林敏,李泱,張建成
(1.福建醫(yī)科大學(xué)省立臨床學(xué)院,福建福州350001;2.解放軍總醫(yī)院老年心血管病研究所,北京100853)
藥物對(duì)hERG鉀通道作用機(jī)制研究進(jìn)展
林敏1,李泱2,張建成1
(1.福建醫(yī)科大學(xué)省立臨床學(xué)院,福建福州350001;2.解放軍總醫(yī)院老年心血管病研究所,北京100853)
人ether-a-go-go-related gene(hERG)鉀通道表達(dá)了延遲整流鉀電流的快激活成分,對(duì)動(dòng)作電位的復(fù)極至關(guān)重要。hERG鉀電流不僅是抗心律失常作用的主要靶點(diǎn),也是諸多藥物增加尖端扭轉(zhuǎn)型室速和心源性猝死風(fēng)險(xiǎn)的關(guān)鍵位點(diǎn),而該電流的降低和(或)升高與基因突變或藥物阻滯作用密切相關(guān)。隨著對(duì)藥物與hERG鉀通道相互作用機(jī)制研究的深入,藥物與通道孔道區(qū)蛋白結(jié)合位點(diǎn)的作用及其對(duì)通道轉(zhuǎn)運(yùn)的影響逐步被揭示,但這些藥物對(duì)hERG作用的臨床應(yīng)用仍有待評(píng)價(jià)。
hERG;藥物反應(yīng);通道轉(zhuǎn)運(yùn);鉀通道
人ether-a-go-go-related gene(hERG)鉀離子通道作為Ⅲ類抗心律失常藥物作用的靶點(diǎn),其表達(dá)的快速激活延遲整流鉀電流(IKr)主要參與了心臟動(dòng)作電位復(fù)極過程。同時(shí),該通道也是公認(rèn)的誘發(fā)獲得性長QT間期綜合征[1]和尖端扭轉(zhuǎn)型室速(torsades de pointes,TdP)的分子基礎(chǔ)。目前,該通道作為多國新藥上市的安全標(biāo)準(zhǔn)之一,在藥物的安全篩查中發(fā)揮重要作用[2];另外,相關(guān)藥物的研發(fā)也為長、短QT間期綜合征等心律失常疾病的臨床治療提供新方向。
近年來,隨著hERG通道作為藥物安全篩查的標(biāo)準(zhǔn)的實(shí)施,許多作用于該通道的藥物相繼被發(fā)現(xiàn)。而且多數(shù)藥物呈現(xiàn)出對(duì)通道的抑制效應(yīng)。它們不僅包括抗心律失常藥物,而且還涉及大量非心血管類藥物。既表現(xiàn)為對(duì)通道的直接抑制,也可影響通道蛋白的成熟及轉(zhuǎn)運(yùn)過程。表1為近年來發(fā)現(xiàn)的對(duì)hERG通道具有阻滯效應(yīng)的藥物。
hERG鉀通道類似于其他電壓依賴鉀通道,其α亞基由4個(gè)亞單位構(gòu)成,每個(gè)亞單位擁有6個(gè)跨膜結(jié)構(gòu)域,其中第5(S5)第6(S6)跨膜結(jié)構(gòu)域及連接二者的P環(huán)共同形成了通道的孔道區(qū)域。分子電生理研究發(fā)現(xiàn),hERG通道蛋白的一組氨基酸殘基與各類藥物之間的相互作用,導(dǎo)致藥物的阻滯效應(yīng)。與藥物結(jié)合的通道孔道區(qū)域氨基酸殘基顯示有其共同的特征。
1.1.1 F656與Y652是與藥物結(jié)合的關(guān)鍵位點(diǎn)
突變和同源模型的研究顯示,hERG通道F656位點(diǎn)的芳香氨基酸殘基被纈氨酸或丙氨酸替代會(huì)顯著降低多非利特(dofetilide)和MK-499的作用[23]。丙氨酸掃描S6結(jié)構(gòu)域及孔道的螺旋突變研究發(fā)現(xiàn),F(xiàn)656及附近芳香氨基酸殘基Y652為hERG鉀通道阻滯的關(guān)鍵位點(diǎn)[24],Hong和Jo等[16-17]也證實(shí)突變Y652A和F656A減弱或破壞異丙嗪和氯苯那敏對(duì)hERG通道的阻滯效應(yīng)。同樣,西沙必利、特非那丁、西布曲明、關(guān)附甲素及辣椒素也作用于此位點(diǎn)[7,20,25]。
hERG鉀通道同源模型顯示,F(xiàn)656和Y652位于通道內(nèi)口的S6結(jié)構(gòu)域上,F(xiàn)656靠近通道的出口處而Y652位于通道內(nèi)側(cè)較深位置。Sanguinetti等[24]應(yīng)用丙氨酸掃描技術(shù)鑒定其為hERG鉀通道阻滯的關(guān)鍵位點(diǎn),它們對(duì)特非那丁、西沙必利和MK-499高度敏感。模擬實(shí)驗(yàn)顯示,F(xiàn)656和Y652通過“π-堆積”和氫鍵的作用使藥物與蛋白相互結(jié)合。Y652被認(rèn)為通過“陽離子-π”相互作用與藥物的質(zhì)子化氮元素之間產(chǎn)生聯(lián)系[26]。而特非那丁、西沙必利和MK-499的阻滯效應(yīng)則與F656殘基疏水作用相關(guān),如與其側(cè)鏈的范德華疏水表面面積相關(guān)聯(lián)[27]。
1.1.2 其他氨基酸位點(diǎn)與藥物的相互作用
其他氨基酸殘基多位于通道頂點(diǎn),毗鄰選擇性濾器,包括T623,S624和V625。在Choe等[28]提出一種新型機(jī)制中,阻滯劑質(zhì)子化的氮元素與T623的羥基以氫鍵特異結(jié)合。與處在孔道螺旋區(qū)的T623,S624和V625突變一樣,在S6螺旋結(jié)構(gòu)上的G648突變也影響了MK-499的結(jié)合,但這對(duì)特非那丁和西沙必利影響甚微。一些報(bào)道也提示V659氨基酸殘基突變同樣降低通道與藥物的親和性。人參皂苷Rg3通過與Ser631氨基酸殘基相互作用減緩了hERG通道的滅活過程,并最終阻滯了通道激活[4]。金屬離子能與富含氧硫元素的氨基酸結(jié)合,改變通道動(dòng)力學(xué)。伯氨喹對(duì)突變的hERG通道(F656A,Y652A和T623A)與野生型的hERG通道的阻滯效應(yīng)相比無明顯差別,提示其可能通過其他位點(diǎn)發(fā)揮作用[14]。
1.2.1 通道轉(zhuǎn)運(yùn)的機(jī)制
hERG鉀通道的合成最初經(jīng)由內(nèi)質(zhì)網(wǎng),經(jīng)蛋白單體的核心糖基化形成135 ku的蛋白,此后轉(zhuǎn)運(yùn)至高爾基體形成四聚體結(jié)構(gòu),最終通過高爾基體的復(fù)雜糖基化加入約20 ku的糖基形成成熟的hERG鉀通道蛋白表達(dá)于細(xì)胞膜上,約155 ku。若通道正確組裝并轉(zhuǎn)運(yùn)至質(zhì)膜則僅有1個(gè)條帶(155 ku),否則會(huì)增加135 ku條帶。
1.2.2 轉(zhuǎn)運(yùn)可能是阻滯通道的新靶點(diǎn)
通道轉(zhuǎn)運(yùn)過程作為重要機(jī)制也受到藥物的影響。2003年,格爾德霉素(geldanamycin)被鑒定為第一個(gè)hERG轉(zhuǎn)運(yùn)的抑制劑,其破壞hERG通道和熱激蛋白90相互作用[29]。而后發(fā)現(xiàn)As2O3也可使hERG蛋白轉(zhuǎn)運(yùn)受損,導(dǎo)致細(xì)胞膜hERG通道表達(dá)下調(diào),從而發(fā)揮阻滯效應(yīng),誘發(fā)TdP[30]。抗菌劑噴他脒(戊烷脒,pentamidine)也有同樣的作用機(jī)制[31]。Wible等[32]發(fā)現(xiàn)相當(dāng)數(shù)量(~40%)的hERG通道阻滯劑表現(xiàn)出抑制轉(zhuǎn)運(yùn)的效應(yīng)。伊佛霉素、依他尼酸、丁苯羥酸氟西汀(fluoxetine)和酮康唑(ketoconazole)均影響通道的轉(zhuǎn)運(yùn),而前三者缺乏對(duì)通道的直接作用,而僅影響通道的轉(zhuǎn)運(yùn)。降脂藥普羅布考[10]和黃體酮[8]通過擾亂HEK293細(xì)胞內(nèi)膽固醇代謝而進(jìn)一步抑制通道的轉(zhuǎn)運(yùn)。Ramstr?m等[33]報(bào)道二酰甘油經(jīng)蛋白激酶C、動(dòng)力蛋白和發(fā)動(dòng)蛋白影響hERG通道的轉(zhuǎn)運(yùn)??挂钟羲幇⒛称?amoxapine)除與通道的直接作用外,還影響通道的膜轉(zhuǎn)運(yùn)過程[19]。
表1 作用于hERG通道的藥物
迄今,已開發(fā)了多種hERG鉀通道激活劑。其中許多激活劑的靶點(diǎn)針對(duì)hERG鉀通道電壓門控的快失活過程。而影響通道失活“藥物-蛋白”特異結(jié)合可能為其主要機(jī)制。Perry等[34]依據(jù)已有激活劑的電生理特性,將其分為Ⅰ類和Ⅱ類激活劑。
此類激活劑的特點(diǎn)是顯著減慢了通道滅活的同時(shí),部分減弱通道失活。其中代表藥物為RPR260243[35]。hERG鉀通道的4個(gè)S6結(jié)構(gòu)域靠近胞質(zhì)段構(gòu)成了通道的激活門,調(diào)節(jié)著通道內(nèi)側(cè)孔道的關(guān)閉,進(jìn)而影響其滅活動(dòng)力學(xué)。RPR260243與單獨(dú)亞基的結(jié)合直接限制了S6結(jié)構(gòu)域活動(dòng),減慢了通道關(guān)閉的速率,并最終激活hERG鉀通道。此外,RPR260243對(duì)失活門的影響則主要通過結(jié)合S5或S6結(jié)構(gòu)域,下調(diào)電壓感受器和選擇性濾器之間的聯(lián)動(dòng)而實(shí)現(xiàn)。
大多數(shù)激活劑屬于Ⅱ類,如PD118057及其類似物PD307243,NS1643,A935142和ICA-105574,其主要特點(diǎn)是減緩?fù)ǖ朗Щ?。Perry等[35]實(shí)驗(yàn)顯示,S6結(jié)構(gòu)域上的L646和孔道螺旋區(qū)上的F619突變將破壞PD118057對(duì)通道的激活作用;其他區(qū)域突變,如L622A突變也顯著降低了PD118057的調(diào)控作用。以上調(diào)控位點(diǎn)較Ⅰ類激動(dòng)劑更接近選擇性濾器,提示PD118057可能是通過阻止電壓感受器和選擇性濾器之間的相互聯(lián)系,改變通道失活;或是通過結(jié)合將選擇性濾器穩(wěn)定在開放態(tài),最終導(dǎo)致電流增大。
NS1643和PD306243結(jié)合位點(diǎn)位于通道孔道的外口處,該處被認(rèn)為對(duì)通道的失活至關(guān)重要。通道蛋白外側(cè)口處氨基酸定點(diǎn)突變可完全破壞NS1643對(duì)通道的激動(dòng)作用,卻僅部分影響了PD306243對(duì)通道的激活作用[36]。其機(jī)制可能是其增加通道的開放概率,但也不排除PD306243與NS1643有不同結(jié)合位點(diǎn)的可能。
與多數(shù)藥物改變hERG鉀通道失活機(jī)制不同,楸毒素(mallotoxin)[37]和胺碘酮衍生物KB130015[38]則是增加通道的開放速率,并使其電壓依賴性向負(fù)電位移動(dòng)來增加電流,這可能與特殊的氨基酸結(jié)合位點(diǎn)有關(guān)。
藥物對(duì)hERG鉀通道的抑制作用直接導(dǎo)致了心臟復(fù)極時(shí)間的延長、QT間期延長,并最終導(dǎo)致TdP和心源性猝死的發(fā)生。此外,在多種病理?xiàng)l件下(如心衰、心肌缺血和電解質(zhì)紊亂等)心臟的復(fù)極離散度增加,更增加了此類藥物臨床應(yīng)用的風(fēng)險(xiǎn),導(dǎo)致這類臨床藥物的實(shí)際使用有諸多限制?,F(xiàn)階段已經(jīng)有部分藥物(如西沙必利和特非那丁等)因其潛在的致心律失常風(fēng)險(xiǎn)而退出了市場。
臨床對(duì)藥物篩查的策略由其機(jī)制可分作兩個(gè)方面,即藥物的急性抑制和慢性抑制。首先,對(duì)hERG鉀通道沒有直接作用的藥物,仍然存在致心律失常的風(fēng)險(xiǎn)。例如噴他脒和As2O3,長期使用可以引起新的心律失常[39]。其次,有些直接抑制hERG鉀通道的藥物,也可損傷通道的轉(zhuǎn)運(yùn),二者的聯(lián)合效應(yīng)可能加劇藥物的毒性。
在5種短QT綜合征中,Ⅰ型短QT綜合征由于hERG通道突變所致。Gaita等[40]將氟卡尼、伊布利特、索他洛爾和奎尼丁分別應(yīng)用于Ⅰ型短QT綜合征的患者發(fā)現(xiàn),氟卡尼僅輕度延長QT間期(主要延長QRS波時(shí)程);奎尼丁能使QT間期恢復(fù)至正常水平;而索他洛爾并不延長QT間期[41]。Wolpert等[42]發(fā)現(xiàn),N588K突變則顯著削弱了奎尼丁和索他洛爾對(duì)hERG鉀通道的阻滯效應(yīng)。McPate等[43]報(bào)道,抗心律失常藥丙吡胺(disopyramide)對(duì)N588K突變的hERG鉀通道的阻滯效應(yīng)僅存在輕度減弱。由此可見,在遺傳性短QT間期綜合征藥物治療方面,傳統(tǒng)的抗心律失常藥物的作用效果常因遺傳背景不同而表現(xiàn)出顯著的差異,因此,加快通道新突變位點(diǎn)的發(fā)現(xiàn)及其藥理學(xué)研究顯得尤為重要。
對(duì)于長QT綜合征,理論上應(yīng)用hERG鉀通道開放劑縮短QT間期,可達(dá)到治療目的。但須首先明確各類開放劑的作用機(jī)制是否受通道突變位點(diǎn)的影響,由此,才能實(shí)現(xiàn)個(gè)體化治療,指導(dǎo)臨床藥物治療。因此,必須明確hERG鉀通道不同突變位點(diǎn)的致病特性,或與其他通道之間的相互影響,以維持復(fù)極儲(chǔ)備的穩(wěn)定,減少心律失常的發(fā)生。
[1]Roden DM.Drug-inducedprolongationof the QT interval[J].N Engl J Med,2004,350(10):1013-1022.
[2]Guth BD.Preclinical cardiovascular risk assessment in modern drug development[J].Toxicol Sci,2007,97(1):4-20.
[3]Zhao J,Wang Q,Xu J,Zhao J,Liu G,Peng S.Cyclovirobuxine D inhibits the currents of HERG potassium channels stably expressed in HEK293 cells[J].Eur J Pharmacol,2011,660(2-3):259-267.
[4]Choi SH,Shin TJ,Hwang SH,Lee BH,Kang J,Kim HJ,et al.Ginsenoside Rg(3)decelerates hERG K+channel deactivation through Ser631 residue interaction[J].Eur J Pharmacol,2011,663(1-3):59-67.
[5]Zhang YH,Cheng H,Alexeenko VA,Dempsey CE,Hancox JC.Characterization of recombinant hERG K+channel inhibition by the active metabolite of amiodarone desethyl-amiodarone[J].J Electrocardiol,2010,43(5):440-448.
[6]Gu DF,Li XL,Qi ZP,Shi SS,Hu MQ,Liu DM,et al.Blockade of HERG K+channel by isoquinoline alkaloid neferine in the stable transfected HEK293 cells[J].Naunyn Schmiedebergs Arch Pharmacol,2009,380(2):143-151.
[7]Huang X,Yang Y,Zhu J,Dai Y,Pu J.The effects of a novel anti-arrhythmic drug,acehytisine hydrochloride,on the human ether-a-go-go related gene K channel and its trafficking[J].Basic Clin Pharmacol Toxicol,2009,104(2):145-154.
[8]Guo J,Li X,Shallow H,Xu J,Yang T,Massaeli H,et al.Involvement of caveolin in probucol-induced reduction in hERG plasma-membrane expression[J].Mol Pharmacol,2011,79(5):806-813.
[9]Gong JH,Liu XJ,Shang BY,Chen SZ,Zhen YS.HERG K+channel related chemosensitivity to sparfloxacin in colon cancer cells[J].Oncol Rep,2010,23(6):1747-1756.
[10]Wu ZY,Yu DJ,Soong TW,Dawe GS,Bian JS.Progesterone impairs human ether-a-go-go-related gene(HERG)trafficking by disruption of intracellular cholesterol homeostasis[J].J Biol Chem,2011,286(25):22186-22194.
[11]Fox BM,Natero R,Richard K,Connors R,Roveto PM,Beckmann H,et al.Novel pyrrolidine melanin-concentrating hormone receptor 1 antagonists with reduced hERG inhibition[J].Bioorg Med Chem Lett,2011,21(8):2460-2467.
[12]Lee HA,Kim EJ,Hyun SA,Park SG,Kim KS.Electrophysiological effects of the anti-cancer drug lapatinib on cardiac repolarization[J].Basic Clin Pharmacol Toxicol,2010,107(1):614-618.
[13]Ganapathi SB,Kester M,Elmslie KS.State-dependent block of HERG potassium channels by R-roscovitine:implications for cancer therapy[J].Am J Physiol Cell Physiol,2009,296(4):C701-C710.
[14]Kim KS,Lee HA,Cha SW,Kwon MS,Kim EJ.Blockade of hERG K+channel by antimalarial drug,primaquine[J].Arch Pharm Res,2010,33(5):769-773.
[15]Jeong I,Choi BH,Hahn SJ.Effects of lobeline,a nicotinic receptor ligand,on the cloned Kv1.5[J].Pflugers Arch,2010,460(5):851-862.
[16]Hong HK,Jo SH.Block of HERG k channel by classic histamine h(1)receptor antagonist chlorpheniramine[J].Korean J Physiol Pharmacol,2009,13(3):215-220.
[17]Jo SH,Hong HK,Chong SH,Lee HS,Choe H.H(1)antihistamine drug promethazine directly blocks hERG K(+)channel[J].Pharmacol Res,2009,60(5):429-437.
[18]Staudacher I,Wang L,Wan X,Obers S,Wenzel W,Tristram F,et al.hERG K+channel-associated cardiac effects of the antidepressant drug desipramine[J].Naunyn Schmiedebergs Arch Pharmacol,2011,383(2):119-139.
[19]Obers S,Staudacher I,F(xiàn)icker E,Dennis A,Koschny R,Erdal H,et al.Multiple mechanisms of hERG liability:K+current inhibition,disruption of protein trafficking,and apoptosis induced by amoxapine[J].Naunyn Schmiedebergs Arch Pharmacol,2010,381(5):385-400.
[20]Kim KS,Kim EJ,Lee HA,Park SJ.Effect of sibutramine HCl on cardiac hERG K+channel[J].Mol Cell Biochem,2009,320(1-2):125-131.
[21]Lacerda AE,Kuryshev YA,Yan GX,Waldo AL,Brown AM.Vanoxerine:cellular mechanism of a new antiarrhythmic[J].J Cardiovasc Electrophysiol,2010,21(3):301-310.
[22]Lee HA,Kim KS,Park SJ,Kim EJ.Cellular mechanism of the QT prolongation induced by sulpiride[J].Int J Toxicol,2009,28(3):207-212.
[23]Lees-Miller JP,Duan Y,Teng GQ,Duff HJ.Molecular determinant of high-affinity dofetilide binding to HERG1 expressed in Xe-nopus oocytes:involvement of S6 sites[J].Mol Pharmacol,2000,57(2):367-374.
[24]Mitcheson JS,Chen J,Lin M,Culberson C,Sanguinetti MC.A structural basis for drug-induced long QT syndrome[J].Proc Natl Acad Sci USA,2000,97(22):12329-12333.
[25]Xing J,Ma J,Zhang P,F(xiàn)an X.Block effect of capsaicin on hERG potassium currents is enhanced by S6 mutation at Y652[J].Eur J Pharmacol,2010,630(1-3):1-9.
[26]Aronov AM.Predictiveinsilico modeling for hERG channel blockers[J].Drug Discov Today,2005,10(2):149-155.
[27]Fernandez D,Ghanta A,Kauffman GW,Sanguinetti MC.Physicochemical features of the HERG channel drug binding site[J].J Biol Chem,2004,279(11):10120-10127.
[28]Choe H,Nah KH,Lee SN,Lee HS,Lee HS,Jo SH,et al.A novel hypothesis for the binding mode of HERG channel blockers[J].Biochem Biophys Res Commun,2006,344(1):72-78.
[29]Ficker E,Dennis AT,Wang L,Brown AM.Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG[J].Circ Res,2003,92(12):e87-e100.
[30]Cordes JS,Sun Z,Lloyd DB,Bradley JA,Opsahl AC,Tengowski MW,et al.Pentamidine reduces hERG expression to prolong the QT interval[J].Br J Pharmacol,2005,145(1):15-23.
[31]Drolet B,Simard C,Roden DM.Unusual effects of a QT-prolonging drug,arsenic trioxide,on cardiac potassium currents[J].Circulation,2004,109(1):26-29.
[32]Wible BA,Hawryluk P,F(xiàn)icker E,Kuryshev YA,Kirsch G,Brown AM.HERG-Lite:a novel comprehensive high-throughput screen for drug-induced hERG risk[J].J Pharmacol Toxicol Methods,2005,52(1):136-145.
[33]Ramstr?m C,Chapman H,Viitanen T,Afrasiabi E,F(xiàn)ox H,Kivel? J,et al.Regulation of HERG(KCNH2)potassium channel surface expression by diacylglycerol[J].Cell Mol Life Sci,2010,67(1):157-169.
[34]Perry M,Sanguinetti M,Mitcheson J.Revealing the structural basis of action of hERG potassium channel activators and blockers[J].J Physiol,2010,588(Pt 17):3157-3167.
[35]Perry M,Sachse FB,Abbruzzese J,Sanguinetti MC.PD-118057 contacts the pore helix of hERG1 channels to attenuate inactivation and enhance K+conductance[J].Proc Natl Acad Sci USA,2009,106(47):20075-20080.
[36]Xu X,Recanatini M,Roberti M,Tseng GN.Probing the binding sites and mechanisms of action of two human ether-a-go-go-related gene channel activators,1,3-bis-(2-hydroxy-5-trifluoromethylphenyl)-urea(NS1643)and 2-[2-(3,4-dichloro-phenyl)-2,3-dihydro-1H-isoindol-5-ylamino]-nicotinic acid(PD307243)[J].Mol Pharmacol,2008,73(6):1709-1721.
[37]Zeng H,Lozinskaya IM,Lin Z,Willette RN,Brooks DP,Xu X.Mallotoxin is a novel human ether-a-go-go-related gene(hERG)potassium channel activator[J].J Pharmacol Exp Ther,2006,319(2):957-962.
[38]Gessner G,Macianskiene R,Starkus JG,Sch?nherr R,Heinemann SH.The amiodarone derivative KB130015 activates hERG1 potassium channels via a novel mechanism[J].Eur J Pharmacol,2010,632(1-3):52-59.
[39]Katchman AN,Koerner J,Tosaka T,Woosley RL,Ebert SN.Comparative evaluation of HERG currents and QT intervals following challenge with suspected torsadogenic and nontorsadogenic drugs[J].J Pharmacol Exp Ther,2006,316(3):1098-1106.
[40]Gaita F,Giustetto C,Bianchi F,Schimpf R,Haissaguerre M,Calò L,et al.Short QT syndrome:pharmacological treatment[J].J Am Coll Cardiol,2004,43(8):1494-1499.
[41]Brugada R,Hong K,Dumaine R,Cordeiro J,Gaita F,Borggrefe M,et al.Sudden death associated with short-QT syndrome linked to mutations in HERG[J].Circulation,2004,109(1):30-35.
[42]Wolpert C,Schimpf R,Giustetto C,Antzelevitch C,Cordeiro J,Dumaine R,et al.Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG[J].J Cardiovasc Electrophysiol,2005,16(1):54-58.
[43]McPate MJ,Duncan RS,Witchel HJ,Hancox JC.Disopyramide is an effective inhibitor of mutant HERG K+channels involved in variant 1 short QT syndrome[J].J Mol Cell Cardiol,2006,41(3):563-566.
Research progress in drug reactions on hERG potassium channels
LIN Min1,LI Yang2,ZHANG Jian-cheng1
(1.Provincial Clinical Medicine College of Fujian Medical University,F(xiàn)uzhou350001,China;2.Institute of Geriatric Cardiology of Chinese PLA General Hospital,Beijing100853,China)
Human ether-a-go-go-related gene(hERG)potassium channels conduct the rapid component of the delayed rectifier potassium current(IKr).The reduction(or increase)of IKrcurrent due to either gene mutations or adverse drug effects would increase the risk of torsades de pointes and sudden cardiac death.This paper reviews various mechanisms of drug reactions of hERG potassium channels and the properties of major drug-protein reaction sites in the pore region and trafficking of hERG potassium channels under the influence of drugs.However,the effect of clinical administration of drugs on hERG remains unclear.
hERG;adverse drug reaction;channels trafficking;potassium channels
The project supported by National Natural Science Foundation of China(81170177)
ZHANG Jian-cheng,E-mail:fjzhangjiancheng@yahoo.com.cn
R973
A
1000-3002(2012)04-0581-04
10.3867/j.issn.1000-3002.2012.04.020
國家自然科學(xué)基金資助項(xiàng)目(81170177)
林敏(1985-),男,碩士研究生,主要從事心臟電生理學(xué)研究。
張建成,E-mail:fjzhangjiancheng@yahoo.com.cn
2011-09-02接受日期:2012-02-09)
(本文編輯:喬虹)