• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Limit load and failure mechanisms of a vertical Hoek-Brown rock slope

    2024-03-25 11:06:58JimShiauWarayutDokueaSuraparKeawsawasvongPitthayaJamsawang

    Jim Shiau,Warayut Dokuea,Surapar Keawsawasvong,Pitthaya Jamsawang

    a School of Engineering, University of Southern Queensland, Toowoomba, 4350, QLD, Australia

    b Department of Civil Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

    c Research Unit in Sciences and Innovative Technologies for Civil Engineering Infrastructures, Department of Civil Engineering, Thammasat School of Engineering,Thammasat University, Pathumthani,12120, Thailand

    d Soil Engineering Research Center, Department of Civil Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok,10800, Thailand

    Keywords: Bearing capacity Rock slope Vertical slope Finite element limit analysis Hoek-Brown yield criterion

    ABSTRACT The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope.The objective function of the mathematical programming problem is such as to optimize a boundary load,which is known as the limit load,resembling the ultimate bearing capacity of a strip footing.While focusing on the vertical slope,parametric studies are carried out for several dimensionless ratios such as the dimensionless footing distance ratio,the dimensionless height ratio,and the dimensionless rock strength ratio.A comprehensive set of design charts is presented,and failure envelopes shown with the results explained in terms of three identified failure mechanisms,i.e.the face,the toe,and the Prandtl-type failures.These novel results can be used with great confidence in design practice,in particularly noting that the current industry-based design procedures for the presented problem are rarely found.

    1.The problem

    Hoek and Brown (1980) developed a failure criterion that is based on empirical approach for rock masses.It employed a series of triaxial test results of intact and jointed rocks.The impact of heavily fragmented rocks was further considered in the wellknown 2002 version of the Hoek-Brown (HB) rock material model(Hoek et al.,2022).It can be used to describe mathematically for the principal stresses(σ1and σ3),as shown in Eqs.(1)-(4).

    whereGSIrepresents the geological strength index,miis the parameter for yielding,σciis the uniaxial strength of the intact rock mass,andDdenotes the disturbance factor.The HB yield criterion has been recently formulated into the advanced finite element limit analysis (FELA) package,i.e.Optum G2 (Optum CE,2021),and it is employed as tool for the current study.

    Fig.1 shows the statement of the problem of a plane strain strip footing on a vertical HB rock slope.The slope has a vertical heightH.The rigid strip footing has a widthBand the distance from the edge of the slope to the edge of the footing isL.It follows that the proposed study has seven input variables,i.e.H,B,L,σci,GSI,mi,and the rock unit weight γ.Note thatDis assumed to be zero for undisturbed in situ rock masses.The footing is assumed to be very rigid so that the strength of the footing is large enough and would not fail before the underlying rock.The surface roughness of the footing is fully rough since we assumed that the underlying rock is fully connected to the footing.The theory of FELA is quite different from that of the displacement-based finite element method(FEM),as the former is a direct method for the perfectly plastic soil or rock model,and the elastic modulus plays no role in the computation.Therefore,the solution and output are only for stability prediction,but not displacement.

    Fig.1.Problem definition.

    To reduce these input parameters,dimensionless parameters were used throughout this paper.Consequently,for the output of bearing capacityqu,it is normalised with respect to γBand the relationship between the bearing capacity factorN=qu/(γB)and all five dimensionless input parameters can be stated as follows:

    whereL/Bis the dimensionless footing distance,H/Bis the dimensionless height of a vertical cut slope,and σci/(γB) is the dimensionless strength ratio.The selected ranges of the HB strength parameters would cover most practical ranges in design practice since we follow the suggested ranges ofGSIandmifrom Hoek et al.(2022).Note that the bearing capacity of a footing on a vertical rock slope is largely affected by its developed failure mechanism.In generally,there are three possible failure mechanisms for the problem,i.e.the toe failure,the face failure,and the Prandtl-type failure,as illustrated in Fig.1.

    Like most other numerical techniques,a finite element mesh is needed for the FELA analysis.Fig.2 shows a typical adaptive FELA mesh for the problem.The domain needs to have sufficient size to ensure that the overall velocity field is contained within the domain.Note that the left-handed,the right-handed,and the bottom boundaries have a distance of 2B,4Band 2B,respectively so that there is no intersection of the plastic zone at these boundaries.On the contrast,no boundary constraints are placed at the other surfaces,which are free to displace in all directions.The widthBof the footing is the boundary pressure to be optimized using the proposed FELA technique.It is interesting to note that,from the final adaptive mesh presented in Fig.2,the technique allows one to visually observing the locations of plastic zones and velocity discontinuities.All numerical simulations in this paper employed 5000 to 10,000 elements as the initial and the targeted number of elements with five adaptive iterations.This has been extensively tested and the accuracy of the results can be achieved with this proposed number of elements.

    Fig.2.A typical adaptive FELA mesh used in the study (L/B=3, H/B=4,σci/(γB)=100, mi=2, GSI=50).

    Since both UB and LB solutions can bracket the true solutions to within a few percentages,it is imperative that results produced by other numerical methods in the future should be compared with our rigorous solutions for validation.Interestingly,it is “theoretically” unnecessary to compare the current results with other published solutions,if any available.The FELA technique has been recently applied to several other geotechnical applications(Ukritchon and Keawsawasvong,2018;Keawsawasvong and Ukritchon,2019;Shiau and Al-Asadi,2021;Keawsawasvong and Shiau,2022a,b;Lai et al.,2022,2023;Shiau et al.,2023).Due to the space limit,more detailed discussions can also be found in Sloan (2013) and Krabbenhoft and Lyamin (2015).

    2.Previous study and motivation to the research

    Assessing the stability of footings located near slopes is not uncommon for geotechnical engineers in their daily design routine.Several researchers have attempted to determine the bearing capacity solutions of soil slope by employing various numerical and analytical techniques such as limit equilibrium method (Azzouz and Baligh,1983),slip-line method (Graham et al.,1988),finite element analysis (Georgiadis,2010a;Griffiths and Martin,2020),discontinuity layout optimization approach (Leshchinsky,2015),upper bound limit analysis (Georgiadis,2010b),lower bound limit analysis (Bhattacharya and Dutta,2020),and FELA (Shiau et al.,2004,2006,2011).It was noted that very few works were linked to the study of footings on vertical rock slopes.

    The yield criterion developed by Hoek and Brown (1980) and later upgraded by Hoek et al.(2022) has been widely used to compute the limit load of vertically loaded foundations on level ground with rock masses (e.g.Serrano and Olalla,1994;Yang and Yin,2005;Keawsawasvong et al.,2022).Nevertheless,research on the effect of rock slopes on the bearing capacity solutions is quite limited(Zhou et al.,2018,2019).In this paper,the influences of rock characteristics as well as several other geometrical parameters on footing bearing capacity of vertical slopes are investigated by employing the FELA.Furthermore,the associated failure mechanisms are identified and grouped into three categories,i.e.the face,the toe,and the Prandtl-type failures.Finally,a set of useful design tables and charts are presented for practical uses.

    3.Results and discussion

    Fig.3 presents the variation of bearing capacity factorN(average of UB and LB) withL/Bfor the different values ofH/B,σci/(γB),miandGSI.In general,an increase inL/Byields a nonlinear increase inN.When the footing is located away from the vertical slope,the load transferring area becomes larger (potential failure zone),resulting in greater values of the bearing capacity factorN.Noting thatNbecomes a constant after a certainL/Bvalue,indicating a typical Prandtl-type ground failure mechanism.In Fig.3a,the larger the slope height ratio (H/B),the smaller theN.It follows that,in Fig.3b-d,the greater the values of σci/(γB),miandGSI,the less theN.No“face failure”is observed in Fig.3 since the height of vertical slope is considered as small (H/B=2).It was therefore decided to present Fig.4 using different parameters,in which face failure may be demonstrated.Interestingly,it is found that “face failure” only occurs at small values ofL/Band large values ofH/B(see the green dashed lines).More discussions on the type of potential failure mechanisms are discussed in a later section.

    Fig.3.Variations of N with L/B for different values of (a) H/B,(b) σci/(γB),(c) mi,and (d) GSI.

    Fig.4.Effect of L/B on N by considering different values of (a) H/B,(b) σci/(γB),(c) mi,and (d) GSI.

    Fig.5.Variations of N with mi for different values of H/B and σci/(γB): (a) GSI=30 and (b) GSI=90.

    The effects ofmiandGSIon the bearing capacity factorNare shown in Figs.5 and 6,respectively.Since the parametermiis a representative of the mineralogy,composition,and grain size of the intact rock (Hoek et al.,2022),an increase inmiresults in a linear increase inN.The greater the σci/(γB),the larger theN.The exponential relationship betweenGSIandNis presented in Fig.6.An increase inGSIyields an increase inNnonlinearly.Indeed,this nonlinear increasing curve is a result of the function in the HB model(see the exponential equation in Eqs.(2)-(4)).Interestingly,a greaterGSIvalue represents a near undisturbed rock mass,and therefore it would yield a greaterNvalue,as shown in Fig.6.

    Fig.6.Variations of N with GSI for different values of H/B and σci/(γB): (a) mi=5 and (b) mi=20.

    Several examples of potential failure mechanisms from the studies are presented in Fig.7.ForH/B=1 and 2 in Fig.7a and b,respectively,only two possible failure patterns are found in all values ofL/B(i.e.the toe and the Prandtl-type).The Prandtl-type failure occurs atL/B=8 and 10,respectively,forH/B=1 and 2.All others are for the toe failures.As the slope height ratioH/Bincreases(see for exampleH/B=4 in Fig.7c),a third possible failure surface is found at small values ofL/B,i.e.the face failure as shown in green colour.On the other note,the Prandtl-type failure occurs atL/B=12 (see Fig.7c,H/B=4).

    Fig.7.Potential failure mechanisms for various L/B and H/B (mi=5, GSI=70,σci/(γB)=100): (a) H/B=1,(b) H/B=2,and (b) H/B=4.

    A design chart is therefore developed to identify the various failure patterns of a vertical slope.This is shown in Fig.8 for practical uses.In this chart,one can quickly determine a failure type by knowing the values ofH/BandL/B(see Zones I-III in the figure).It is to be noted that Zone III(face failure)can only be identified for small values ofL/Band large values ofH/B,whilst in contrast,Zone I(Prandtl-type) can be found at large values ofL/B.Zone II (i.e.toe failure)occurs in between Zones I and III,and by a larger proportion of the design map,it is for moderate values ofL/BandH/B.

    Fig.8.Various types of failure mechanisms (mi=5, GSI=70,σci/(γB)=100).

    4.Example

    For a vertical rock slope with a strip footing sitting on the surface with a distance ofL=4 m from a slope cut,it has a height ofH=2 m.The footing has a width ofB=1 m,and the rock has aGSI=70,mi=5,σci=2500 kPa,and γ=25 kN/m3.The bearing capacity (qu) of the footing is determined as follows:

    (1) CalculateH/B=2/1=2,L/B=4/1=4,and σci/(γB)=2500/(25 ×1)=100.

    (2) The bearing capacity factorNcan be obtained using Fig.4a,whereN=115.

    (3) The bearing capacity (qu)is calculated as=115 × 25 ×1=2875 kPa.

    5.Conclusions

    A vertical rock slope has been investigated with respect to its stability under a strip footing using the HB failure criteria and the advance FELA of upper and lower bounds with adaptive meshing scheme.In this short technical note,both UB and LB solutions were confidently obtained within 3% accuracy,and they can be used to compare with new solutions from future research work.The current study has also successfully identified three distinct failure mechanisms for the problem,i.e.the toe,the face,and the Prandtltype.Practical design tables and charts for determining the limit load and identifying a corresponding failure type are presented.Finally,an application example was given to facilitate the determination of the ultimate capacity as well as the type of failure pattern of a given vertical rock slope.In view of the current lacking industry-based stability design procedures for a vertical rock slope,this novel short letter is of practical importance in assisting engineers in their daily design routine.A final note on the future work recommendation is an extension for studying various rock slope angles and the use of machine learning approach to provide a predictive model.Besides,the current work can be expanded to a full 3D analysis using rectangular or circular footings,as the current solutions are limited to the cases of planar footings on homogeneous rock slopes.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was funded by National Science,Research and Innovation Fund (NSRF),and King Mongkut’s University of Technology North Bangkok with Contract No.KMUTNB-FF-66-12.

    欧美激情久久久久久爽电影| 午夜免费观看网址| 精品久久久久久久末码| 欧美中文综合在线视频| 久久精品亚洲精品国产色婷小说| 亚洲 国产 在线| 91麻豆精品激情在线观看国产| 国产成人精品无人区| 成人国语在线视频| 中文资源天堂在线| 成人三级黄色视频| 两个人视频免费观看高清| 老司机午夜十八禁免费视频| 人人妻人人看人人澡| 午夜视频精品福利| 亚洲熟妇中文字幕五十中出| 久9热在线精品视频| 成人18禁高潮啪啪吃奶动态图| 国产乱人伦免费视频| 亚洲成人精品中文字幕电影| 亚洲欧美一区二区三区黑人| 欧美另类亚洲清纯唯美| 超碰成人久久| 中文字幕人成人乱码亚洲影| 免费人成视频x8x8入口观看| 色综合欧美亚洲国产小说| 超碰成人久久| 男女做爰动态图高潮gif福利片| 亚洲av第一区精品v没综合| 桃色一区二区三区在线观看| 亚洲一区二区三区不卡视频| 国产真人三级小视频在线观看| 99热只有精品国产| 久久中文字幕一级| 亚洲狠狠婷婷综合久久图片| 亚洲国产欧洲综合997久久,| 国产精品一区二区三区四区久久| 亚洲熟妇中文字幕五十中出| 午夜福利免费观看在线| 国产亚洲精品久久久久5区| 两个人视频免费观看高清| 久久久久九九精品影院| 国产精品美女特级片免费视频播放器 | 97碰自拍视频| 一区福利在线观看| 国产精品日韩av在线免费观看| 99久久无色码亚洲精品果冻| 99久久综合精品五月天人人| 在线a可以看的网站| 国产主播在线观看一区二区| 男插女下体视频免费在线播放| 国产av一区在线观看免费| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av日韩精品久久久久久密| 国产真实乱freesex| 日韩大尺度精品在线看网址| 此物有八面人人有两片| 久久人妻福利社区极品人妻图片| 欧美中文日本在线观看视频| 精品福利观看| 国产91精品成人一区二区三区| 国模一区二区三区四区视频 | 在线a可以看的网站| 日韩欧美一区二区三区在线观看| 一本一本综合久久| 国产69精品久久久久777片 | 人妻夜夜爽99麻豆av| 亚洲自拍偷在线| 免费观看人在逋| 又爽又黄无遮挡网站| 国产免费男女视频| 欧美黑人精品巨大| 真人一进一出gif抽搐免费| 91大片在线观看| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| av片东京热男人的天堂| 欧美激情久久久久久爽电影| 深夜精品福利| 精品无人区乱码1区二区| 国产熟女xx| 精品久久久久久,| 日本免费a在线| 免费看日本二区| 在线十欧美十亚洲十日本专区| av国产免费在线观看| 亚洲欧美一区二区三区黑人| 久久人妻av系列| 身体一侧抽搐| 欧美日韩亚洲综合一区二区三区_| 亚洲成a人片在线一区二区| 中文资源天堂在线| 亚洲美女视频黄频| 欧美成狂野欧美在线观看| 看免费av毛片| 亚洲精品在线观看二区| 亚洲黑人精品在线| 观看免费一级毛片| 欧美又色又爽又黄视频| 亚洲一码二码三码区别大吗| 久久久久精品国产欧美久久久| 中文亚洲av片在线观看爽| 美女高潮喷水抽搐中文字幕| 狂野欧美白嫩少妇大欣赏| 人人妻人人看人人澡| 色在线成人网| 99riav亚洲国产免费| 精品久久久久久久久久免费视频| 婷婷精品国产亚洲av在线| 嫩草影院精品99| 欧美中文日本在线观看视频| 日本黄色视频三级网站网址| 亚洲精品美女久久av网站| 亚洲成人久久爱视频| 黑人操中国人逼视频| 无遮挡黄片免费观看| av视频在线观看入口| 日本在线视频免费播放| 一区二区三区高清视频在线| 国产伦人伦偷精品视频| 国产精品一区二区免费欧美| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人久久性| 久久久精品欧美日韩精品| 欧美一级毛片孕妇| 人妻夜夜爽99麻豆av| 露出奶头的视频| 久久精品国产99精品国产亚洲性色| 激情在线观看视频在线高清| 亚洲精品色激情综合| 久久香蕉激情| 99精品在免费线老司机午夜| 身体一侧抽搐| 黄频高清免费视频| 97超级碰碰碰精品色视频在线观看| 男男h啪啪无遮挡| 亚洲成人精品中文字幕电影| 成人手机av| 免费一级毛片在线播放高清视频| 国产又色又爽无遮挡免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区字幕在线| 国产精品一及| 18禁黄网站禁片午夜丰满| 国产成+人综合+亚洲专区| 成人三级黄色视频| 麻豆国产av国片精品| 日韩欧美在线乱码| 黄色女人牲交| 免费在线观看亚洲国产| 成人国产综合亚洲| 亚洲精品美女久久av网站| 夜夜夜夜夜久久久久| 欧美精品亚洲一区二区| a级毛片a级免费在线| 精品午夜福利视频在线观看一区| 久久久久久免费高清国产稀缺| 国产三级黄色录像| 亚洲av电影不卡..在线观看| 999久久久国产精品视频| 日韩欧美免费精品| 九色国产91popny在线| 好男人电影高清在线观看| 欧美日韩乱码在线| 亚洲 欧美一区二区三区| 在线观看www视频免费| 巨乳人妻的诱惑在线观看| 一二三四社区在线视频社区8| 免费人成视频x8x8入口观看| e午夜精品久久久久久久| 亚洲av成人精品一区久久| 国产精品国产高清国产av| 国产亚洲精品第一综合不卡| 亚洲av成人av| 午夜福利在线观看吧| 亚洲欧美精品综合久久99| 国产亚洲精品av在线| 老熟妇仑乱视频hdxx| 香蕉av资源在线| 1024视频免费在线观看| 欧美黄色淫秽网站| 99久久99久久久精品蜜桃| 久久精品人妻少妇| 色播亚洲综合网| 免费在线观看日本一区| 中文字幕人成人乱码亚洲影| 操出白浆在线播放| 黑人巨大精品欧美一区二区mp4| 视频区欧美日本亚洲| 成人亚洲精品av一区二区| 亚洲中文字幕一区二区三区有码在线看 | 日本 av在线| 一级作爱视频免费观看| 国产精品免费视频内射| 国内毛片毛片毛片毛片毛片| 高清在线国产一区| 欧美+亚洲+日韩+国产| 亚洲国产欧美一区二区综合| 国产午夜精品论理片| 亚洲激情在线av| 午夜老司机福利片| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交黑人性爽| 欧洲精品卡2卡3卡4卡5卡区| 久久久国产欧美日韩av| 99riav亚洲国产免费| 在线观看舔阴道视频| 久久精品国产亚洲av香蕉五月| 一级作爱视频免费观看| 亚洲熟女毛片儿| 俄罗斯特黄特色一大片| 窝窝影院91人妻| 男人舔女人下体高潮全视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产视频一区二区在线看| 最近视频中文字幕2019在线8| 级片在线观看| 亚洲欧美日韩无卡精品| 国产成人av教育| 少妇熟女aⅴ在线视频| 亚洲熟妇中文字幕五十中出| 国产av一区在线观看免费| 99国产极品粉嫩在线观看| 欧美成人一区二区免费高清观看 | 最好的美女福利视频网| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区三区四区免费观看 | 在线观看www视频免费| 午夜亚洲福利在线播放| 中文字幕av在线有码专区| 婷婷六月久久综合丁香| 99久久综合精品五月天人人| 男人舔奶头视频| 这个男人来自地球电影免费观看| 亚洲va日本ⅴa欧美va伊人久久| 天堂动漫精品| 色av中文字幕| 久久久国产欧美日韩av| 精品无人区乱码1区二区| 久久香蕉精品热| 叶爱在线成人免费视频播放| 日日摸夜夜添夜夜添小说| 婷婷六月久久综合丁香| 99久久综合精品五月天人人| 最好的美女福利视频网| 三级毛片av免费| 欧美成人午夜精品| 亚洲五月天丁香| 韩国av一区二区三区四区| 精品乱码久久久久久99久播| 成人亚洲精品av一区二区| 日韩精品青青久久久久久| 国产成人影院久久av| 国产成+人综合+亚洲专区| 一二三四社区在线视频社区8| 美女扒开内裤让男人捅视频| 97人妻精品一区二区三区麻豆| 久久久国产成人免费| 黄色成人免费大全| 亚洲aⅴ乱码一区二区在线播放 | 国产成人影院久久av| 久久精品亚洲精品国产色婷小说| 国产一区二区三区在线臀色熟女| 国产99久久九九免费精品| 男女做爰动态图高潮gif福利片| 国产视频内射| 999久久久国产精品视频| a在线观看视频网站| 日本熟妇午夜| 日韩欧美免费精品| 欧美乱码精品一区二区三区| 亚洲国产欧美人成| 国产精品一区二区免费欧美| 国产91精品成人一区二区三区| 老司机福利观看| av天堂在线播放| 麻豆国产av国片精品| 在线a可以看的网站| 男女之事视频高清在线观看| 成人精品一区二区免费| 亚洲精品粉嫩美女一区| 国产99久久九九免费精品| 一进一出好大好爽视频| 国产久久久一区二区三区| 久久国产乱子伦精品免费另类| 一进一出抽搐动态| 一进一出抽搐gif免费好疼| 18禁裸乳无遮挡免费网站照片| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色丝袜av网址大全| 欧美av亚洲av综合av国产av| 国内精品久久久久久久电影| 又粗又爽又猛毛片免费看| 在线观看免费日韩欧美大片| 女同久久另类99精品国产91| 免费看十八禁软件| 在线a可以看的网站| 大型av网站在线播放| 欧美日韩国产亚洲二区| 叶爱在线成人免费视频播放| 久久久久免费精品人妻一区二区| 中文字幕熟女人妻在线| 看黄色毛片网站| 天堂动漫精品| 亚洲天堂国产精品一区在线| 91麻豆精品激情在线观看国产| 亚洲avbb在线观看| 国产一区在线观看成人免费| 成年女人毛片免费观看观看9| 久久久久亚洲av毛片大全| 真人一进一出gif抽搐免费| 黑人巨大精品欧美一区二区mp4| 大型av网站在线播放| 特级一级黄色大片| 搡老妇女老女人老熟妇| 欧美日韩国产亚洲二区| 精品国产乱码久久久久久男人| 麻豆一二三区av精品| 免费高清视频大片| 高潮久久久久久久久久久不卡| 国产91精品成人一区二区三区| 欧美中文综合在线视频| 99久久精品热视频| www.熟女人妻精品国产| 色综合亚洲欧美另类图片| 精品久久久久久成人av| 悠悠久久av| 国产一区二区三区在线臀色熟女| www国产在线视频色| 一本大道久久a久久精品| 国产精品av视频在线免费观看| 成人午夜高清在线视频| 精品久久久久久久久久免费视频| 欧美日本亚洲视频在线播放| 午夜福利在线观看吧| 一区二区三区国产精品乱码| 18禁黄网站禁片免费观看直播| 亚洲成人久久爱视频| 亚洲国产高清在线一区二区三| 午夜亚洲福利在线播放| 九色国产91popny在线| 精品人妻1区二区| 在线观看午夜福利视频| 亚洲国产欧美网| 91麻豆精品激情在线观看国产| 精品一区二区三区四区五区乱码| 亚洲精品一卡2卡三卡4卡5卡| 淫秽高清视频在线观看| 黄色丝袜av网址大全| 午夜免费成人在线视频| 一本久久中文字幕| 欧美精品啪啪一区二区三区| 免费在线观看完整版高清| 国内久久婷婷六月综合欲色啪| 久久亚洲精品不卡| 高清在线国产一区| 久久久久久久久久黄片| 午夜精品一区二区三区免费看| 美女高潮喷水抽搐中文字幕| 一进一出好大好爽视频| xxx96com| 老汉色av国产亚洲站长工具| 天堂av国产一区二区熟女人妻 | www.熟女人妻精品国产| 日韩欧美三级三区| 人妻丰满熟妇av一区二区三区| 五月玫瑰六月丁香| 精品久久久久久久久久免费视频| 黄片小视频在线播放| 级片在线观看| 五月玫瑰六月丁香| 丁香六月欧美| 亚洲人成77777在线视频| 99久久99久久久精品蜜桃| 最近视频中文字幕2019在线8| 国产亚洲精品av在线| 成在线人永久免费视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区黑人| 国产黄片美女视频| 午夜免费激情av| 一区二区三区激情视频| 亚洲色图 男人天堂 中文字幕| 在线观看www视频免费| 一本一本综合久久| 又粗又爽又猛毛片免费看| 精品一区二区三区四区五区乱码| 女人高潮潮喷娇喘18禁视频| 黄色片一级片一级黄色片| 又粗又爽又猛毛片免费看| 很黄的视频免费| 精品人妻1区二区| 国产97色在线日韩免费| 中文字幕人成人乱码亚洲影| 国产av又大| 又黄又爽又免费观看的视频| 亚洲国产欧美一区二区综合| 亚洲国产高清在线一区二区三| 俄罗斯特黄特色一大片| 国产午夜精品论理片| 国产黄色小视频在线观看| 欧美激情久久久久久爽电影| 这个男人来自地球电影免费观看| 身体一侧抽搐| 国内精品久久久久久久电影| 日韩欧美精品v在线| 精品午夜福利视频在线观看一区| 国产蜜桃级精品一区二区三区| 欧美大码av| 亚洲熟妇中文字幕五十中出| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 国产免费男女视频| 最近最新免费中文字幕在线| 妹子高潮喷水视频| 一进一出抽搐动态| 欧美av亚洲av综合av国产av| 日本在线视频免费播放| 国产精品一区二区三区四区久久| 色综合婷婷激情| 日韩欧美免费精品| 国产精品1区2区在线观看.| 俺也久久电影网| 免费在线观看影片大全网站| 麻豆国产97在线/欧美 | 日韩欧美三级三区| 真人做人爱边吃奶动态| 黄频高清免费视频| 国产黄片美女视频| 亚洲色图 男人天堂 中文字幕| 亚洲专区中文字幕在线| 成人国语在线视频| 国产av一区二区精品久久| 久久热在线av| 90打野战视频偷拍视频| 少妇熟女aⅴ在线视频| 久久精品91无色码中文字幕| 悠悠久久av| 在线看三级毛片| 亚洲国产精品999在线| 欧美另类亚洲清纯唯美| 国产成年人精品一区二区| 黄色毛片三级朝国网站| 51午夜福利影视在线观看| 亚洲色图av天堂| 俺也久久电影网| 午夜视频精品福利| 女人被狂操c到高潮| 亚洲片人在线观看| 精品一区二区三区av网在线观看| 亚洲av日韩精品久久久久久密| 欧美乱色亚洲激情| 18美女黄网站色大片免费观看| 国产午夜福利久久久久久| 亚洲人成电影免费在线| 少妇人妻一区二区三区视频| 欧洲精品卡2卡3卡4卡5卡区| 男女下面进入的视频免费午夜| 女人被狂操c到高潮| 草草在线视频免费看| 国产久久久一区二区三区| 精华霜和精华液先用哪个| 亚洲一区高清亚洲精品| 99久久精品热视频| 国产精品野战在线观看| 最近最新中文字幕大全免费视频| 日韩中文字幕欧美一区二区| 三级毛片av免费| www日本黄色视频网| 91大片在线观看| 久久久久久久午夜电影| 天天一区二区日本电影三级| 青草久久国产| 欧美日本亚洲视频在线播放| 国产av一区在线观看免费| 哪里可以看免费的av片| 女人爽到高潮嗷嗷叫在线视频| 亚洲aⅴ乱码一区二区在线播放 | 久久久国产成人精品二区| 久久这里只有精品中国| 免费在线观看日本一区| 国产黄色小视频在线观看| 国产视频一区二区在线看| 国产成人aa在线观看| 欧美av亚洲av综合av国产av| 最近最新中文字幕大全电影3| 亚洲精品粉嫩美女一区| 国内精品一区二区在线观看| 免费看十八禁软件| 国产三级中文精品| 国产成人啪精品午夜网站| 长腿黑丝高跟| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品一区二区www| 亚洲五月天丁香| 午夜福利高清视频| 欧美成人免费av一区二区三区| 久久久久久久久久黄片| 成人永久免费在线观看视频| 十八禁人妻一区二区| 国产精品久久久久久亚洲av鲁大| 久久伊人香网站| 99在线人妻在线中文字幕| 亚洲自偷自拍图片 自拍| 午夜免费激情av| 人人妻,人人澡人人爽秒播| 日本三级黄在线观看| 亚洲熟妇中文字幕五十中出| 国产激情欧美一区二区| 日韩三级视频一区二区三区| 国产激情欧美一区二区| 国产黄a三级三级三级人| 国产99久久九九免费精品| 免费高清视频大片| 91老司机精品| 美女高潮喷水抽搐中文字幕| 日本一本二区三区精品| 日韩欧美三级三区| 淫妇啪啪啪对白视频| www.999成人在线观看| 免费观看精品视频网站| 黄色视频不卡| 真人做人爱边吃奶动态| 精品久久久久久久毛片微露脸| 久久精品国产综合久久久| 极品教师在线免费播放| 无限看片的www在线观看| 日日干狠狠操夜夜爽| 色老头精品视频在线观看| 国产精品 国内视频| 一级黄色大片毛片| 一边摸一边抽搐一进一小说| 在线a可以看的网站| 午夜福利视频1000在线观看| 亚洲成人免费电影在线观看| 男人的好看免费观看在线视频 | 午夜精品久久久久久毛片777| 久久欧美精品欧美久久欧美| 法律面前人人平等表现在哪些方面| 变态另类丝袜制服| 国产乱人伦免费视频| 三级毛片av免费| 国产精品久久久人人做人人爽| 亚洲av成人一区二区三| 久久精品成人免费网站| av天堂在线播放| 欧美大码av| 日韩欧美免费精品| 身体一侧抽搐| 亚洲精品国产一区二区精华液| 国产三级黄色录像| 久久国产精品影院| 免费在线观看亚洲国产| 在线观看一区二区三区| 天堂av国产一区二区熟女人妻 | 成人精品一区二区免费| 国产精品 国内视频| 亚洲精品在线观看二区| 精品第一国产精品| 搡老妇女老女人老熟妇| 日韩欧美 国产精品| 色av中文字幕| videosex国产| 国产视频一区二区在线看| 欧美黄色淫秽网站| 国产av不卡久久| 白带黄色成豆腐渣| 午夜老司机福利片| 丰满人妻一区二区三区视频av | 99热这里只有精品一区 | 美女扒开内裤让男人捅视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产精品合色在线| 99久久国产精品久久久| 亚洲成人国产一区在线观看| 超碰成人久久| 日本一区二区免费在线视频| 国产精品久久久久久精品电影| 黑人操中国人逼视频| 两性夫妻黄色片| av在线播放免费不卡| 一区二区三区国产精品乱码| 午夜免费激情av| 巨乳人妻的诱惑在线观看| 精品久久久久久久人妻蜜臀av| www.www免费av| 亚洲精品在线观看二区| 久久久精品大字幕| 母亲3免费完整高清在线观看| www.自偷自拍.com| 欧美久久黑人一区二区| а√天堂www在线а√下载| 日本免费一区二区三区高清不卡| 久久伊人香网站| 久久人妻福利社区极品人妻图片| 悠悠久久av| 伦理电影免费视频| 日本免费a在线| 天天躁夜夜躁狠狠躁躁| 久久人妻av系列| 69av精品久久久久久| 午夜免费成人在线视频| 精品国产乱子伦一区二区三区| 久久国产精品影院| 夜夜夜夜夜久久久久| 99在线人妻在线中文字幕| 久久国产精品影院| 久久精品国产99精品国产亚洲性色| 麻豆国产97在线/欧美 | 欧美zozozo另类| 久久久久亚洲av毛片大全| 日韩大尺度精品在线看网址| 18美女黄网站色大片免费观看|