• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兔子朊蛋白結(jié)構(gòu)穩(wěn)定性的分子動力學(xué)研究

    2012-01-08 03:51:02金相逢劉亞芳張敬來
    化學(xué)研究 2012年6期
    關(guān)鍵詞:結(jié)構(gòu)

    陳 欣,金相逢,劉亞芳,張敬來

    (河南大學(xué) 化學(xué)化工學(xué)院,河南 開封475004)

    兔子朊蛋白結(jié)構(gòu)穩(wěn)定性的分子動力學(xué)研究

    陳 欣,金相逢,劉亞芳,張敬來*

    (河南大學(xué) 化學(xué)化工學(xué)院,河南 開封475004)

    朊蛋白病是一種能夠?qū)θ祟惡蛣游飵碇旅绊懀⒕哂懈叨葌魅拘缘纳窠?jīng)退行性疾病.兔子是目前已經(jīng)報道的哺乳類動物中對朊蛋白病免疫的少數(shù)幾個物種之一.我們將分子動力學(xué)和操控式分子動力學(xué)模擬相結(jié)合,研究了兔子正常朊蛋白的結(jié)構(gòu)穩(wěn)定性;同時討論了蛋白結(jié)構(gòu)的收斂性及剛性分布,并揭示了兔子朊蛋白中關(guān)鍵二級結(jié)構(gòu)的動力學(xué)以及受力各向異性特征,證實了兔子朊蛋白結(jié)構(gòu)的穩(wěn)定性特征.

    兔子朊蛋白;結(jié)構(gòu)穩(wěn)定性;分子動力學(xué)模擬;操控式分子動力學(xué)模擬

    Prion diseases,known as transmissible spongiform encephalopathies(TSEs)associated with Creutzfeldt-Jackob disease(CJD),Kuru in humans,scrapie in sheep and bovine spongiform encephalopathy(BSE),are invariably fatal and highly infectious neurodegenerative diseases[1-3].Acquiring structural information of normal cellular prion protein(PrPc)in scrapie isoform (PrPsc)is essential for understanding the pathogenesis of prion disease.The amino sequences of PrPc and PrPsc are the same,but the secondary structure of the two isoforms is quite different:PrPc is rich inα-h(huán)elical structure,whereas PrPsc contains a significant increase inβ-sheets content(from 3%to 45%)[4].Thus the study of the structural dynamics mechanism is of great importance for understanding the pathogenesis of prion diseases.

    Recently,both experimental and computational studies have been applied to reveal the mechanism of structural transformation from PrPc to PrPsc.X-ray diffraction (XRD),nuclear magnetic resonance(NMR)and electron microscopy(EM)analyses have been used to elucidate the structure of protein[4-6].However,it is difficult to probe the dynamics and flexibility of protein.Molecular dynamics(MD)simulation has been verified to be one of the most efficient computational methods to provide continuous dynamic information on proteins at atomic level[7].Nevertheless,the folding and unfolding time of protein usually varies from 10μs to 1ms[8],which means it is difficult to observe the folding and unfolding processes of protein by pure MD simulation.For example,recent simulations have shown that the structure of prion protein is convergent and it is hard to observe the unfolding pathway[9].Fortunately,steered molecular dynamics(SMD)simulation as an effective and powerful method to probe the mechanical properties of biomolecules can be adopted to quickly probe the dynamic characteristics of protein;and SMD method has become a powerful tool for complementing in vitro single-molecule experiments[10].

    Bearing those perspectives in mind and noticing that rabbit is one of the several mammalian species reported to be resistant to infection from prion diseases,in the present research we combine MD simulation with SMD simulation to study the thermo-stability and the interaction mechanism of dynamic process of normal rabbit prion protein(rPrPc).Thus rPrPc was selected as an example to study the structural stability of prion protein.The flexibility of the key secondary structure and the distinct interaction of the protein,as well as the force response of rPrPc were investigated.This research,hopefully,is to help to promote the study of pathogenesis and drug design of prion diseases.

    1 Methods

    All MD and SMD simulations were performed with NAMD version 2.7[11]of Charmm 27force field[12].The NMR structure of rPrPc was cited from Protein Data Bank (PDB)with PDB ID code 2FJ3[13].The protein was purified from the initial structure and the missing atoms were added.Then protein was immersed in a periodic water box with TIP3Pmodel water molecules.The water box was designed to be large enough to accommodate the structure changes during MD and SMD processes.The volume of the water box is 4.739×6.096×4.352nm3and the number of water molecules is 3 238.The long-range electrostatic interactions were calculated using the Particle Mesh Ewald(PME)summation scheme.All simulations were carried out with a time step of 2fs.Both the van der Waals and columbic interactions were truncated at 1nm.NPT ensemble was used and Langevin method was employed to control the constant temperature at 310Kand constant pressure at 101.3kPa during the MD process.Energy minimization was performed to optimize the geometry of rPrPc and then MD simulation was applied to equilibrate the system for 10ns.

    In association with the MD simulation,a series of SMD simulations were carried out to investigate the dynamics of rPrPc.In principle,SMD simulation is applied by attaching a harmonic restraint to one or more atoms in the system,and then either the stiffness or the position of the restraint is changed to pull the atom along.Constant velocity pulling(PCV)method is one of the basic operations of SMD,and it was used in this research to disturb the rPrPc system with external forces.In the PCV simulation,the SMD atoms are attached to a dummy atomviaa virtual spring and this dummy atom moves at a constant velocity in desired direction.Since the protein could be roughly described in a rectangular box,the six faces of the box were selected as the six different starting orientations of SMD directions.The initial orientation of rPrPc was denoted as+x,and the other five orientations were denoted as-x,+y,-y,+z,and-z,respectively.In SMD simulations,a slab of water molecules with a thickness of 0.3nm was tagged as the SMD atoms and the external force was applied to the SMD atoms along the selected directions;and the other water molecules and rPrPc were free.As shown in Fig.1,SMD waters are tagged in-xdirection and would be pulled along+xaxis to disturb the protein.In SMD simulations,all the parameters were carefully adjusted according to the rigidity of protein itself.The spring constantkwas set to be 12 558kJ·mol-1·nm-2and the pulling velocity was fixed at 5×10-5nm·fs-1to obtain good SMD observation window.The pulling distance was set to be 4-5.7nm according to the system size and the periodic boundary conditions.One thousand frames of trajectories were deposited during the SMD simulation.

    2 Results and discussion

    2.1 MD simulation results

    Fig.1 The snapshot of the rPrPc system with SMD waters tagged in-xdirection.SMD water molecules are marked in red and white with VDW model.The free water molecules are shown with the line model,and rPrPc was displayed with the cartoon model

    MD simulation is essential to achieve equilibrium state,and two criterions,i.e.,the potential energy of protein and the root mean square deviation (RMSD),are generally adopted to judge whether it has achieved equilibrium or not during the simulation procedure[14].Since the energy expression of rPrPc immersed in water box is complicated,the potential energy and RMSD of PrPc were extracted individually from the simulation system so as to describe the final state of rPrPc more exactly.

    The potential energy of rPrPc during the 10ns MD simulation is shown in Fig.2.It is seen that the fluctuation amplitude of potential energy is small and it vibrates around-4 839kJ·mol-1,which indicates that the rPrPc system has achieved an equilibrium state.In the meantime,the RMSD of rPrPc fluctuates gently(Fig.3),which implies that one of the thermo-stable states of rPrPc has been obtained.Then the equilibrium structure of rPrPc could be used as the initial structure of SMD simulation.Both potential energy and RMSD of rPrPc show that the protein is conservative and stable during the MD simulation.This means it is hard to study the unfolding dynamics of rPrPc at short MD time,which is essential to the misfolding path of PrPc to PrPsc.

    Fig.2 Potential energy of rPrPc with respect to MD simulation time

    Fig.3 RMSD change of the backbone of rPrPc during the MD simulation

    As shown in Fig.1,rPrPc is mainly composed of threeα-h(huán)elices and one antiparallelβ-sheet.According to the residue number,they are named asα1(Asp143-Thr153),α2 (Gln171-Hse186),α3 (Glu199-Ala224),β1(Leu129-Ala132)andβ2(Gln159-Tyr161),respectively.In order to observe the flexibility of rPrPc,we separately extracted the RMSD values of the helices and sheet to compare the stability difference.As seen in Fig.4,the RMSD order is ranked asα2>α3>α1>β1>β2,which indicates that the flexibility of the helices is larger than that of the sheet.Besides,the RMSD ofα3rises at 2ns,which,with the assistance of trajectory movie,indicates that there exists an unfolding phenomenon ofα3thereat.Moreover,β1keeps twisting during the whole MD simulation,which is why the RMSD value ofβ1is lar-ger than that ofβ2(Fig.4).

    In order to reveal the unfolding of the helixα3,we analyzed its relative hydrogen bond(H-bond).The H-bond distance between the oxygen atom of Gln218and the hydrogen atom of Gln222during the whole simulation is displayed in Fig.5a;and the change of another H-bond(Gln219:O-Ala223:H)distance is shown in Fig.5b.It is distinctly seen that there is distance increase of H-bond during the MD simulation.As shown in Fig.5a,the average H-bond distance is 0.22nm from 0ns to 2.4 ns;however,the average H-bond distance jumps to 0.4 nm from 2.4ns to the end of the MD simulation.Such an increase of H-bond distance enhances the unfolding ofα3in rPrPc;and the change of the H-bond distance with a large amplitude is also confirmed by the flexibility ofα-h(huán)elix.

    Fig.4 RMSD values of the helix and sheet structures versus MD simulation time

    Fig.5 Relative H-bond distance ofα3in rPrPc with respect to MD simulation time

    Moreover,the RMSD ofα2increases at the beginning of MD simulation(Fig.4),which is attributed to the folding ofα2in relation to thermodynamics of rPrPc.The snapshots of rPrPc at the initial state and the final state of MD simulation are shown in Fig.6aand Fig.6b,separately.The folding part ofα2is colored with red,and it is dominated by easy transformation from coil to helix.Corresponding H-bond distances(Hse186:O-Thr190:H and Val188:O-Thr192:H)shown in Fig.7also give evidences to the folding phenomenon.Both in Fig.7aand Fig.7b,the dramatic decrease of H-bond distance happens within 1ns.

    Fig.6 (a)Snapshot of the initial state of rPrPc before MD simulation and(b)Snapshot of the final state of rPrPc at the end of MD simulation

    2.2 SMD simulation results

    Fig.7 Relative H-bond distance ofα2in rPrPc with respect to MD simulation time

    In rPrPc system,after 10ns MD simulation without applying any disturbances to the system,an equilibrium state was relegated to the SMD simulations as the starting state.During the SMD simulation,the SMD water atoms lie in the outermost layer of the water box,and the external forces used as probe tips are applied on the SMD water atoms.In PCV simulations,protein was pushed with a constant velocity from the six directions of+x,-x,+y,-y,+zand-z.The force analysis along six directions of rPrPc with respect to simulation time is shown in Fig.8.By analyzing the six force curves,we can easily find that the force endurance of rPrPc is variable in different directions.As to all the six curves in Fig.8,the fluctuation amplitude in the+yand-ydirections is obviously larger than that in the other four directions.Both the height and width of the force peak in the two directions are obviously large,which shows that the rigidity of rPrPc in these two directions is predominant.However,there are still differences between the two curves+yand-ydirections.Namely,the fluctuation of force in+ysystem is larger than that in-ysystem during the early part of SMD simulation,whereas it is opposite during the latter part of SMD simulation.From the view of SMD trajectory,we can see that SMD waters are mainly encountered helices in y-axis direction;and the three helices are staggered to form a protective wall to resist the external disturbance.Thus the external force must be enlarged to keep the SMD waters moving at a constant velocity.Since the helix wall is located at the side of+ydirection,difference of+yand-ysystems is thus caused.However,the loop structure is soft and it could be easily passed through by SMD waters.Moreover,the SMD waters could pass through the helix wall from the side with less resistance.As a result,the force applied in other directions is small.In terms of all the SMD simulations,no obvious structural deformation of rPrPc is found from the trajectory movie,which shows that the compact structure of rPrPc can efficiently remain stable under the external disturbance.

    3 Conclusions

    MD and SMD simulations were combined to accelerate the dynamic studies of prion system.The rPrPc was employed to reveal the stability of prion protein at atomic level.Energy minimization and MD simulation were used to get the equilibrium state of the protein,and SMD simulation was carried out to compare the rigidity distribution and dynamics characteristics of the protein in different directions.It has been confirmed that the tertiary structure of rPrPc is compact and is hard to be unfolded with thermodynamics movement.MD analysis shows that the number of dynamic forms ofα-h(huán)elix is larger than that ofβ-sheet in rPrPc system.Both folding and unfolding ofα-h(huán)elix appear during the simulation,and the secondary structure ofα-h(huán)elix of rPrPc is more flexible thanβ-sheet.It is just the instability of the helix that might be the dynamic basis of the misfolding of PrPc into PrPsc.Besides,SMD analysis shows that the rigidity of PrPc is anisotropic and the protective wall staggered withαhelix is important in maintaining the stability of PrPc under external disturbances.However,there is no significant unfolding of helix during all the simulation processes under the selected condition.Longer time MD simulation and stronger external forces may inspire the dynamics of rPrPc,and further studies on this topic would be of significance for better understanding the pathogenesis of prion diseases.

    Fig.8 Force changes of rPrPc in all the six directions during the SMD simulation

    [1]PRUSINER S B.Novel proteinaceous infectious particles cause scrapie[J].Science,1982,216:136-144.

    [2]CAUGHEY B,CHESEBRO B.Transmissible spongiform encephathies and prion protein interconversions[J].Adv Virus Res,2001,56:277-311.

    [3]AGUZZI A,POLYMENIDOU M.Mammalian prion biology:one century of evolving concepts[J].Cell,2004,116:313-327.

    [4]PETSKO G A,RINGE D.Fluctuations in protein structure from X-ray diffraction[J].Annu Rev Biophys,1984,13:331-371.

    [5]MARASSI F M,OPELLA S J.A solid-state NMR index of helical membrane protein structure and topology[J].J Magn Reson,2000,144:150-155.

    [6]DAVID B,ANDREJ S.Protein structure prediction and structural genomics[J].Science,2001,294:93-96.

    [7]PHILLIPS J C,BRAUN R,WANG Wei,et al.Scalable molecular dynamics with NAMD[J].J Comput Chem,2005,26:1781-1802.

    [8]MAYORL U,GUYDOSH N R,JOHNSON C M,et al.The complete folding pathway of a protein from nanoseconds to microseconds[J].Nature,2003,421:863-867.

    [9]ZHANG Jia Pu.Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins[J].J Theor Biol,2011,269:88-95.

    [10]SOTOMAYOR M,SCHULTEN K.Single-molecule experiments in vitro and in silico[J].Science,2007,316:1144-1148.

    [11]KALE K,SKEEL R,BHANDARKAR M,et al.NAMD2:Greater scalability for parallel molecular dynamics[J].J Comp Phys,1999,151:283-312.

    [12]MACKERELL A D,JR BASHFORD D,BELLOTT M,et al.All-atom empirical potential for molecular modeling and dynamics studies of proteins[J].J Phys Chem B,1998,102:3586-3616.

    [13]WEN Yi,LI Jun,YAO Wen Ming,et al.Unique structural characteristics of the rabbit prion protein[J].J Biol Chem,2010,285:31682-31693.

    [14]CHEN Xin,WU Tao,WANG Qi,et al.Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite(100)surface[J].Biomaterials,2008,29:2423-2432.

    Study on stability of rabbit prion protein by molecular dynamics simulation

    CHEN Xin,JIN Xiang-feng,LIU Ya-fang,ZHANG Jing-lai*

    (CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China)

    Prion diseases are fatal and highly infectious neurodegenerative diseases that affect humans and animals.Rabbit is one of the several mammalian species reported to be resistant to infection from prion diseases.In this research,molecular dynamics(MD)and steered molecular dynamics(SMD)simulations were combined to study the stability of rabbit prion protein(rPrPc).The dynamics characteristics of the key secondary structures and the anisotropic resistance of external forces of rPrPc were revealed.Furthermore,the structural stability of rPrPc was confirmed with structural convergence and rigidity distribution based on the simulations.

    rabbit prion protein(rPrPc);structural stability;molecular dynamics(MD)simulation;steered molecular dynamics(SMD)simulation

    O643.1

    A

    1008-1011(2012)06-0058-06

    date:2012-05-11.

    This work is supported by the National Science Foundation of China(21003037and 30900236).

    Biography:CHEN Xin(1981-),female,doctor,lecturer,research field:computational chemistry.*

    ,E-mail:zhangjinglai@henu.edu.cn.

    猜你喜歡
    結(jié)構(gòu)
    DNA結(jié)構(gòu)的發(fā)現(xiàn)
    《形而上學(xué)》△卷的結(jié)構(gòu)和位置
    論結(jié)構(gòu)
    中華詩詞(2019年7期)2019-11-25 01:43:04
    新型平衡塊結(jié)構(gòu)的應(yīng)用
    模具制造(2019年3期)2019-06-06 02:10:54
    循環(huán)結(jié)構(gòu)謹(jǐn)防“死循環(huán)”
    論《日出》的結(jié)構(gòu)
    縱向結(jié)構(gòu)
    縱向結(jié)構(gòu)
    我國社會結(jié)構(gòu)的重建
    人間(2015年21期)2015-03-11 15:23:21
    創(chuàng)新治理結(jié)構(gòu)促進中小企業(yè)持續(xù)成長
    免费看a级黄色片| 91老司机精品| 国产精品乱码一区二三区的特点| 一进一出抽搐gif免费好疼| 草草在线视频免费看| 中文字幕另类日韩欧美亚洲嫩草| 18禁黄网站禁片午夜丰满| 黄色a级毛片大全视频| 久热爱精品视频在线9| 久久久国产精品麻豆| 亚洲第一av免费看| 日日干狠狠操夜夜爽| 操出白浆在线播放| 国产精品野战在线观看| 妹子高潮喷水视频| 99精品欧美一区二区三区四区| 亚洲性夜色夜夜综合| 国产成人影院久久av| 人人妻人人澡人人看| 人妻丰满熟妇av一区二区三区| 在线观看66精品国产| 国产精品久久久av美女十八| 叶爱在线成人免费视频播放| 国产精品美女特级片免费视频播放器 | 色综合婷婷激情| 亚洲国产高清在线一区二区三 | 亚洲成a人片在线一区二区| 可以在线观看毛片的网站| 亚洲精品在线美女| 悠悠久久av| 国产一卡二卡三卡精品| 香蕉国产在线看| 最近最新中文字幕大全电影3 | 成在线人永久免费视频| 国产精品亚洲av一区麻豆| 看片在线看免费视频| 成人特级黄色片久久久久久久| 国产男靠女视频免费网站| 波多野结衣高清作品| 叶爱在线成人免费视频播放| 欧美成人免费av一区二区三区| 好看av亚洲va欧美ⅴa在| 日本免费一区二区三区高清不卡| 90打野战视频偷拍视频| 女人被狂操c到高潮| 亚洲午夜理论影院| 丁香欧美五月| 日本a在线网址| 十分钟在线观看高清视频www| 看片在线看免费视频| 国产一区二区在线av高清观看| 给我免费播放毛片高清在线观看| 免费在线观看日本一区| 嫩草影视91久久| 久久香蕉国产精品| xxxwww97欧美| 757午夜福利合集在线观看| av天堂在线播放| 日韩三级视频一区二区三区| 黄色片一级片一级黄色片| 亚洲人成网站高清观看| 午夜福利高清视频| or卡值多少钱| 婷婷丁香在线五月| 午夜两性在线视频| 黄色视频不卡| 最新在线观看一区二区三区| 亚洲av五月六月丁香网| 在线免费观看的www视频| 在线观看午夜福利视频| 久久人妻av系列| 日本黄色视频三级网站网址| 亚洲精品国产精品久久久不卡| 别揉我奶头~嗯~啊~动态视频| 怎么达到女性高潮| 亚洲av成人不卡在线观看播放网| 88av欧美| 视频在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 麻豆久久精品国产亚洲av| 国产精品久久久人人做人人爽| 亚洲,欧美精品.| 国产精品久久视频播放| 97超级碰碰碰精品色视频在线观看| 啦啦啦观看免费观看视频高清| 亚洲成人久久性| 哪里可以看免费的av片| 中文字幕精品亚洲无线码一区 | 男女床上黄色一级片免费看| 人人妻人人澡人人看| 色播在线永久视频| 99国产极品粉嫩在线观看| or卡值多少钱| 精品久久久久久成人av| 又紧又爽又黄一区二区| 日韩欧美三级三区| 在线观看日韩欧美| 亚洲专区字幕在线| 少妇被粗大的猛进出69影院| 欧美色视频一区免费| 啦啦啦观看免费观看视频高清| 午夜福利高清视频| 日日干狠狠操夜夜爽| 国产激情久久老熟女| 777久久人妻少妇嫩草av网站| 国产主播在线观看一区二区| 真人一进一出gif抽搐免费| 午夜久久久久精精品| 亚洲国产欧美一区二区综合| 午夜亚洲福利在线播放| 正在播放国产对白刺激| ponron亚洲| 露出奶头的视频| 十分钟在线观看高清视频www| 亚洲最大成人中文| 国产精品久久久久久精品电影 | 久久欧美精品欧美久久欧美| 国产成人精品无人区| 久久久久精品国产欧美久久久| 熟女电影av网| АⅤ资源中文在线天堂| 久久精品国产99精品国产亚洲性色| 又黄又爽又免费观看的视频| 亚洲久久久国产精品| 操出白浆在线播放| 久久久久国产精品人妻aⅴ院| 国产主播在线观看一区二区| 欧美日韩福利视频一区二区| 美国免费a级毛片| av在线播放免费不卡| 这个男人来自地球电影免费观看| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| av超薄肉色丝袜交足视频| 日本一本二区三区精品| 久久久久亚洲av毛片大全| 91av网站免费观看| 中文在线观看免费www的网站 | 亚洲精品粉嫩美女一区| 国产单亲对白刺激| 亚洲精品在线美女| 黄频高清免费视频| 黄色a级毛片大全视频| 日韩欧美国产一区二区入口| 在线看三级毛片| 亚洲国产精品合色在线| 啦啦啦 在线观看视频| 亚洲成a人片在线一区二区| 亚洲午夜精品一区,二区,三区| 欧美午夜高清在线| 久久久国产成人免费| 久久精品国产综合久久久| 99re在线观看精品视频| 在线观看日韩欧美| 777久久人妻少妇嫩草av网站| 欧美黑人欧美精品刺激| 性欧美人与动物交配| 精品福利观看| 久久久久久久午夜电影| 法律面前人人平等表现在哪些方面| 国产亚洲精品第一综合不卡| 老鸭窝网址在线观看| 成人18禁高潮啪啪吃奶动态图| 少妇粗大呻吟视频| 国内毛片毛片毛片毛片毛片| 欧美国产日韩亚洲一区| 国产精品综合久久久久久久免费| 欧美日韩乱码在线| 91大片在线观看| 亚洲专区中文字幕在线| 老鸭窝网址在线观看| 国内精品久久久久精免费| 99久久久亚洲精品蜜臀av| 丝袜美腿诱惑在线| 久久国产精品人妻蜜桃| 国产av在哪里看| 夜夜爽天天搞| 色综合婷婷激情| 国产亚洲精品第一综合不卡| 亚洲色图 男人天堂 中文字幕| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 婷婷丁香在线五月| 国产精品综合久久久久久久免费| 精品久久久久久久末码| 久久久久免费精品人妻一区二区 | 成年免费大片在线观看| 欧美三级亚洲精品| 久久精品国产亚洲av高清一级| 国产在线精品亚洲第一网站| 人人妻,人人澡人人爽秒播| 黄频高清免费视频| 看片在线看免费视频| 午夜福利欧美成人| 热99re8久久精品国产| 色老头精品视频在线观看| 十八禁网站免费在线| 国产亚洲欧美98| 国产乱人伦免费视频| 老汉色av国产亚洲站长工具| 亚洲成国产人片在线观看| 老司机在亚洲福利影院| av有码第一页| 国产人伦9x9x在线观看| www日本黄色视频网| 欧美乱妇无乱码| 久久人妻av系列| 亚洲国产高清在线一区二区三 | 99国产精品99久久久久| 亚洲第一青青草原| 国产亚洲欧美精品永久| 2021天堂中文幕一二区在线观 | 亚洲av成人不卡在线观看播放网| 亚洲人成伊人成综合网2020| 久久久久久久久免费视频了| 日韩国内少妇激情av| 大型黄色视频在线免费观看| 男人舔女人下体高潮全视频| or卡值多少钱| 国产麻豆成人av免费视频| 最新美女视频免费是黄的| 久热爱精品视频在线9| 久久99热这里只有精品18| 免费搜索国产男女视频| 成人18禁在线播放| 黄网站色视频无遮挡免费观看| 国产私拍福利视频在线观看| 桃红色精品国产亚洲av| 脱女人内裤的视频| 麻豆久久精品国产亚洲av| 国产精品九九99| 美女 人体艺术 gogo| 在线国产一区二区在线| 波多野结衣高清无吗| 丝袜美腿诱惑在线| 可以免费在线观看a视频的电影网站| 熟妇人妻久久中文字幕3abv| 啦啦啦免费观看视频1| 色精品久久人妻99蜜桃| 人人澡人人妻人| 97碰自拍视频| 欧美激情高清一区二区三区| 黄色a级毛片大全视频| 午夜福利欧美成人| 欧美色欧美亚洲另类二区| 国产亚洲精品久久久久久毛片| 欧美激情高清一区二区三区| 人人妻人人看人人澡| 久久天堂一区二区三区四区| 色av中文字幕| 午夜福利18| 一区二区三区国产精品乱码| 国产精品二区激情视频| 欧美成人免费av一区二区三区| 国产精品,欧美在线| 欧美色欧美亚洲另类二区| 精品国产超薄肉色丝袜足j| 成人亚洲精品av一区二区| 少妇粗大呻吟视频| 成年人黄色毛片网站| 久久久久国产精品人妻aⅴ院| 国产黄a三级三级三级人| 人妻久久中文字幕网| 亚洲第一电影网av| 日韩欧美国产一区二区入口| 最近在线观看免费完整版| 国产精品国产高清国产av| 久久久久久久午夜电影| 国产在线精品亚洲第一网站| 国产精品久久久人人做人人爽| 国产日本99.免费观看| 日本黄色视频三级网站网址| 亚洲精华国产精华精| 亚洲国产日韩欧美精品在线观看 | 色综合婷婷激情| 精品乱码久久久久久99久播| 日本三级黄在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边做爽爽视频免费| 亚洲一码二码三码区别大吗| 精品久久久久久久人妻蜜臀av| 久久天堂一区二区三区四区| www.精华液| 欧美又色又爽又黄视频| 99在线视频只有这里精品首页| 日韩精品中文字幕看吧| 欧美日韩乱码在线| 久久精品国产综合久久久| 长腿黑丝高跟| 国产人伦9x9x在线观看| 黄色女人牲交| 午夜福利成人在线免费观看| 天天添夜夜摸| 日韩大尺度精品在线看网址| 天堂动漫精品| 50天的宝宝边吃奶边哭怎么回事| 他把我摸到了高潮在线观看| www.熟女人妻精品国产| 一a级毛片在线观看| 99热6这里只有精品| 999精品在线视频| 日本 欧美在线| 欧美性长视频在线观看| 精品免费久久久久久久清纯| 亚洲男人天堂网一区| 成熟少妇高潮喷水视频| 国产真人三级小视频在线观看| 午夜激情福利司机影院| 精品电影一区二区在线| 国产欧美日韩一区二区精品| 熟女电影av网| 一区二区三区精品91| 777久久人妻少妇嫩草av网站| 欧美日韩乱码在线| 中文字幕精品免费在线观看视频| 91av网站免费观看| 又黄又粗又硬又大视频| 免费女性裸体啪啪无遮挡网站| 看黄色毛片网站| www.999成人在线观看| 高清在线国产一区| 精品国产美女av久久久久小说| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 国产视频内射| 午夜免费成人在线视频| 黄色片一级片一级黄色片| 老司机靠b影院| 一区二区三区精品91| 一级黄色大片毛片| 色精品久久人妻99蜜桃| 精品少妇一区二区三区视频日本电影| 中国美女看黄片| 在线十欧美十亚洲十日本专区| 日韩视频一区二区在线观看| netflix在线观看网站| 国产av不卡久久| 欧美一级a爱片免费观看看 | 1024手机看黄色片| 午夜视频精品福利| av福利片在线| 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 精品不卡国产一区二区三区| 日韩大码丰满熟妇| 悠悠久久av| av超薄肉色丝袜交足视频| 黄色女人牲交| 中文在线观看免费www的网站 | 免费搜索国产男女视频| 国产精品一区二区精品视频观看| 中亚洲国语对白在线视频| 亚洲午夜精品一区,二区,三区| 少妇裸体淫交视频免费看高清 | 侵犯人妻中文字幕一二三四区| 大型av网站在线播放| 99国产精品一区二区三区| 香蕉丝袜av| 韩国av一区二区三区四区| 亚洲性夜色夜夜综合| 波多野结衣巨乳人妻| 啦啦啦 在线观看视频| 啦啦啦韩国在线观看视频| 在线免费观看的www视频| 观看免费一级毛片| 国产精品二区激情视频| 精品国产乱子伦一区二区三区| 88av欧美| 一级毛片精品| 国产精品爽爽va在线观看网站 | 欧美黄色片欧美黄色片| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区久久 | 男女午夜视频在线观看| e午夜精品久久久久久久| 亚洲真实伦在线观看| 热99re8久久精品国产| 男人舔奶头视频| 亚洲欧美激情综合另类| 村上凉子中文字幕在线| 精品久久蜜臀av无| 亚洲欧美一区二区三区黑人| 老熟妇乱子伦视频在线观看| 国产高清videossex| 久久精品国产亚洲av香蕉五月| 中文字幕人妻丝袜一区二区| 中文字幕久久专区| 亚洲国产欧洲综合997久久, | 91成年电影在线观看| 午夜日韩欧美国产| 国产伦人伦偷精品视频| 婷婷亚洲欧美| 久久久久国内视频| 欧美日韩黄片免| 国产av又大| 国产成人欧美| 很黄的视频免费| 国产男靠女视频免费网站| 亚洲一区高清亚洲精品| 变态另类成人亚洲欧美熟女| 十八禁人妻一区二区| 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 12—13女人毛片做爰片一| 日韩有码中文字幕| 日韩欧美国产一区二区入口| 久久草成人影院| www.自偷自拍.com| 久久久国产成人精品二区| 精华霜和精华液先用哪个| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 最近最新中文字幕大全电影3 | 国产高清videossex| 精品乱码久久久久久99久播| 日日摸夜夜添夜夜添小说| 露出奶头的视频| 亚洲专区字幕在线| av超薄肉色丝袜交足视频| 国产视频一区二区在线看| 大香蕉久久成人网| ponron亚洲| 欧美色欧美亚洲另类二区| 国产精品久久久av美女十八| 国产av一区在线观看免费| 国产精品免费一区二区三区在线| 国产99久久九九免费精品| 久久久久久大精品| 亚洲va日本ⅴa欧美va伊人久久| 99久久无色码亚洲精品果冻| 亚洲 欧美 日韩 在线 免费| 午夜精品在线福利| 男人舔奶头视频| 国产单亲对白刺激| 少妇被粗大的猛进出69影院| 中文字幕久久专区| 亚洲九九香蕉| 欧美日韩瑟瑟在线播放| 亚洲精品久久国产高清桃花| 老熟妇仑乱视频hdxx| 亚洲人成伊人成综合网2020| 男人舔女人下体高潮全视频| 亚洲人成网站高清观看| or卡值多少钱| 老熟妇乱子伦视频在线观看| 香蕉国产在线看| 欧美+亚洲+日韩+国产| 久久久国产成人精品二区| 亚洲精品久久成人aⅴ小说| 首页视频小说图片口味搜索| 国产视频一区二区在线看| 国产熟女午夜一区二区三区| 亚洲真实伦在线观看| 亚洲av电影不卡..在线观看| 黄片小视频在线播放| 啦啦啦韩国在线观看视频| 黑丝袜美女国产一区| 色老头精品视频在线观看| 国产成人影院久久av| ponron亚洲| 性欧美人与动物交配| 久久婷婷人人爽人人干人人爱| 搞女人的毛片| 在线观看午夜福利视频| 亚洲专区中文字幕在线| 亚洲第一欧美日韩一区二区三区| 欧美午夜高清在线| 精品久久久久久久人妻蜜臀av| 欧美日韩乱码在线| 一边摸一边做爽爽视频免费| 国产麻豆成人av免费视频| 丁香欧美五月| 亚洲人成网站高清观看| 天天添夜夜摸| 变态另类成人亚洲欧美熟女| 可以在线观看的亚洲视频| 亚洲欧美日韩无卡精品| 国产片内射在线| 啦啦啦 在线观看视频| 无限看片的www在线观看| 中亚洲国语对白在线视频| 一进一出抽搐gif免费好疼| 亚洲成a人片在线一区二区| 久久精品aⅴ一区二区三区四区| 久久久久久久久免费视频了| 俄罗斯特黄特色一大片| 成年版毛片免费区| 久久性视频一级片| 婷婷精品国产亚洲av在线| 免费看日本二区| 国产精品久久久av美女十八| 色av中文字幕| 在线永久观看黄色视频| 亚洲精品国产一区二区精华液| 97人妻精品一区二区三区麻豆 | 亚洲天堂国产精品一区在线| 一区福利在线观看| 正在播放国产对白刺激| 久久精品国产清高在天天线| 午夜久久久在线观看| 在线永久观看黄色视频| 黄片播放在线免费| 国产私拍福利视频在线观看| 欧美一级a爱片免费观看看 | 久久久久久久精品吃奶| 波多野结衣巨乳人妻| a级毛片a级免费在线| 无限看片的www在线观看| 亚洲七黄色美女视频| 成年版毛片免费区| 十八禁人妻一区二区| 老司机靠b影院| 精品熟女少妇八av免费久了| 国产高清视频在线播放一区| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| a级毛片在线看网站| 亚洲最大成人中文| 亚洲av第一区精品v没综合| 欧美精品啪啪一区二区三区| 欧美成人性av电影在线观看| 少妇熟女aⅴ在线视频| 免费观看人在逋| 日本熟妇午夜| 两个人视频免费观看高清| 亚洲国产精品合色在线| 免费人成视频x8x8入口观看| 婷婷精品国产亚洲av| 18美女黄网站色大片免费观看| 亚洲国产精品合色在线| 女性生殖器流出的白浆| 两个人看的免费小视频| 他把我摸到了高潮在线观看| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 精品久久蜜臀av无| 黑人欧美特级aaaaaa片| 丁香欧美五月| 人人妻人人澡人人看| av天堂在线播放| 亚洲成国产人片在线观看| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 法律面前人人平等表现在哪些方面| 1024香蕉在线观看| 午夜免费鲁丝| 午夜福利免费观看在线| 国产精品乱码一区二三区的特点| 18美女黄网站色大片免费观看| 亚洲精品国产区一区二| 午夜老司机福利片| 国产又爽黄色视频| 成人18禁高潮啪啪吃奶动态图| 美女高潮到喷水免费观看| 超碰成人久久| 男女视频在线观看网站免费 | 亚洲三区欧美一区| 免费在线观看黄色视频的| 美女大奶头视频| 国产亚洲精品一区二区www| or卡值多少钱| 日韩中文字幕欧美一区二区| av片东京热男人的天堂| 91麻豆精品激情在线观看国产| 在线国产一区二区在线| 午夜免费激情av| 日韩成人在线观看一区二区三区| 国产成人av激情在线播放| 亚洲av熟女| 91字幕亚洲| 国内久久婷婷六月综合欲色啪| 久久久国产精品麻豆| 一边摸一边做爽爽视频免费| 亚洲成国产人片在线观看| 久久精品影院6| 欧美日韩精品网址| aaaaa片日本免费| 岛国视频午夜一区免费看| 99国产精品一区二区三区| 中文字幕人妻熟女乱码| 一区二区日韩欧美中文字幕| 精品国内亚洲2022精品成人| a级毛片在线看网站| 男女午夜视频在线观看| 夜夜躁狠狠躁天天躁| 免费人成视频x8x8入口观看| 久久久久亚洲av毛片大全| 国产精品一区二区免费欧美| 51午夜福利影视在线观看| ponron亚洲| 中文字幕最新亚洲高清| 亚洲第一欧美日韩一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产精品一区二区精品视频观看| av片东京热男人的天堂| 亚洲精品美女久久久久99蜜臀| 日韩精品中文字幕看吧| 久久这里只有精品19| 免费电影在线观看免费观看| 少妇熟女aⅴ在线视频| 午夜激情福利司机影院| 欧美黑人欧美精品刺激| 老司机在亚洲福利影院| e午夜精品久久久久久久| 长腿黑丝高跟| 变态另类成人亚洲欧美熟女| 久久精品国产99精品国产亚洲性色| 欧美激情极品国产一区二区三区| 亚洲五月色婷婷综合| 精品欧美一区二区三区在线| 久久久国产精品麻豆| 在线观看www视频免费| 一卡2卡三卡四卡精品乱码亚洲| 久久久精品欧美日韩精品|