• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metadynamic Recrystallization of the As-cast 42CrMo Steel after Normalizing and Tempering during Hot Compression

    2012-01-20 04:46:06QIHuipingandLIYongtang

    QI Huiping* and LI Yongtang

    School of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China

    1 Introduction

    Ring rolling is an advanced technology to produce all kinds of ring parts.The existing hot ring rolling process is rolled on the forged billets.The ring rolling process includes baiting,heating,upsetting,punching,heating,hot ring rolling and machining.The whole process is long and complicated.The process has some disadvantages,such as multi-time heating,materials and energy wasting.In recent years,the melting and casting process are developed greatly.The quality of cast billet is improved as well.So the casting-forging compound forming process is becoming possible.Aiming at the above disadvantages of existing ring rolling technology,we proposed a new ring rolling technology to produce ring parts.The new process is rolled directly on the ring casting billet.The new process includes casting ring billet,heating,hot ring rolling and machining.The first forging,upsetting and punching process in the existing process are reduced.So the new technology has many merits,such as reducing heating times,saving materials and working hour and increasing productively.But in the new technology,the deformation and modification of materials must be finished in the ring rolling process.So mastering the hot deformation behaviors of the materials and controlling its microstructure evolution by changing the process parameters during ring rolling become the key problems.In this project,as-cast 42CrMo steel is chosen as the sample materials.

    LIN,et al[1-8],researched the hot deformation behaviors of 42CrMo steel during hot compression that includes dynamic recrystallization,metadynamic recrystallization,static recrystallization and their grain size,and obtained the stress-strain curves of the materials,the kinetic and grain size modeling of dynamic,metadynamic and static recrystallization.The above researches are all about forged 42CrMo steel.The researches on hot deformation behaviors of as-cast structure are few.CAO,et al[9],researched high-temperature flow behavior and microstructural evolution of as-cast Ti-46Al-6 alloy.The results showed that there was dynamic recrystallization during the hot compression.Temperature and strain rate were the two main factors that influenced flow softening behavior and microstructure evolution during high temperature deformation.MAO,et al[10],researched hot deformation behaviors of as-cast austenitic stainless steel by using the thermal-mechanical simulation method.Conclusions were obtained that the dynamic recrystallization was difficult to occur in as-cast structure due to its coarse grain.In the previous research,we have researched the hot deformation behaviors of as-cast 42CrMo steel and obtained its stress-strain curves and the kinetic and grain growth model during the hot compression[11-12].It is generally known that the metadynamic recrystallization occurs rapidly because it doesn't need time to form nucleus.It's difficult to preserve the grains of the dynamic recrystallization.So it's important to research the metadynamic recrystallization in the hot deformation.

    In this paper,the isothermal compression tests are used to investigate the metadynamic recrystallization of as-cast 42CrMo steel after normalizing and tempering during hot compression.

    2 Experimental Method

    Isothermal compression tests are adopted in the research.The samples are from the ring sand casting billet.The normalizing and tempering are used to improve the properties of the materials.The structure of the materials is mainly of ferrite and pearlite (Fig.1).The samples are with diameter of 8 mm and the length of 12 mm.The two-pass compression experiments are performed on the Gleeble-1500 thermal-mechanical simulator.

    Fig.1.Initial microstructure of the materials

    To get precise experimental data,the samples must be kept in uniaxial compression state during the deformation process.The tantalum was let between the pressure head and the end of the sample to lubricate in case that the sample appears elliptic.

    Fig.2 illustrates the experiments project.Firstly,the samples were heated to deformation temperature at a heating speed of 20 ℃/s,keeping the temperature 5 min to eliminate temperature stress and structural stress in the materials and making the structure of sample more uniform.Then the temperature was decreased to the deformation temperature at the speed of 5 ℃/s.Compression tests were followed.The two-pass hot compression tests were investigated at different temperature (850 ℃,950 ℃,1 050 ℃,1 150 ℃),different strain rate (0.01 s-1,0.1 s-1,0.5 s-1,1 s-1),and different pass interval time (3 s,15 s,60 s).

    Fig.2.Experimental project

    3 Experimental Results

    The stress-strain curves of two-pass hot compression at deformation temperature 1 050 ℃ and strain rate 0.1 s-1are shown in Fig.3.As seen from Fig.3,the strain is up to the critical strain value,the dynamic crystallization occurs in the first compression.So the dynamic crystallization occurs in the pass interval.The stress decreases after the pass interval,and the materials are softened in the pass interval.

    Fig.3.Stress-strain curve of two-pass compression at 1 050 ℃ and 0.1 s-1

    The softening fraction of the metadynamic recrystallization may be expressed by many methods such as back extrapolation method[2],strain-recovery method[13],offset-stress method[3],and average stress method[14].In this paper,the offset-stress method is used to express the softening fraction,and the expression equation is

    whereXmdrxis the softening fraction of the metadynamic recrystallization,σmis the true stress at the end of the first deformation,1σand2σare respectively the offset stress(0.2%) of the first deformation and the second deformation.

    3.1 Effect of deformation temperature on the softening fraction

    In Fig.4,abscissa is the deformation temperature and ordinate is the softening fraction.The softening fraction increases with the increase of the deformation temperature.When the deformation temperature is 1 050 ℃ or 1 150 ℃,the softening fraction is more than 95% at the stain rate of 0.1 s-1.But the softening fraction is less than 80% at 950 ℃.Because crystallization is a thermally-activated process,the rate of the forming nuclear will increase at high-deformation temperature.So more grain nucleus could be provided for the metadynamic recrystallization at high deformation temperature.Moreover,the metadynamic recrystallization is a grain-growth process.The rate of grain boundary migration is accelerated with the increase of deformation temperature,which is helpful for the growth of the grain.

    Fig.4.Softening fraction at different deformation temperature

    3.2 Effect of strain rate on the softening fraction

    It's obvious that the softening fraction increases with the increase of strain rate (Fig.5).With the increase of the strain rate,the deformation of the materials becomes more inhomogeneous and the dynamic recovery has not enough time to occur,which make the dislocation density and the drive force of the recrystallization increase so that the recrystallization is easier to occur.Moreover,the dynamic recrystallization fraction decreases at high strain rate,but the rate of nucleation increases[15].So at high strain rate,more grain nucleus can be supplied for the metadynamic recrystallization so as to promote the occurrence of the metadynamic recrystallization.

    3.3 Effect of pass interval time on the softening fraction

    The first deformations are completely identical at different pass interval time.So the true stress-strain curves display intuitively the effect rule of the pass interval time on the softening fraction.Fig.6 shows the stress-strain curves at different pass interval time when the deformation temperature is 950 ℃ and the strain rate is 0.01 s-1.The softening fraction is only 9.8% when the interval pass time is 3 s.When the interval pass time is 15 s,the softening fraction is 26.75%.When the interval pass time extends to 60 s,the softening fraction is up to 51.67%.The softening fraction increases with the increase of the pass interval time.Although the metadynamic recrystallization doesn't need nucleating,the growth of the grain needs necessary time to finish.So the softening fraction will increase with the prolongation of the interval pass time before it comes to its maximum value.It can also be got that the working hard will increase with the increase of the interval pass time.The peak stress during the second compression is the biggest when the pass interval time is 60 s.

    Fig.5.Softening fraction at different strain rate

    Fig.6.Stress-strain curves at different pass interval time

    3.4 Effect of the initial grain size on the softening fraction

    The initial grain size can be obtained by setting different heat preservation time (300 s,200 s,100 s).Fig.7 gives the stress-strain curves with different initial grain size when deformation temperature is 1 050 ℃ and the strain rate is 0.01 s-1.

    Fig.7.Stress-strain curves at different heat preservation time

    The softening fraction decreases slightly with the increase of the heat preservation time.The softening fraction is almost close to 51%.The influence of the initial grain size on the softening fraction is very small and negligible.

    4 Kinetic Model of the Metadynamic Recrystallization

    4.1 Modeling the kinetic of the metadynamic recrystallization

    The metadynamic recrystallization fraction of the as-cast steel during the hot compression increases with the increase of the deformation temperature,the strain rate and the pass interval time.The change rule is in accordance with the Avrami equation.So the kinetic equation of the metadynamic recrystallization can be expressed as the Avrami equation[16-18]:

    wheretis the pass interval time (s),t0.5is the time needed for 50% of the metadynamic recrystallization,Aandpare coefficients related to materials,Qmdrxis the activation energy of the metadynamic recrystallization,ε˙is strain rate andRis the gas constant.

    Eq.(4) can be obtained by taking logarithm to both sides of Eq.(2) twice:

    At the right side of Eq.(4),the first and the third items are constant for the certain materials and deformation parameters.So the value ofncan be obtained from the relationship between ln(l n(1/(1-Xmdrx)))and lnt.As shown in Fig.8,the value ofncan be obtained as 0.54 by taking the average value of them.

    Fig.8.Relationship between ln(ln(1/(1-Xmdrx))) and lnt

    Eq.(5) can be obtained by taking logarithm to both sides of Eq.(3):

    Substituting the experimental data into Eq.(2),the value oft0.5at different pass interval time can be solved.The value ofpcan be solved according to the relation between lnt0.5and lnε˙ (as shown in Fig.9).From the figure,it is easily to evaluate the value ofpas0.879 8.

    Fig.9.Relationship between lnt0.5and lnε˙

    In the same way,the value of theQmdrxcan be solved according to the relation between lnt0.5and 1000/T(as shown in Fig.10).From Fig.10,the value of theQmdrxcan be obtained as 194.994 kJ/mol.The value ofAcan be obtained as 6.952×10-9by instituting the value of the coefficients related to materialsQmdrxandpinto Eq.(5).

    Fig.10.Relation between lnt0.5and 1 000/T

    Instituting the above values into Eq.(1) and Eq.(2),the metadynamic recrystallization kinetic equation of as-cast 42CrMo steel can be represented as the following equations:

    As seen from above equations,t0.5of the metadynamic recrystallization decreases with the increase of strain rate and deformation temperature.Namely high strain rate and deformation temperature can accelerate the occurrence of the metadynamic recrystallization.

    4.2 Verifying the kinetic model

    For verifying the correctness of the above kinetic model,the calculated results were compared with the experimental results.Partly comparison results are as shown in Table 1.WhereEis the error of the calculated results,and

    Table 1.Comparison between calculated results and experimental results

    As known from Table 1,the value ofEis less than 14%.So the model is reliable.The model can supply the reliable materials date for the further research on the hot deformation behaviors of the as-cast 42CrMo steel and the numerical simulation of ring rolling process.

    4.3 Comparison of the metadynamic recrystallization as-cast 42CrMo steel and forged 42CrMo steel

    Eqs.(9) and (10) are used for the metadynamic recrystallization of the forged 42CrMo steel[1]:

    Comparing Eq.(7) with Eq.(10),the conclusion can be obtained thatt0.5of as-cast 42CrMo steel is obviously bigger than that of forged steel with the same deformation parameters.Namely that the time needed for 50%metadynamic recrystallization fraction of as-cast 42CrMo steel is longer than that of forged 42CrMo steel.Qmdrxin Eq.(7) is bigger than that in Eq.(10).This shows that the occurrences of recrystallization in as-cast structure need more activity energy.On the one hand,the coarse grain of the as-cast structure is not helpful for the occurrence of recrystallization.On the other hand,the occurrence of the metadynamic is directly related to the dynamic recrystallization.Only the dynamic recrystallization occurs in the first compression can the metadynamic recrystallization occur at pass interval.According to the previous research,the dynamic recrystallization fraction of as-cast 42CrMo steel is smaller than that of the forged 42CrMo steel.

    5 Grain Size of the Metadynamic Recrystallization

    For getting the influence rules of process parameters on grain size of the metadynamic recrystallization,the samples after compression were insolated some time so that the occurrence of metadynamic recrystallization could be enough.Water quench was used to reserve its high temperature structure.Then the sample was cut axially.The cutting planes of these samples were eroded by using picnic acid and polished.Their microstructures were observed with metalloscope.

    5.1 Effect of the strain rate on the size of the recrystallized grains

    Fig.11 shows the optical microstructures at different strain rate (0.01-0.5 s-1) and deformation temperature of 1 050 ℃.

    Fig.11.Optical microstructures of the materials at different strain rate and deformation temperature of 1 050 ℃

    The change tendency of the recrystallized grain size is contrary to that of the strain rate.When the strain rate is 0.5 s-1,the grain will be very fine and homogeneous.However,the grain is coarse and inhomogeneous at the strain rate of 0.01 s-1.The former is 33 μm,the latter is 54 μm.So the high strain rate is helpful for refining grain and homogenizing the microstructure.

    5.2 Effect of the deformation temperature on the size of recrystallized grains.

    Fig.12 is the optical microstructures after hot compression at different temperature (950-1 150 ℃) and strain rate of 0.01 s-1.Different from the strain rate,the change tendency of the deformation temperature is accordance with that of the grain size.The grain size of the metadynamic recrystallization increases obviously with the increase of the deformation temperature.The metadynamic recrystallization is a grain-growth process.The grain growth is realized by grain boundary migration.The rate of grain boundary presents exponential increase with the deformation temperature.

    Fig.12.Optical microstructures of the materials at different deformation temperature and strain rate of 0.01 s-1

    As shown in Fig.12,the average value of recrystallized grain size is 63.11 μm at 1 150 ℃.When the deformation temperature is 950 ℃,the average grain size is only 35.61 μm.The low deformation temperature is helpful for refining grain,but the low deformation temperature will increase the resistance of the material and the deformation force,which decreases the material's workability,especially for as-cast structure.

    6 Conclusions

    (1) The deformation temperature and the strain rate are two important influencing factors of the metadynamic recrystallization.The influences of the initial grain size on the softening fraction are very small and negligible.

    (2) The softening fraction of the metadynamic recrystallization increases with the increase of the deformation temperature and the strain rate.The softening fraction will increase with the prolongation of the interval pass time before it comes to its maximum value.

    (3) The metadynamic recrystallization kinetic model of as-cast 42CrMo steel during hot compression was built.The softening fraction of metadynamic recrystallization was expressed as the function of the deformation temperature,strain rate and delay time.It can be concluded from the kinetic model that high strain rate and deformation temperature could accelerate the occurrence of the metadynamic recrystallization.

    (4) Compared to the forged 42CrMo steel,the time for 50% metadynamic recrystallization is longer.The occurrence of the metadynamic recrystallization in as-cast 42CrMo steel is more difficult than in forged 42CrMo steel.

    (5) The grain size of the metadynamic recrystallization can be refined by increasing the strain rate and decreasing the deformation temperature.

    The above research results will provide theoretical support for the further research on the hot deformation behaviors of as-cast 42CrMo steel and the new casting-rolling compound process.

    [1]LIN Yongcheng,CHEN Mingsong.Study of microstructural evolutions during metadynamic recrystallization in a low-alloy steel[J].Materials Science and Engineering:A,2009,501(1-2):229-234.

    [2]LIN Yongcheng,LI Leiting,XIA Yuchi.A new method to predict the metadynamic recrystallization behavior in 2124 aluminum alloy[J].Computional Materials Science,2011,50(7):2 038-2 043.

    [3]LIN Yongcheng,CHEN Mingsong,ZHONG Jue.Research on metadynamic recrystallization behavior of 42CrMo steel[J].Transaction of Materials and Heat Treatment,2009,30(2):71-75.(in Chinese)

    [4]LIN Yongcheng,CHEN Mingsong,ZHONG Jue.Flow stress behaviors of 42CrMo steel during hot compression[J].Journal of Central South University,2008,39(3):549-553.(in Chinese)

    [5]LIN Yongcheng,CHEN Mingsong,ZHONG Jue.Effects of deformation temperatures on plastic formation and microstructure evolution of 42CrMo steel[J].Transactions of Materials and Heat Treatment,2009,30(1):70-74.(in Chinese)

    [6]LIN Yongcheng,CHEN Mingsong,ZHONG Jue.Effects of deformation degree on plastic formation and microstructure evolution of 42CrMo steel[J].Journal of Central South University,2008,39(5):1 005-1 010.(in Chinese)

    [7]LIN Yongcheng,CHEN Mingsong,ZHONG Jue.Static recrystallization behaviors of deformed 42CrMo steel[J].Journal of Central South University,2009,40(2):411-416.(in Chinese)

    [8]LIN Yongcheng,CHEN Mingsong,ZHANG Jun.Modeling of flow stress of 42CrMo steel under hot compression[J].Materials Science and Engineering A,2009,499(1-2):88-92.

    [9]SHI Puying,LI Zhenxi,CAO Chunxiao.High temperature flow behavior and microstructural evolution of as-cast Ti-46Al-6(Cr,Nb,Si,B) alloy[J].Rare Metal Materials and Engineering,2011,40(9):44-49.

    [10]MAO Pingli,YANG Ke,SU Guoyue.Hot deformation behavior of as-cast austenitic stainless steel[J].Acta Metallurgica Sinica,2001,37(1):39-41.(in Chinese)

    [11]FU Jia,LI Yongtang.Research on dynamic softening of as-cast 42CrMo steel during hot compression[C]//Proceeding of 7th North China Plastic Forming Annual Meeting,Chongqing,China,August 15-18,2010:58-63.(in Chinese)

    [12]QI Huiping,LI Yongtang,FU Jia.Flow stress behavior of the normalized and tempered as-cast 42CoMo steel during hot deformation[J].Advanced Materials Research,2011,314-316:2 560-2 564.

    [13]RAO K P,PRASAD Y K D V,HAWBOLT E B.Study of fractional softening in multi-stage hot deformation[J].J.Mater.Process.Technol.,1998,77(1-3):166-174.

    [14]FERNANDEZ A I,LOPEZ B,RODRIGUEZ-IBABE J M.Relationship between the austenite recrystallized fraction and the softening measured from the interrupted torsion test technique[J].Scripta Materialia,1999,40(5):543-549.

    [15]OUYANG Delai,LU Shiqiang,CUI Xia.Dynamic recrystallizationof titanium alloy TA15 during β hot process at different strain rates[J].Rare Metal Materials and Engineering,2010,40(2):140-145.

    [16]MEDEIROSA S C,PRASADA Y V R K,FRAZIERA W G,et al.Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy[J].Materials Science and Engineering:A,2000,293(1-2):198-207.

    [17]LI Lixin,HONG Jie,DENG Ning,et al.Static and metadynamic recrystallization kinetic models for boron microalloyed steel[J].J.of Wuhan Uni.of Sci.&Tech.(Natural Science Edition),2004,27(4):334-338.(in Chinese)

    [18]CHO S H,KANG K B,JONAS J J.Effect of manganese on recrystallization Kinetics of niobium microalloyed steel[J].Materials Science and Technology,2002,18(3):389-395.

    Biographical notes

    QI Huiping,born in 1974,is currently a PhD candidate atSchool of Materials Science and Engineering,Taiyuan University of Science and Technology,China.She is also an associate professor atTaiyuan University of Science and Technology,China.Her research interests include advanced manufacturing technology for material processing,plastic successive and precision forming.

    Tel:+86-351-6 963339;E-mail:qhp182257@yahoo.com.cn

    LI Yongtang,born in 1957,is currently a professor and a PhD candidate supervisor atTaiyuan University of Science and Technology,China.He received his PhD degree fromTsinghua Universtiy,China,in 1994.His research interests include advanced technology for material manufacture and process,hydraulic system modeling and simulink.

    Tel:+86-351-6 998029;E-mail:liyongtang@tyust.edu.cn

    91字幕亚洲| 午夜福利视频1000在线观看 | 亚洲欧美精品综合一区二区三区| 精品久久久久久,| 美女高潮喷水抽搐中文字幕| 最近最新中文字幕大全免费视频| 亚洲第一欧美日韩一区二区三区| 亚洲专区字幕在线| 精品久久久久久,| 久久久国产精品麻豆| 在线观看午夜福利视频| 女人精品久久久久毛片| 精品国内亚洲2022精品成人| 12—13女人毛片做爰片一| 日韩欧美一区二区三区在线观看| 亚洲七黄色美女视频| 久久久精品国产亚洲av高清涩受| 九色国产91popny在线| 欧美精品啪啪一区二区三区| 免费少妇av软件| 一个人免费在线观看的高清视频| 三级毛片av免费| 午夜免费鲁丝| 精品国产超薄肉色丝袜足j| 亚洲精品久久成人aⅴ小说| 日韩欧美免费精品| 桃色一区二区三区在线观看| 亚洲一区二区三区不卡视频| 国产三级在线视频| 91av网站免费观看| 女人被狂操c到高潮| 久久 成人 亚洲| 精品国产亚洲在线| 91精品三级在线观看| 91成年电影在线观看| 色播亚洲综合网| 久久草成人影院| 欧美乱码精品一区二区三区| 波多野结衣av一区二区av| 91成年电影在线观看| 久99久视频精品免费| 国产在线精品亚洲第一网站| 久久婷婷成人综合色麻豆| 黄片小视频在线播放| 亚洲国产欧美一区二区综合| 欧美日韩亚洲国产一区二区在线观看| 国产精品98久久久久久宅男小说| 在线观看免费视频网站a站| 亚洲av第一区精品v没综合| 日本撒尿小便嘘嘘汇集6| 久久国产亚洲av麻豆专区| 欧美亚洲日本最大视频资源| 久久久久久久午夜电影| 性少妇av在线| 欧美性长视频在线观看| avwww免费| 久久久久久久精品吃奶| 正在播放国产对白刺激| 亚洲精品中文字幕在线视频| 久久久国产精品麻豆| 热99re8久久精品国产| 可以在线观看毛片的网站| 亚洲成人久久性| 国产黄a三级三级三级人| 亚洲色图 男人天堂 中文字幕| 少妇粗大呻吟视频| 国产精品免费一区二区三区在线| 波多野结衣一区麻豆| 国产在线精品亚洲第一网站| 天天躁夜夜躁狠狠躁躁| 久久久久久大精品| 久久久久国产一级毛片高清牌| 色综合婷婷激情| 韩国精品一区二区三区| 国产精品爽爽va在线观看网站 | 精品久久蜜臀av无| 99久久99久久久精品蜜桃| 亚洲一区二区三区色噜噜| 午夜免费观看网址| 午夜精品久久久久久毛片777| 精品国产乱子伦一区二区三区| 国产午夜福利久久久久久| 免费在线观看完整版高清| 国产成人影院久久av| 伦理电影免费视频| 日韩免费av在线播放| 亚洲av日韩精品久久久久久密| 免费在线观看黄色视频的| 精品高清国产在线一区| 久久久久亚洲av毛片大全| 久久久国产精品麻豆| 老司机午夜十八禁免费视频| 少妇熟女aⅴ在线视频| 免费少妇av软件| 亚洲国产精品成人综合色| 亚洲精品国产一区二区精华液| 欧美激情久久久久久爽电影 | 夜夜躁狠狠躁天天躁| 国产99白浆流出| 日本精品一区二区三区蜜桃| 精品熟女少妇八av免费久了| 精品高清国产在线一区| 啦啦啦免费观看视频1| av网站免费在线观看视频| 多毛熟女@视频| 亚洲精品一卡2卡三卡4卡5卡| 国产私拍福利视频在线观看| 一进一出抽搐动态| 不卡av一区二区三区| 国产一区在线观看成人免费| 高清毛片免费观看视频网站| 男男h啪啪无遮挡| 国产av在哪里看| 免费女性裸体啪啪无遮挡网站| 国产亚洲欧美精品永久| 亚洲 欧美 日韩 在线 免费| 精品久久久久久久毛片微露脸| 桃色一区二区三区在线观看| 侵犯人妻中文字幕一二三四区| 亚洲成人国产一区在线观看| 国产麻豆成人av免费视频| 好看av亚洲va欧美ⅴa在| 久久国产乱子伦精品免费另类| 日本a在线网址| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 19禁男女啪啪无遮挡网站| aaaaa片日本免费| 亚洲专区字幕在线| 久热这里只有精品99| 久久久久国内视频| 国产精品电影一区二区三区| 国产真人三级小视频在线观看| 麻豆av在线久日| 久久人妻av系列| 黄色 视频免费看| 亚洲av日韩精品久久久久久密| 久久久久久亚洲精品国产蜜桃av| 国产成人影院久久av| 黄色a级毛片大全视频| 久久久久久人人人人人| 亚洲性夜色夜夜综合| 欧美中文日本在线观看视频| 国产精品99久久99久久久不卡| 日韩欧美三级三区| 免费在线观看亚洲国产| 久久国产精品影院| 女性生殖器流出的白浆| 欧美另类亚洲清纯唯美| 一区二区三区激情视频| 久久久国产精品麻豆| 欧美中文日本在线观看视频| 在线观看www视频免费| 久久香蕉国产精品| 国产区一区二久久| 国产视频一区二区在线看| 亚洲熟妇熟女久久| 精品午夜福利视频在线观看一区| 悠悠久久av| 黄色视频,在线免费观看| 欧美一级毛片孕妇| 免费在线观看影片大全网站| 两个人视频免费观看高清| 午夜久久久久精精品| 久久久久久人人人人人| 亚洲五月天丁香| 黄色a级毛片大全视频| av天堂在线播放| 久久久久久久精品吃奶| 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区蜜桃| 狠狠狠狠99中文字幕| 制服人妻中文乱码| 自线自在国产av| 18禁美女被吸乳视频| 日本在线视频免费播放| av中文乱码字幕在线| 夜夜爽天天搞| 成人精品一区二区免费| 国产欧美日韩一区二区三| 欧美色视频一区免费| 丝袜美足系列| 在线观看一区二区三区| 国产极品粉嫩免费观看在线| 国产精品98久久久久久宅男小说| 亚洲狠狠婷婷综合久久图片| 久久国产精品人妻蜜桃| 美女免费视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美不卡视频在线免费观看 | 一区福利在线观看| x7x7x7水蜜桃| 日韩中文字幕欧美一区二区| 满18在线观看网站| 亚洲欧美日韩高清在线视频| 99re在线观看精品视频| 国产精品美女特级片免费视频播放器 | 99久久久亚洲精品蜜臀av| 精品国产乱码久久久久久男人| 成人18禁在线播放| 国产男靠女视频免费网站| 电影成人av| 啦啦啦韩国在线观看视频| 欧美av亚洲av综合av国产av| 一级作爱视频免费观看| 久久青草综合色| 村上凉子中文字幕在线| 好男人在线观看高清免费视频 | 国产成人系列免费观看| 18美女黄网站色大片免费观看| 精品国内亚洲2022精品成人| 国产xxxxx性猛交| 国产欧美日韩一区二区精品| 午夜激情av网站| 美女高潮到喷水免费观看| 欧美一级毛片孕妇| 999精品在线视频| 久久人妻熟女aⅴ| 黄片播放在线免费| 巨乳人妻的诱惑在线观看| 两性夫妻黄色片| 好看av亚洲va欧美ⅴa在| 久久精品国产清高在天天线| 老司机午夜福利在线观看视频| 亚洲精品在线美女| 国产伦人伦偷精品视频| 国产成人精品久久二区二区免费| 国产精品免费一区二区三区在线| 亚洲精品国产一区二区精华液| 女人被躁到高潮嗷嗷叫费观| 久久精品91无色码中文字幕| 搞女人的毛片| 亚洲精品粉嫩美女一区| 欧美国产日韩亚洲一区| 亚洲美女黄片视频| 久99久视频精品免费| 97人妻天天添夜夜摸| 国产精品九九99| 熟女少妇亚洲综合色aaa.| 欧美亚洲日本最大视频资源| 亚洲精品久久国产高清桃花| 99国产精品一区二区三区| 日本精品一区二区三区蜜桃| 日本三级黄在线观看| 伊人久久大香线蕉亚洲五| 免费搜索国产男女视频| 男男h啪啪无遮挡| 国产欧美日韩一区二区三| 两人在一起打扑克的视频| 精品不卡国产一区二区三区| 亚洲欧美一区二区三区黑人| 男男h啪啪无遮挡| 丰满的人妻完整版| 亚洲精品国产一区二区精华液| 亚洲 国产 在线| 亚洲国产精品成人综合色| 热re99久久国产66热| 国产私拍福利视频在线观看| 国产成人啪精品午夜网站| 18禁观看日本| 亚洲成av人片免费观看| 免费在线观看视频国产中文字幕亚洲| 精品久久久久久久毛片微露脸| xxx96com| av欧美777| 亚洲人成伊人成综合网2020| 国产精品亚洲一级av第二区| 99国产精品一区二区蜜桃av| 一本大道久久a久久精品| 中文字幕人妻丝袜一区二区| 亚洲天堂国产精品一区在线| 婷婷六月久久综合丁香| 国产区一区二久久| 99国产极品粉嫩在线观看| a在线观看视频网站| 欧美绝顶高潮抽搐喷水| 国产成人精品在线电影| 日日夜夜操网爽| 一进一出好大好爽视频| 一卡2卡三卡四卡精品乱码亚洲| www.自偷自拍.com| 久9热在线精品视频| 国产乱人伦免费视频| 叶爱在线成人免费视频播放| 看片在线看免费视频| 在线永久观看黄色视频| 国产亚洲欧美精品永久| 免费少妇av软件| 亚洲人成伊人成综合网2020| 18禁观看日本| 别揉我奶头~嗯~啊~动态视频| 一级黄色大片毛片| 两个人视频免费观看高清| 在线国产一区二区在线| 女性生殖器流出的白浆| 可以在线观看毛片的网站| 午夜免费观看网址| 伦理电影免费视频| 国产精品久久久人人做人人爽| 亚洲第一欧美日韩一区二区三区| 精品久久久久久,| 国产极品粉嫩免费观看在线| 欧美一区二区精品小视频在线| 亚洲人成电影观看| 亚洲五月色婷婷综合| 久久人妻熟女aⅴ| 亚洲av成人一区二区三| 淫秽高清视频在线观看| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 中文字幕久久专区| 久久精品影院6| 国产片内射在线| av在线播放免费不卡| 亚洲一区高清亚洲精品| 午夜影院日韩av| 国产精品美女特级片免费视频播放器 | 国产精品av久久久久免费| 淫妇啪啪啪对白视频| 精品人妻在线不人妻| 欧美一级毛片孕妇| 日本欧美视频一区| 欧美中文日本在线观看视频| 欧美av亚洲av综合av国产av| www国产在线视频色| 婷婷精品国产亚洲av在线| 国产精品美女特级片免费视频播放器 | 日本a在线网址| 韩国av一区二区三区四区| 亚洲精品国产精品久久久不卡| 91大片在线观看| avwww免费| 大码成人一级视频| 美女免费视频网站| 在线观看日韩欧美| 欧美激情久久久久久爽电影 | 欧美不卡视频在线免费观看 | 亚洲第一青青草原| 亚洲人成伊人成综合网2020| 每晚都被弄得嗷嗷叫到高潮| 一区在线观看完整版| netflix在线观看网站| 午夜a级毛片| 大码成人一级视频| 国产又色又爽无遮挡免费看| 老司机福利观看| 国产亚洲精品第一综合不卡| 国产区一区二久久| 日本五十路高清| 国产成人一区二区三区免费视频网站| 12—13女人毛片做爰片一| 两性夫妻黄色片| 亚洲中文字幕日韩| tocl精华| 老司机靠b影院| 成人手机av| 亚洲国产高清在线一区二区三 | 一级作爱视频免费观看| 日韩免费av在线播放| 久久香蕉激情| 自线自在国产av| 在线观看免费午夜福利视频| 男人舔女人的私密视频| 国产成人av教育| 悠悠久久av| 麻豆国产av国片精品| 激情视频va一区二区三区| 麻豆av在线久日| 黄色成人免费大全| 午夜免费激情av| 国产精品亚洲一级av第二区| 这个男人来自地球电影免费观看| 国产乱人伦免费视频| 人成视频在线观看免费观看| 一二三四在线观看免费中文在| 久久亚洲真实| 变态另类成人亚洲欧美熟女 | 成人av一区二区三区在线看| 欧美日韩福利视频一区二区| 18禁观看日本| 热99re8久久精品国产| 91字幕亚洲| 午夜老司机福利片| 亚洲精品一区av在线观看| 国产麻豆69| 自线自在国产av| 精品国产一区二区久久| 久久人人精品亚洲av| 99久久精品国产亚洲精品| 日韩欧美国产一区二区入口| 日本vs欧美在线观看视频| 亚洲av成人不卡在线观看播放网| 国产成人一区二区三区免费视频网站| 国产三级在线视频| 老司机福利观看| 国产精品香港三级国产av潘金莲| 高清在线国产一区| 深夜精品福利| 黄色a级毛片大全视频| 亚洲熟妇中文字幕五十中出| 亚洲色图综合在线观看| 国产一区二区三区在线臀色熟女| 中文字幕精品免费在线观看视频| cao死你这个sao货| 国产视频一区二区在线看| 一区二区三区精品91| 亚洲电影在线观看av| 91国产中文字幕| 亚洲精品中文字幕在线视频| 18禁黄网站禁片午夜丰满| 此物有八面人人有两片| av片东京热男人的天堂| 99re在线观看精品视频| 国产人伦9x9x在线观看| 长腿黑丝高跟| 中文字幕高清在线视频| 久久人妻熟女aⅴ| 亚洲一区中文字幕在线| 99riav亚洲国产免费| 国产午夜福利久久久久久| 欧美人与性动交α欧美精品济南到| 免费在线观看影片大全网站| 免费在线观看亚洲国产| 国产又爽黄色视频| 正在播放国产对白刺激| 国产一区二区三区综合在线观看| 亚洲av成人一区二区三| 国产高清有码在线观看视频 | 日本三级黄在线观看| 亚洲视频免费观看视频| 黄色a级毛片大全视频| 国产一区二区在线av高清观看| 国产成人精品久久二区二区免费| 国产伦人伦偷精品视频| 国产精品免费视频内射| 午夜精品在线福利| 大型黄色视频在线免费观看| 国产97色在线日韩免费| 国产主播在线观看一区二区| 亚洲av成人一区二区三| 美女高潮到喷水免费观看| netflix在线观看网站| 黄频高清免费视频| 亚洲欧美日韩另类电影网站| 欧美乱妇无乱码| 18禁观看日本| 中出人妻视频一区二区| 亚洲视频免费观看视频| 窝窝影院91人妻| 黄色视频,在线免费观看| 色婷婷久久久亚洲欧美| 日韩大码丰满熟妇| 12—13女人毛片做爰片一| 亚洲欧美激情综合另类| 男人舔女人下体高潮全视频| 精品第一国产精品| 91成年电影在线观看| 老司机深夜福利视频在线观看| 老鸭窝网址在线观看| 亚洲电影在线观看av| 操出白浆在线播放| 美女大奶头视频| 国内久久婷婷六月综合欲色啪| 99精品欧美一区二区三区四区| 国产1区2区3区精品| 香蕉丝袜av| 午夜激情av网站| 两性夫妻黄色片| www.自偷自拍.com| 亚洲av电影不卡..在线观看| 宅男免费午夜| 国产1区2区3区精品| 欧美日韩乱码在线| 一边摸一边做爽爽视频免费| 黄色片一级片一级黄色片| 亚洲国产精品sss在线观看| 国产成人啪精品午夜网站| 人人妻人人爽人人添夜夜欢视频| 丝袜美足系列| 啪啪无遮挡十八禁网站| 精品国产超薄肉色丝袜足j| 精品国产一区二区久久| 男女下面进入的视频免费午夜 | 91在线观看av| av超薄肉色丝袜交足视频| 动漫黄色视频在线观看| 国产麻豆69| 男女下面进入的视频免费午夜 | 亚洲午夜理论影院| 日韩av在线大香蕉| 亚洲国产欧美日韩在线播放| 女人精品久久久久毛片| 他把我摸到了高潮在线观看| 一级毛片高清免费大全| 人成视频在线观看免费观看| 悠悠久久av| 女人被狂操c到高潮| 一进一出好大好爽视频| 久久久久久久久中文| 亚洲一码二码三码区别大吗| 国产午夜福利久久久久久| 日韩一卡2卡3卡4卡2021年| 国产真人三级小视频在线观看| 两个人看的免费小视频| 精品久久久久久久毛片微露脸| 亚洲av五月六月丁香网| 后天国语完整版免费观看| 乱人伦中国视频| 午夜成年电影在线免费观看| 国产欧美日韩精品亚洲av| 欧美乱色亚洲激情| 在线观看免费日韩欧美大片| 国产av在哪里看| 高清在线国产一区| 午夜福利免费观看在线| 国产精品98久久久久久宅男小说| 国产极品粉嫩免费观看在线| 国产精品香港三级国产av潘金莲| 啦啦啦韩国在线观看视频| 18禁美女被吸乳视频| 精品国产亚洲在线| 首页视频小说图片口味搜索| 日韩欧美三级三区| 美国免费a级毛片| 99riav亚洲国产免费| 国产精品影院久久| 多毛熟女@视频| 美女高潮到喷水免费观看| 色老头精品视频在线观看| 好男人在线观看高清免费视频 | 亚洲欧美一区二区三区黑人| 不卡一级毛片| 中出人妻视频一区二区| 国产欧美日韩精品亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 久久性视频一级片| 亚洲自拍偷在线| 制服人妻中文乱码| 丝袜美腿诱惑在线| 亚洲熟女毛片儿| 免费在线观看亚洲国产| 91麻豆精品激情在线观看国产| 99久久99久久久精品蜜桃| 18美女黄网站色大片免费观看| 日韩欧美国产一区二区入口| 伦理电影免费视频| av在线天堂中文字幕| 少妇 在线观看| 国产成人av教育| 日韩欧美一区二区三区在线观看| 9191精品国产免费久久| 十八禁人妻一区二区| 午夜影院日韩av| 久久人人爽av亚洲精品天堂| 久久人妻熟女aⅴ| 亚洲精品中文字幕在线视频| 老司机福利观看| 国产精品九九99| 国产精品99久久99久久久不卡| 午夜老司机福利片| 亚洲激情在线av| 女人爽到高潮嗷嗷叫在线视频| 亚洲五月婷婷丁香| 亚洲欧美日韩无卡精品| 免费观看精品视频网站| 最近最新中文字幕大全免费视频| ponron亚洲| 免费久久久久久久精品成人欧美视频| 女性生殖器流出的白浆| 亚洲五月色婷婷综合| 夜夜夜夜夜久久久久| 国产成年人精品一区二区| 国产麻豆69| 一进一出好大好爽视频| 好看av亚洲va欧美ⅴa在| 国产色视频综合| 美女午夜性视频免费| 精品国内亚洲2022精品成人| 夜夜爽天天搞| 精品人妻1区二区| 久久人人爽av亚洲精品天堂| 欧美成人性av电影在线观看| 亚洲全国av大片| 久久草成人影院| 19禁男女啪啪无遮挡网站| 九色亚洲精品在线播放| av片东京热男人的天堂| 中文字幕人妻丝袜一区二区| 美女国产高潮福利片在线看| 久久这里只有精品19| 亚洲,欧美精品.| 欧美乱色亚洲激情| 99精品久久久久人妻精品| 少妇被粗大的猛进出69影院| 一本综合久久免费| 久久香蕉激情| av视频免费观看在线观看| 91在线观看av| 后天国语完整版免费观看| 国产主播在线观看一区二区| 亚洲国产日韩欧美精品在线观看 | 最新美女视频免费是黄的| 日本a在线网址| 91字幕亚洲| xxx96com| 色播亚洲综合网| 日韩欧美国产一区二区入口| 国产精品一区二区免费欧美| 欧美在线一区亚洲| 国产精品久久久久久亚洲av鲁大| 人人澡人人妻人| 大型av网站在线播放| 婷婷精品国产亚洲av在线| 午夜免费鲁丝| 成人18禁在线播放|