池組MFC[24]
圖4 沉積型MFC:(A)根瘤沉積型MFC[25];(B)河流沉積型MFC[26];(C、D)海洋沉積型MFC[27-28]
圖5 管型膜陰極MFC
MFC是以微生物作為催化劑降解有機基質并有機基質中蘊含的化學能轉化為電能的裝置,由陽極區(qū)和陰極區(qū)組成,中間多用膜分隔。MFC產電及廢水處理原理如圖6所示,其工作過程分為4步:在陽極區(qū),微生物利用電極材料作為電子受體將有機基質氧化,這個過程要伴隨電子和質子的釋放;釋放的電子在微生物作用下通過電子傳遞介質轉移到電極上;電子通過導線轉移到陰極區(qū),同時,由煙酰胺腺嘌呤二核苷磷酸(NADH)釋放出來的質子透過質子交換膜也到達陰極區(qū);在陰極區(qū),電子、質子和氧氣反應生成水。因此,有機基質在MFC陽極區(qū)在微生物的作用下被降解去除,而隨著陽極有機基質被不斷氧化和陰極反應的持續(xù)進行,電子沿外電路持續(xù)流動而形成電流,其反應式如下(以葡萄糖基質為例):
陽極反應:
陰極反應:
圖6 MFC產電及廢水處理原理
到目前為止,實驗室研究的MFC的性能低于理想狀態(tài)。影響MFC性能的因素包括微生物的種類、底物的種類和濃度、離子強度、pH、溫度、反應器的結構、電極材料、質子交換系統(tǒng)以及極室的操作條件等[30]。
產電:由于MFC技術可通過微生物的作用把有機廢物中的化學能轉化為電能,故MFC可用于發(fā)電[3,31-34]。廢水處理:生活污水、工業(yè)廢水、養(yǎng)殖廢水等含有豐富的有機物[6,13,35-36],可作為MFC底物加以利用達到污水凈化的目的。產氫MFC陽極反應產生的電子和質子在陰極結合產生氫氣[37],使得MFC技術可改裝用于產氫來代替產電。傳感器:MFC的產電量與廢水中有機污染物濃度之間成比例關系,使得MFC可以BOD傳感器的形式用于污染物的分析和原位過程監(jiān)測與控制[38-42]。生物修復:MFC技術可對被污染的環(huán)境進行生物修復,其生物修復的形式包括陰極生物修復和陽極生物修復。其中,陰極生物修復可用于地下水的修復,細菌在陰極使用電子完成硝酸鹽[43-45]或 U(Ⅵ)的還原[46]。通常意義的生物修復都是污染物在MFC的陰極被還原,但是,當存在高濃度的可生物降解有機物時,生物誘發(fā)的污染物也可在陽極被氧化,這要求陰極有足夠的電子受體,此生物修復被稱為陽極生物修復[47]。
(1)MFC產電功率密度低,使MFC技術產電與常規(guī)能源發(fā)電相比實用價值不高。
(2)使用碳紙、載鉑碳紙等材料作電極,MFC制造成本昂貴,增加了MFC技術在廢水處理領域的應用成本。
(3)目前各國研究報道的MFC多以間歇操作為主,且反應器結構形式多樣、容積過小不利于放大,這不利于MFC技術在實際廢水處理領域的應用。
(4)現有的MFC技術多為針對產電能力的研究,對高有機物濃度廢水處理效率下產電的MFC技術研究較少,這造成針對廢水處理的MFC基礎研究相對缺乏,進而阻礙了MFC技術在廢水處理領域的應用。
(5)低有機物濃度廢水在MFC研究中使用較多,而對于高有機物濃度廢水研究甚少,這不利于厭氧MFC技術的發(fā)展。
(6)MFC技術廢水有機基質降解及產電機理的研究不足也是限制MFC技術在廢水處理領域應用的一個關鍵因素。
[1] Du ZW,Li HR,Gu TY.A state of the art review on microbial fuel cells:A promising technology for wastewater treatment and bioenergy[J].Biotechnol Adv,2007,25(5):464-482.
[2] Logan BE,Murano C,Scott K,et al.Electricity generation from cysteine in a microbial fuel cell[J].Water Res,2005,39(5):942-952.
[3] Min B,Cheng S,Logan BE.Electricity generation using membrane and salt bridge microbial fuel cells[J].Water Res,2005,39(9):1675-1686.
[4] Ghangrekar MM,Shinde VB.Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production[J].Bioresour Technol,2007,98(15):2879-2885.
[5] Aldrovandi A,Marsili E,Stante L,et al.Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell[J].Bioresour Technol,2009,100(13):3252-3260.
[6] Min B,Logan BE.Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J].Environ Sci Technol,2004,38(21):5809-5814.
[7] Ringeisen BR,Henderson E,Wu PK,et al.High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10[J].Environ Sci Technol,2006,40(8):2629-2634.
[8] Biffinger JC,Pietron J,Ray R,et al.A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathode[J].Biosens Bioelectron,2007,22(8):1672-1679.
[9] Ringeisen BR,Ray R,Little B.A miniature microbial fuel cell operating with an aerobic anode chamber[J].J Power Sources,2007,165(2):591-597.
[10] He Z,Minteer SD,Angenent LT.Electricity generation from artificial wastewater using an upflow microbial fuel cell[J].Environ Sci Technol,2005,39(14):5262-5267.
[11] He Z,Wagner N,Minteer SD,et al.An upflow microbial fuel cell with an interior cathode:Assessment of the internal resistance by impedance spectroscopy[J].Environ Sci Technol,2006,40(17):5262-5267.
[12] Heijne AT,Hamelers HVM,Buisman CJN.Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte[J].Environ Sci Technol,2007,41(11):4130-4134.
[13] Liu H,Ramnarayanan R,Logan BE.Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J].Environ Sci Technol,2004,38(7):2281-2285.
[14] Liu H,Logan BE.Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J].Environ Sci Technol,2004,38(14):4040-4046.
[15] Rabaey K,Clauwaert P,Aelterman P,et al.Tubular microbial fuel cells for efficient electricity generation[J].Environ Sci Technol,2005,39(20):8077-8082.
[16] Zhuang L,Zhou SG.Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack[J].Electrochem Commun,2009,11(5):937-940.
[17] Kim JR,Premier GC,Hawkes FR,et al.Development of a tubular microbial fuel cell(MFC)employing a membrane electrode assembly cathode[J].J Power Sources,2009,187(2):393-399.
[18] He Z,Shao HB,Angenent LT.Increased power production from a sediment microbial fuel cell with a rotating cathode[J].Biosens Bioelectron,2007,22(12):3252-3255.
[19] He Z,Kan JJ,Wang YB,et al.Electricity production coupled to ammonium in a microbial fuel cell[J].Environ Sci Technol,2009,43(9):3391-3397.
[20] Logan BE,Cheng S,Watson V,et al.Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J].Environ Sci Technol,2007,41(9):3341-3346.
[21] Biffinger JC,Ray R,Little B,et al.Diversifying biological fuel cell design by use of nanoporous filters[J].Environ Sci Technol,2007,41(4):1444-1449.
[22] Li ZL,Yao L,Kong LC,et al.Electricity generation using a baffled microbial fuel cell convenient for stacking[J].Bioresour Technol,2008,99(6):1650-1655.
[23] Aelterman P,Rabaey K,Pham HT,et al.Continuous electricity generation at high voltage and currents using stacked microbial fuel cells[J].Environ Sci Technol,2006,40(10):3388-3394.
[24] Shimoyama T,Komukai S,Yamazawa A,et al.Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell[J].Appl Microbiol Biotechnol,2008,80(2):325-330.
[25] Schamphelaire LD,Bossche LVD,Dang HS,et al.Microbial fuel cells generating electricity from rhizodeposits of rice plants[J].Environ Sci Technol,2008,42(8):3053-3058.
[26] Donovan C,Dewan A,Heo D,et al.Batteryless,wireless sensor powered by a sediment microbial fuel cell[J].Environ Sci Technol,2008,42(22):8591-8596.
[27] Reimers CE,Tender LM,Fertig S,et al.Harvesting energy from the marine sediment-water interface[J].Environ Sci Technol,2001,35(1):192-195.
[28] Nielsen ME,Reimers CE,Stecher HA.Enhanced power from chambered benthic microbial fuel cell[J].Environ Sci Technol,2007,41(22):7895-7900.
[29] Zuo Y,Cheng SA,Call D,et al.Tubular membrane cathodes for scalable power generation in microbial fuel cells[J].Environ Sci Technol,2007,41(9):3347-3353.
[30] Liu H,Cheng S,Logan BE.Power generation in fed-batch microbial fuel cells as a function of ionic strength,temperature,and reactor configuration[J].Environ Sci Technol,2005b,39(14):5488-5493.
[31] Moon H,Chang IS,Kim BH.Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell[J].Bioresour Technol,2006,97(4):621-627.
[32] Chaudhury SK,Lovley DR.Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J].Nat Biotechnol,2003,21(10):1229-1232.
[33] Rosenbaum M,Schroder U,Scholz F.Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions[J].J Solid State Electrochem,2006,10(10):872-878.
[34] Liu H,Cheng SA,Logan BE.Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J].Environ Sci Technol,2005,39(2):658-662.
[35] Oh SE,Logan BE.Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technology[J].Water Res,2005,39(19):4673- 4682.
[36] Zuo Y,Maness PC,Logan BE.Electricity production from stream-exploded corn stover biomass[J].Energ Fuel,2006,20(4):1716-1721.
[37] Liu H,Grot S,Logan BE.Electrochemically assisted microbial production of hydrogen from acetate[J].Environ Sci Technol,2005,39(11):4317-4320.
[38] Kim BH,Chang IS,Gil GC,et al.Novel BOD(biological oxygen demand)sensor using mediator-less microbial fuel cell[J].Biotechnol Lett,2003,25(7):541-545.
[39] Chang IS,Jang JK,Gil GC,et al.Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor[J].Biosens Bioelectron,2004,19(6):607-613.
[40] Chang IS,Moon H,Jang JK,et al.Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors[J].Biosens Bioelectron,2005,20(9):1856-1859.
[41] Moon H,Chang IS,Kang KH,et al.Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand(BOD)sensor[J].Biotechnol Lett,2004, 26(22):1717-1721.
[42] Kang KH,Jang JK,Pham TH,et al.A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor[J].Biotechnol Lett,2003,25(16):1357-1361.
[43] Gregory KB,Bond DR,Lovley DR.Graphite electrodes as electron donors for anaerobic respiration[J].Environ Microbiol,2004,6(6):596-604
[44] Bond DR,Holmes DE,Tender LM,et al.Electrode-reducing microorganisms that harvest energy from marine sediments[J].Sci,2002,295(5554):483-485.
[45] Bond DR,Lovley DR.Electricity production by Geobacter sulfurreducens attached to electrodes[J].Appl Environ Microbiol,2003,69(3):1548-1555.
[46] Gregory KB,Lovley DR.Remediation and recovery of uranium from contaminated subsurface environments with electrodes[J].Environ Sci Technol,2005,39(22):8943-8947.
[47] Jin S,Morris J.The feasibility of using microbial fuel cell technology in bioremediation of hydrocarbons in groundwater[J].J Environ Sci Health,2008,43(1):18-23.