• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sonic hedgehog elevates N-myc gene expression in neural stem cells***★

    2012-01-04 09:58:10DongshengLiuShouyuWangYanCuiLunShenYanpingDuGuilinLiBoZhangRenzhiWang

    Dongsheng Liu, Shouyu Wang, Yan Cui, Lun Shen, Yanping Du, Guilin Li, Bo Zhang, Renzhi Wang

    1 Department of Neurosurgery, First Affiliated Hospital, Dalian Medical University, Dalian 116011, Liaoning Province, China

    2 Chinese Academy of Medical Sciences, Department of Neurosurgery, Peking Union Medical College Hospital, Beijing 100730, China

    Sonic hedgehog elevates N-myc gene expression in neural stem cells***★

    Dongsheng Liu1, Shouyu Wang1, Yan Cui1, Lun Shen1, Yanping Du1, Guilin Li2, Bo Zhang1, Renzhi Wang2

    1Department of Neurosurgery, First Affiliated Hospital, Dalian Medical University, Dalian 116011, Liaoning Province, China

    2Chinese Academy of Medical Sciences, Department of Neurosurgery, Peking Union Medical College Hospital, Beijing 100730, China

    Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gli1 and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells. Sonic hedgehog and N-myc are important mediators of sonic hedgehog-induced proliferation of neural stem cells.

    stem cells; neural stem cells; sonic hedgehog signal pathway; N-myc gene; proliferation; target gene; neural regeneration

    Research Highlights

    (1) Neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein.

    (2) We verified that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells.

    Abbreviations

    SHH, sonic hedgehog; EGFP, enhanced green fluorescent protein; rAAV, recombinant adeno-associated virus

    lNTRODUCTlON

    Sonic hedgehog (SHH) plays a critical signaling role in the patterning, proliferation, regeneration, and cell fate determination of a broad range of cells and tissues[1]. In the developing nervous system, SHH regulates patterning of the neural tube[2]and modulates the proliferation and differentiation of neural progenitors[3-6]. Neural stem cells are self-renewing, multipotent progenitor cells that reside in the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus within the nervous system, and are capable of differentiating into all major neural cell types, namely, neurons, astrocytes and oligodendrocytes[7-9]. Recent studies have demonstrated that SHH is required to maintain the progenitor cell niche and the neural regeneration niche in the telencephalon[1,10-12], but the mechanism by which the SHH signaling pathway regulates the proliferation and regeneration of neural stem cells remains unclear.

    A previous study has shown that SHH induces high levels of N-myc expression[13]. Overexpression of N-myc is sufficient to promote proliferation, and N-myc activity isnecessary for SHH-induced proliferation. In this study, we assumed that N-myc is a direct target gene of SHH signal pathway in neural stem cells. Exogenous SHH enhances the proliferation of neural stem cells[14-16], but the responsiveness of neural stem cells to SHH is poor. Although numerous mitogens, neurotrophins and other factors modulate the proliferation and neural regeneration of neural stem cells, the mechanisms underlying this process are poorly understood.

    In the present study, we isolated and cultured neural stem cells from the subventricular zone of the postnatal rat brain and the amino-terminal active fragment of SHH (SHH-N) was cloned. The plasmid pSNAV2.0-CMV-SHH-N-IRES-enhanced green fluorescent protein (EGFP) was established using enzyme cutting and ligation, and then transfected into the packaging cell line 293T to acquire recombinant adeno-associated virus (rAAV) with SHH. Real-time quantitative PCR analysis was performed after cultured neural stem cells had been infected with the rAAV-SHH-N-EGFP vector for 48 hours to detect the levels of mRNA for SHH, N-myc and Gli1.

    RESULTS

    Observation of neural stem cell morphology

    After 3 days of primary culture of neural stem cells, groups of 2-4 cells were gathered and grew in suspension (Figure 1A). By 7 days, lots of adherent cells died and cells in suspension formed neurospheres (Figure 1B). By 14 days, some neurospheres were fused (Figure 1C; supplementary Figure 1 online).

    SHH-N-encoding sequence and construction of pSNAV2.0-CMV-SHH-N-lRES-EGFP

    RNA was extracted from neural stem cells that had been primarily cultured for 7 days. Reverse transcription was performed to obtain the SHH-N-encoding sequence. This sequence was 594 bp in length and matched the reported sequence in the National Center for Biotechnology Information (NCBI) database, which is displayed in Figure 2. The sequence was cloned into a pSNAV2.0-CMV-SHH-N-IRES-EGFP carrier vector (supplementary Figure 2 online).

    SHH-N protein expression in 293T cells and identification

    pSNAV2.0-CMV-IRES-EGFP was successfully transfected into 293T cells, and green fluorescent protein was expressed. SHH-N protein was identified by western blot assay. The characteristic fragment was 20 kDa (Figure 3).

    Figure 1 Morphology of primary cultured rat neural stem cells (inverted phase contrast microscope, bar: 100 μm).

    Figure 2 Results of agarose electrophoresis of PCR amplified products of SHH-N.

    Figure 3 SHH-N expression in 293T cells after pSNAV2.0-CMV-SHH-N-IRES-EGFP plasmid transfection (western blot assay).

    Observation of EGFP expression in the rAAV-SHH-NEGFP-infected group

    EGFP, as a reporter protein for SHH-N, was expressed in neural stem cells 14 days after rAAV-SHH-N-EGFP infection (Figure 4, supplementary Figure 3 online).

    Figure 4 Observation of enhanced green fluorescent protein (EGFP) expression in neural stem cells (NSCs) after rAAV-SHH-EGFP infection (× 100).

    Real-time quantitative PCR analysis of SHH-N, N-myc, and Gli1

    Compared with the rAAV-EGFP group, real-time PCR showed 3.3-fold induction of SHH-N (P< 0.01), 2.3-fold induction of N-myc (P< 0.05), and 6.4-fold induction of Gli1 (P< 0.01) in the rAAV-SHH-N-EGFP group (Figure 5).

    DlSCUSSlON

    The hedgehog signaling plays a pivotal role in organogenesis and differentiation during development and is also involved in the proliferation, cell-fate specification and regeneration of neural stem cells[14,17-20]. SHH is a potent mitogen for neural progenitor cells of the adult hippocampus[9,14,21]. Rat hippocampal progenitors proliferated when cultured in SHH. Furthermore, delivery of SHH to the hippocampus through the use of an adeno-associated viral vector led to significant increase in cell proliferationin vivo[8,14,22]. Thus, the SHH signal pathway is involved in neural stem cell proliferation and regeneration.

    The precise mechanisms by which SHH promotes cell proliferation and tumor formation are unknown[11,13,23-25]. In most cells, the transmembrane protein Patched represses transcription of SHH target genes[5,16,26-27].

    When SHH binds to Patched, the repression is relieved, and a protein called Smoothened becomes activated. Smoothened activation leads, through steps that are poorly understood, to posttranslational modification and nuclear translocation of Gli-family transcription factors. Once in the nucleus, Gli proteins bind to DNA and regulate target gene transcription[28-29].

    Figure 5 Real-time quantitative PCR analysis of SHH-N, N-myc and Gli1 mRNA expression.

    However, it remains unclear which target genes are responsible for the promotion of neural stem cell proliferation and neural regeneration by SHH signaling in neural stem cells. Previous microarray analysis of genes that are regulated by SHH in granule cells showed that SHH induces expression of the transcription factor N-myc, which is implicated in cell cycle progression[13,30-31]. This analysis also found that overexpression of N-myc is sufficient to promote cell proliferation, and that N-myc activity is necessary for SHH-induced proliferation[13,26,32]. Moreover, members of the Myc family have been reported to be involved in differentiation processes in other cell types, including epithelial, neural crest and hematopoietic stem cells[30-31], although, to our knowledge, previous reports have not directly demonstrated that Myc is involved in the SHH signaling pathway in neural stem cells. The results of this study confirm that (1) the sequence of the SHH-N gene in neural stem cells is coincident with that reported in the NCBI database; (2) the pSNAV2.0-CMVSHH-N-IRES-EGFP expression vector and rAAV-SHH-N-EGFP vector were successfully established and packaged; and (3) induction of N-myc and Gli1 was enhanced in the rAAV-SHH-N-EGFP-treated group compared with the control group. N-myc is a direct downstream target of the SHH signaling pathway in neural stem cells. The increase in N-myc transcription stimulated by SHH suggests that N-myc might be an important mediator of SHH-induced proliferation and neural regeneration. Although examination of sequences in and around the N-myc gene has not revealed any consensus Gli-binding sites, it is possible that such sites are present in other parts of the gene, or that SHH regulates N-myc expression through Gli-independent mechanisms. It would be interesting to investigate the possible roles of N-myc in the SHH signaling pathway in future studies.

    MATERlALS AND METHODS

    Design

    A randomized, controlled, cell experiment.

    Time and setting

    This experiment was performed at the Chinese Academy of Medical Sciences, Department of Neurosurgery, Peking Union Medical College Hospital, China in May 2010.

    Materials

    A total of 10 male specific pathogen-free Sprague-Dawley rats aged 3 days and weighing 4 g were supplied by the Animal Institute, Chinese Academy of Medical Sciences. Experiments were conducted in accordance with theGuidance Suggestions for the Care and Use of Laboratory Animals, formulated by the Ministry of Science and Technology of China[33].

    Methods

    Isolation, culture and identification of neural stem cells

    Rat brain was obtained by craniotomy after anesthesia by 10% chloral hydrate. Tissue from the subventricular zone was isolated under aseptic conditions[34]. Meninges and blood vessels were stripped off under a microscope, mechanically cut into pieces, and filtered through a screen (mesh size 150 μm). The specimens were washed in Dulbecco’s Modified Eagle’s Medium/Ham’s Nutrient Mixture F12 (DMEM/F12; Gibco, Carlsbad, CA, USA) and centrifuged. DMEM/F12 was a 1:1 mixture of DMEM and F12. Then, 2-mL aliquots with a cell density of 5 × 105/mL were seeded into cell culture flasks, and cultured in serum-free DMEM/F12 medium supplemented with N2, basic fibroblast growth factor 10 μg/L, epidermal growth factor 20 μg/L, heparin 4 × 104U/L, penicillin 1 × 105U/L and streptomycin 1 × 106U/L at 37°C in 5% CO2in a saturated humidity incubator for 7 days. The fluid was replaced every 2 days. Obtained cells were identified as neural stem cells by anti-nestin immunocytochemical staining (results not shown).

    Cloning and sequencing of SHH-N

    (1) Extraction of RNA and reverse transcription. RNA was extracted from primary cultured neural stem cells. Annealing reactions consisting of RNA (4 μL), oligo-dt (1 μL), and diethylpyrocarbonate-treated water (7.4 μL) were then performed at 65°C for 10 minutes. Reverse transcription reactions consisted of the following: buffer 4 μL, RNase inhibitor 0.5 μL, deoxynucleotide (dNTP) mix 2 μL, dithiothreitol 1 μL, reverse transcriptase 1.1 μL. Reactions were performed at 50°C for 30 minutes, 85°C for 5 minutes, and 20°C for 1 minute. cDNA (SuperScript III Preamplification System for First Strand cDNA Synthesis kit; Invitrogen, Carlsbad, CA, USA) was stored at -80°C.

    (2) Amplification and recovery of the SHH-N fragment. Reactions consisted of the following: 10 × buffer II 5 μL, cDNA 1 μL, dNTP (10 mM) 1 μL, forward primer (10 μM) 1 μL (5’-CGA ATT CGC ATG CTG CTG CTG GCG AG-3’), reverse primer (10 μM) 1 μL (5’-CGG TCG ACT CAG CCT CCC GAT TTG GCC-3’), pyrobest enzyme 0.5 μL, and water 40.5 μL. Reaction conditions were as follows:95°C for 5 minutes, thirty cycles of 95°C for 0.5 minutes, 55°C for 0.5 minutes, and 72°C for 1 minute, then 72°C for 10 minutes and 4°C for 1 minute. The SHH-N fragment was recovered using a DNA recovery kit (Anxygen, Union City, CA, USA).

    pSNAV2.0-CMV-SHH-N-IRES-EGFP construction

    After double enzyme digestion of the pSNAV2.0-CMV-Laz-IRES-EGFP vector and the SHH-N fragment, we obtained a pSNAV2.0-CMV-SHH-N-IRES-EGFP vector using T4 ligase. After transformation and bacterial challenge, the plasmid was extracted using a plasmid extraction kit.

    SHH-N protein identified by western blot assay

    293T cells (gifted by the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences) were seeded in medium at a cell density of 106/cm2overnight. DMEM was used 1 hour before transfection. The pSNAV2.0-CMV-SHH-N-IRES-EGFP plasmid was transfected into cells and the DMEM was replaced with 10% fetal bovine serum DMEM. Cells were cultured for 36 hours, observed under an inverted phase contrast fluorescence microscope, and then collected. Cells were lysed in 4°C radioimmunoprecipitation assay buffer and centrifuged. Supernatants were retained and western blot assays were conducted using SHH antibody (N-19) to identify SHH-N protein.

    rAAV-SHH-N-EGFP packaging and purification

    rAAV-SHH-N-EGFP and rAAV-EGFP were packaged, purified, and concentrated by Gene Technology Company (Beijing, China). Virus titer was detected using a digoxin-labeled H1 probe by dot blot analysis (Gene Technology Company). The level was 2 × 1011v.g/mL.

    Infection of neural stem cells with rAAV-SHH-N-EGFP in vitro

    neural stem cells were cultured for 14 days. Then, 1 × 105cells were seeded onto cell culture plates. rAAV-SHH-N-EGFP viral vector (multiplicity of infection 1 × 105) and rAAV-EGFP were added. Cells were infected with rAAV-SHH-N-EGFP or rAAV-EGFP, with a multiplicity of infection (v.g/cell) of 1 × 105. Cells were cultured at 37°C in 5% CO2in a saturated humidity incubator for 14 days, and observed under a fluorescence microscope. The fluid was replaced every 2 days.

    Real-time quantitative PCR analysis

    The primers used for real-time quantitative PCR are listed in Table 1. RNA was extracted 48 hours after infection.

    Table 1 Real-time PCR primer sequence

    Real-time PCR reactions consisted of the following:TransStart Green qPCR SuperMix 12.5 μL, forward primer (10 μM) 0.5 μL, reverse primer (10 μM) 0.5 μL, cDNA 2 μL, ddH2O 12.5 μL, dye 0.5 μL. Reaction conditions were as follows: pre-denaturation at 94°C for 2 minutes, 45 cycles of denaturation at 94°C for 20 seconds and annealing at 58°C for 1 minute. The gain value was 2.0. The mean values for three wells were recorded. Results were analyzed using iQ5 real-time PCR analysis software (Bio-Rad, Hercules, CA, USA), and average values were obtained.

    Statistical analysis

    Values are presented as mean ± SD. Differences between groups were analyzed byttest. Α value ofP<0.05 was considered statistically significant, and all statistical tests were two-sided.

    Funding: This project was funded by the National Natural Science Foundation of China, No.81171401; Science and Technology Development Program of Dalian City, No. 2008J99JH268; the Scientific Research Program of Higher Learning School of Department of Education of Liaoning Province, No. L20100108.

    Author contributions: Dongsheng Liu, Shouyu Wang, Yanping Du, Yan Cui and Lun Shen participated in molecular genetic studies, sequence alignment, and drafted the manuscript. Guilin Li participated in study design and performed statistical analysis. Renzhi Wang and Bo Zhang conceived the study and participated in study design and coordination. All authors read and approved the final manuscript.

    Conflicts of interest: None declared.

    Ethical approval: This experimental protocol was approved by the Animal Ethics Committee of Dalian Medical University of China.

    Supplementary information: Supplementary data associated with this article can be found, in the online version, by visiting www.nrronline.org.

    [1] McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol. 2003;53:1-114.

    [2] Lupo G, Harris WA, Lewis KE. Mechanisms of ventral patterning in the vertebrate nervous system. Nat Rev Neurosci. 2006;7(2):103-114.

    [3] Dahmane N, Sánchez P, Gitton Y, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development. 2001;128(24):5201-5212.

    [4] Hynes M, Porter JA, Chiang C, et al. Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron. 1995; 15(1):35-44.

    [5] Kenney AM, Rowitch DH. Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol. 2000; 20(23):9055-9067.

    [6] Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22(1):103-114.

    [7] Traiffort E, Angot E, Ruat M. Sonic Hedgehog signaling in the mammalian brain. J Neurochem. 2010;113(3):576-590.

    [8] Xu Q, Guo L, Moore H, et al. Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates. Neuron. 2010;65(3):328-340.

    [9] Sousa VH, Fishell G. Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain. Curr Opin Genet Dev. 2010;20(4):391-399.

    [10] Vaillant C, Monard D. SHH pathway and cerebellar development. Cerebellum. 2009;8(3):291-301.

    [11] Morikawa Y, Maska E, Brody H, et al. Sonic hedgehog signaling is required for sympathetic nervous system development. Neuroreport. 2009;20(7):684-688.

    [12] Huang X, Liu J, Ketova T, et al. Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc Natl Acad Sci U S A. 2010; 107(18):8422-8427.

    [13] Oliver TG, Grasfeder LL, Carroll AL, et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A. 2003;100(12):7331-7336.

    [14] Lai K, Kaspar BK, Gage FH, et al. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci. 2003;6(1):21-27.

    [15] Palma V, Lim D A, Dahmane N, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development. 2005;132(2):335-344.

    [16] Palma V, Ruiz IA. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development. 2004;131(2):337-345.

    [17] Li FH, Xin SJ, Zhang SY, et al. The sonic hedgehog induce vascular adventitial fibroblasts phenotypic modulation, proliferation and migration. Zhonghua Yi Xue Za Zhi. 2009;89(43):3079-3082.

    [18] Hor CH, Tang BL. Sonic hedgehog as a chemoattractant for adult NPCs. Cell Adh Migr. 2010;4(1):1-3.

    [19] Chen G, Goto Y, Sakamoto R, et al. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor. Biochem Biophys Res Commun. 2011;404(3):809-815.

    [20] Ribes V, Briscoe J. Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback. Cold Spring Harb Perspect Biol. 2009;1(2):a2014.

    [21] Bai LY, Chiu CF, Lin CW, et al. Differential expression of Sonic hedgehog and Gli1 in hematological malignancies. Leukemia. 2008;22(1):226-228.

    [22] Sims JR, Lee SW, Topalkara K, et al. Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation. Stroke. 2009;40(11):3618-3626.

    [23] Fernandez C, Tatard VM, Bertrand N, et al. Differential modulation of Sonic-hedgehog-induced cerebellar granule cell precursor proliferation by the IGF signaling network. Dev Neurosci. 2010;32(1):59-70.

    [24] Domanitskaya E, Wacker A, Mauti O, et al. Sonic hedgehog guides post-crossing commissural axons both directly and indirectly by regulating Wnt activity. J Neurosci. 2010;30(33):11167-11176.

    [25] Ribes V, Balaskas N, Sasai N, et al. Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes Dev. 2010;24(11):1186-1200.

    [26] Pan Y, Wang C, Wang B. Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol. 2009;326(1):177-189.

    [27] Galvin KE, Ye H, Wetmore C. Differential gene induction by genetic and ligand-mediated activation of the Sonic hedgehog pathway in neural stem cells. Dev Biol. 2007;308(2):331-342.

    [28] Ingham PW, Mcmahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001; 15(23):3059-3087.

    [29] Yang L, Shen JH, Liu XD. Sonic hedgehog and prostate growth regulation. Zhonghua Nan Ke Xue. 2007;13(8):730-733.

    [30] Watt FM, Frye M, Benitah SA. MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer. 2008;8(3):234-242.

    [31] Eilers M, Eisenman RN. Myc's broad reach. Genes Dev. 2008;22(20):2755-2766.

    [32] Thomas WD, Chen J, Gao YR, et al. Patched1 deletion increases N-Myc protein stability as a mechanism of medulloblastoma initiation and progression. Oncogene. 2009;28(13):1605-1615.

    [33] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.

    [34] Paxions G, Watson C. The Rat Brain in Stereotaxic Coordinates. Beijing: People’s Medical Publishing House. 2005

    Cite this article as:Neural Regen Res. 2012;7(22):1703-1708.

    Dongsheng Liu★, Master, Department of Neurosurgery, First Affiliated Hospital, Dalian Medical University, Dalian 116011, Liaoning Province, China

    Bo Zhang, M.D., Professor, Chief physician, Department of Neurosurgery, First Affiliated Hospital, Dalian Medical University, Dalian 116011,

    Liaoning Province, China

    zhangbodl@126.com

    2012-03-21

    2012-06-30

    (NY20110223004/WLM)

    Liu DS, Wang SY, Cui Y, Shen L, Du YP, Li GL, Zhang B, Wang RZ. Sonic hedgehog elevates N-myc gene expression in neural stem cells. Neural Regen Res.

    2012;7(22):1703-1708.

    www.crter.cn

    www.nrronline.org

    10.3969/j.issn.1673-5374. 2012.22.004

    We thank Professor Yongsheng Chang from the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences for providing cells and medium.

    (Edited by Yang XF, Zhu WJ/Qiu Y/Song LP)

    男女下面进入的视频免费午夜| 日日摸夜夜添夜夜添小说| 久久久久九九精品影院| 久久久久久大精品| 欧美高清成人免费视频www| 午夜免费观看网址| 全区人妻精品视频| 日本三级黄在线观看| 俺也久久电影网| 天堂√8在线中文| 国内精品美女久久久久久| 看黄色毛片网站| 桃色一区二区三区在线观看| 99久久无色码亚洲精品果冻| 五月玫瑰六月丁香| 91字幕亚洲| 成人国产综合亚洲| 国内精品久久久久精免费| 国产亚洲欧美98| www.www免费av| 欧美成人性av电影在线观看| 久久精品人妻少妇| 超碰成人久久| 最近最新中文字幕大全电影3| 麻豆成人午夜福利视频| 后天国语完整版免费观看| 久久婷婷人人爽人人干人人爱| 色哟哟哟哟哟哟| 国产毛片a区久久久久| 精品久久久久久久人妻蜜臀av| 丰满人妻熟妇乱又伦精品不卡| 中文字幕精品亚洲无线码一区| 最近最新中文字幕大全免费视频| 91字幕亚洲| 人妻夜夜爽99麻豆av| 免费一级毛片在线播放高清视频| 日本黄色片子视频| 成人无遮挡网站| 19禁男女啪啪无遮挡网站| 午夜福利欧美成人| 国产乱人视频| 亚洲va日本ⅴa欧美va伊人久久| 久久人妻av系列| av片东京热男人的天堂| 国产精品 国内视频| 99精品欧美一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 亚洲自拍偷在线| 一区二区三区激情视频| 国产成+人综合+亚洲专区| 真实男女啪啪啪动态图| 成人鲁丝片一二三区免费| 美女cb高潮喷水在线观看 | 久久久久国内视频| 91av网站免费观看| 久久亚洲精品不卡| 伊人久久大香线蕉亚洲五| 在线观看免费视频日本深夜| 日本熟妇午夜| 中文在线观看免费www的网站| 97超级碰碰碰精品色视频在线观看| tocl精华| 亚洲精华国产精华精| 欧美日韩乱码在线| 亚洲av日韩精品久久久久久密| 久久亚洲精品不卡| ponron亚洲| 欧美精品啪啪一区二区三区| 精品国产乱子伦一区二区三区| 少妇的丰满在线观看| 性色avwww在线观看| 亚洲九九香蕉| www.999成人在线观看| 美女大奶头视频| 老汉色∧v一级毛片| 婷婷亚洲欧美| 国产1区2区3区精品| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成伊人成综合网2020| 亚洲黑人精品在线| 国产精品日韩av在线免费观看| 国产精品一及| 国产三级在线视频| 日韩中文字幕欧美一区二区| 网址你懂的国产日韩在线| 国产伦精品一区二区三区四那| 级片在线观看| 中文字幕精品亚洲无线码一区| 亚洲成av人片免费观看| 久久久久久久精品吃奶| 舔av片在线| 亚洲精品美女久久久久99蜜臀| 男女下面进入的视频免费午夜| 亚洲精品在线观看二区| 两个人的视频大全免费| 变态另类成人亚洲欧美熟女| 一本综合久久免费| 中文字幕久久专区| 99久久成人亚洲精品观看| 特大巨黑吊av在线直播| 麻豆成人午夜福利视频| 国产成人影院久久av| 亚洲七黄色美女视频| 国产一区二区三区在线臀色熟女| 久久中文看片网| 久久精品夜夜夜夜夜久久蜜豆| 99国产极品粉嫩在线观看| 亚洲欧美日韩无卡精品| 黄色 视频免费看| 日本成人三级电影网站| 天天一区二区日本电影三级| 老司机深夜福利视频在线观看| 在线观看舔阴道视频| 色综合婷婷激情| 亚洲国产欧美网| 成人精品一区二区免费| 成人精品一区二区免费| 99久久99久久久精品蜜桃| 在线播放国产精品三级| 黄色丝袜av网址大全| 高潮久久久久久久久久久不卡| 99久久综合精品五月天人人| 精品一区二区三区四区五区乱码| 日本一二三区视频观看| 日韩av在线大香蕉| 91久久精品国产一区二区成人 | 亚洲午夜理论影院| 免费在线观看日本一区| 日韩欧美国产在线观看| 国产精品久久电影中文字幕| 色视频www国产| av片东京热男人的天堂| 非洲黑人性xxxx精品又粗又长| 麻豆成人午夜福利视频| 后天国语完整版免费观看| 国产亚洲精品久久久com| 这个男人来自地球电影免费观看| cao死你这个sao货| 最近最新免费中文字幕在线| 两个人的视频大全免费| 国产99白浆流出| 黄色日韩在线| 欧美乱色亚洲激情| 好看av亚洲va欧美ⅴa在| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久中文| 午夜日韩欧美国产| 国产精品野战在线观看| 日日夜夜操网爽| 国产欧美日韩精品一区二区| 99久久精品一区二区三区| 丁香六月欧美| 99久久99久久久精品蜜桃| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区免费观看 | 特大巨黑吊av在线直播| 女人被狂操c到高潮| 狂野欧美白嫩少妇大欣赏| 可以在线观看的亚洲视频| 在线观看日韩欧美| 日韩有码中文字幕| 可以在线观看的亚洲视频| 亚洲成人久久爱视频| 热99re8久久精品国产| 国内精品久久久久久久电影| 99久久精品国产亚洲精品| 久久久久性生活片| 一进一出抽搐动态| 日本撒尿小便嘘嘘汇集6| 在线看三级毛片| 亚洲精品456在线播放app | 无人区码免费观看不卡| 久久性视频一级片| 三级毛片av免费| 久久久色成人| 一边摸一边抽搐一进一小说| 青草久久国产| 国产成人精品无人区| cao死你这个sao货| a在线观看视频网站| 18禁裸乳无遮挡免费网站照片| 成人无遮挡网站| 亚洲色图 男人天堂 中文字幕| 国产真实乱freesex| 18禁黄网站禁片午夜丰满| 欧美日韩一级在线毛片| 18禁黄网站禁片午夜丰满| 免费在线观看亚洲国产| 两人在一起打扑克的视频| www国产在线视频色| 国产成人啪精品午夜网站| 国产av一区在线观看免费| 久久国产精品人妻蜜桃| 啦啦啦韩国在线观看视频| 国产成人精品久久二区二区免费| 免费看光身美女| 国产毛片a区久久久久| 老司机在亚洲福利影院| 精品一区二区三区视频在线观看免费| 婷婷精品国产亚洲av| 亚洲专区国产一区二区| 三级国产精品欧美在线观看 | 久久中文字幕人妻熟女| 19禁男女啪啪无遮挡网站| 欧美性猛交黑人性爽| 最近最新中文字幕大全免费视频| 美女cb高潮喷水在线观看 | 国产一区二区三区视频了| 精品国产超薄肉色丝袜足j| 久久久久亚洲av毛片大全| 99久久精品热视频| 国产av不卡久久| 国产精品精品国产色婷婷| 免费人成视频x8x8入口观看| 亚洲中文av在线| 我要搜黄色片| www.www免费av| 久久久国产成人精品二区| 精品久久久久久成人av| 午夜久久久久精精品| 国产1区2区3区精品| 日本熟妇午夜| 亚洲成人免费电影在线观看| 日韩欧美 国产精品| 999久久久精品免费观看国产| 男人舔奶头视频| 99国产极品粉嫩在线观看| 热99在线观看视频| 琪琪午夜伦伦电影理论片6080| 国产精品自产拍在线观看55亚洲| 啪啪无遮挡十八禁网站| 国产成人影院久久av| 久久这里只有精品19| 黄色丝袜av网址大全| 色综合婷婷激情| 少妇的逼水好多| 亚洲专区字幕在线| 夜夜看夜夜爽夜夜摸| 无遮挡黄片免费观看| 老汉色av国产亚洲站长工具| 51午夜福利影视在线观看| 欧美xxxx黑人xx丫x性爽| 性欧美人与动物交配| 男女那种视频在线观看| 搡老熟女国产l中国老女人| av福利片在线观看| 男人舔奶头视频| 久久久成人免费电影| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| x7x7x7水蜜桃| 九色国产91popny在线| 曰老女人黄片| 女同久久另类99精品国产91| 国产高潮美女av| 久久亚洲精品不卡| 国产一区二区在线av高清观看| 久久久久久久午夜电影| 亚洲国产欧美一区二区综合| 成人性生交大片免费视频hd| 国产成人欧美在线观看| 国产成人av激情在线播放| 香蕉久久夜色| 国产午夜福利久久久久久| 久久人人精品亚洲av| 国产不卡一卡二| 90打野战视频偷拍视频| 国产精品久久久久久人妻精品电影| 精品久久久久久久末码| 美女高潮的动态| 日本一本二区三区精品| 99国产精品一区二区三区| ponron亚洲| 丰满人妻一区二区三区视频av | 国产精品98久久久久久宅男小说| 国产爱豆传媒在线观看| 丁香欧美五月| 中文字幕熟女人妻在线| 可以在线观看的亚洲视频| 国产精品永久免费网站| 国产精品亚洲av一区麻豆| 亚洲 欧美一区二区三区| 免费看光身美女| 午夜福利在线观看免费完整高清在 | av黄色大香蕉| 中文资源天堂在线| 国产精品一区二区精品视频观看| 看黄色毛片网站| 国产精品乱码一区二三区的特点| 亚洲av成人一区二区三| 中文亚洲av片在线观看爽| 午夜影院日韩av| 国产黄a三级三级三级人| 亚洲国产欧美一区二区综合| e午夜精品久久久久久久| 人妻丰满熟妇av一区二区三区| 亚洲午夜精品一区,二区,三区| 午夜视频精品福利| 他把我摸到了高潮在线观看| 制服丝袜大香蕉在线| 一进一出抽搐动态| 国产又黄又爽又无遮挡在线| 国产乱人伦免费视频| www.自偷自拍.com| 丰满人妻一区二区三区视频av | 九九在线视频观看精品| 全区人妻精品视频| 婷婷六月久久综合丁香| 国产精品九九99| 给我免费播放毛片高清在线观看| 精品99又大又爽又粗少妇毛片 | 久久热在线av| 曰老女人黄片| 欧美在线黄色| 久久中文字幕人妻熟女| 美女 人体艺术 gogo| 精品久久久久久成人av| 日本熟妇午夜| 午夜福利18| 我要搜黄色片| 亚洲国产精品久久男人天堂| 一级毛片精品| 男人舔女人的私密视频| 国产精品,欧美在线| 亚洲国产精品成人综合色| 欧美黄色淫秽网站| 亚洲中文日韩欧美视频| 国产一级毛片七仙女欲春2| 国产主播在线观看一区二区| 搡老妇女老女人老熟妇| 在线免费观看不下载黄p国产 | 丰满人妻熟妇乱又伦精品不卡| 99国产精品一区二区三区| av中文乱码字幕在线| 亚洲中文av在线| 最近在线观看免费完整版| 日韩欧美国产在线观看| 国产乱人伦免费视频| 啦啦啦免费观看视频1| 中文字幕熟女人妻在线| 久久久久性生活片| 老汉色∧v一级毛片| 国产主播在线观看一区二区| 欧美zozozo另类| 99热这里只有精品一区 | 亚洲成人中文字幕在线播放| 男女之事视频高清在线观看| 99久久精品国产亚洲精品| 真人做人爱边吃奶动态| 麻豆久久精品国产亚洲av| 88av欧美| 男插女下体视频免费在线播放| 夜夜躁狠狠躁天天躁| 白带黄色成豆腐渣| 美女午夜性视频免费| 免费观看人在逋| 国产精品亚洲av一区麻豆| 香蕉久久夜色| 久久久国产欧美日韩av| 综合色av麻豆| 99精品久久久久人妻精品| 欧美最黄视频在线播放免费| 午夜福利在线观看免费完整高清在 | 在线国产一区二区在线| 91字幕亚洲| 亚洲av日韩精品久久久久久密| 欧美日韩福利视频一区二区| 精品国内亚洲2022精品成人| 三级国产精品欧美在线观看 | 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品久久久久久毛片| 欧美在线黄色| 免费搜索国产男女视频| 亚洲精品乱码久久久v下载方式 | 在线观看66精品国产| 国产精品影院久久| 久久久国产精品麻豆| 久久这里只有精品19| 9191精品国产免费久久| 99国产极品粉嫩在线观看| 免费观看人在逋| 熟女少妇亚洲综合色aaa.| 欧美日韩精品网址| 宅男免费午夜| 后天国语完整版免费观看| 免费一级毛片在线播放高清视频| 国产男靠女视频免费网站| 国产精品精品国产色婷婷| 亚洲成人久久爱视频| netflix在线观看网站| 欧美午夜高清在线| 久久久国产成人免费| 香蕉久久夜色| 九九在线视频观看精品| 亚洲美女视频黄频| 日韩高清综合在线| 国内精品久久久久精免费| 我的老师免费观看完整版| 国产精品久久久久久精品电影| 欧美日韩乱码在线| 免费在线观看成人毛片| 久久精品亚洲精品国产色婷小说| 成年版毛片免费区| 久久精品夜夜夜夜夜久久蜜豆| 久久亚洲真实| 在线播放国产精品三级| 黑人巨大精品欧美一区二区mp4| 亚洲,欧美精品.| 精品熟女少妇八av免费久了| 国产1区2区3区精品| 日韩人妻高清精品专区| av在线天堂中文字幕| 黄色丝袜av网址大全| 一级黄色大片毛片| 1024香蕉在线观看| 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影| 在线永久观看黄色视频| 久久久久九九精品影院| 日日摸夜夜添夜夜添小说| 精品久久久久久,| 久久久久国内视频| 精品久久久久久久人妻蜜臀av| 亚洲乱码一区二区免费版| cao死你这个sao货| 怎么达到女性高潮| 在线永久观看黄色视频| 真人一进一出gif抽搐免费| 国产成+人综合+亚洲专区| 久久99热这里只有精品18| 国产亚洲精品久久久com| 国产成人啪精品午夜网站| 黄色 视频免费看| 我要搜黄色片| 久久国产精品人妻蜜桃| 又粗又爽又猛毛片免费看| 日本免费a在线| 高清在线国产一区| 亚洲专区中文字幕在线| 91av网站免费观看| 黄色丝袜av网址大全| 一区二区三区高清视频在线| av在线天堂中文字幕| 日韩欧美国产在线观看| 国产精品久久久久久亚洲av鲁大| 日韩欧美免费精品| 亚洲国产精品久久男人天堂| av在线蜜桃| 偷拍熟女少妇极品色| 精品99又大又爽又粗少妇毛片 | 夜夜躁狠狠躁天天躁| 欧美又色又爽又黄视频| cao死你这个sao货| 午夜精品一区二区三区免费看| 日本五十路高清| 精品久久久久久久末码| 丁香六月欧美| 亚洲国产看品久久| 麻豆国产av国片精品| 欧美绝顶高潮抽搐喷水| 亚洲,欧美精品.| 国产日本99.免费观看| 亚洲欧美精品综合一区二区三区| 日本黄色片子视频| 免费看日本二区| 动漫黄色视频在线观看| 中文字幕熟女人妻在线| 日本在线视频免费播放| www日本黄色视频网| 无人区码免费观看不卡| 黑人巨大精品欧美一区二区mp4| 舔av片在线| 亚洲在线观看片| 色吧在线观看| 国产亚洲欧美98| 国产亚洲av高清不卡| 黄频高清免费视频| 免费在线观看日本一区| 亚洲,欧美精品.| 午夜福利成人在线免费观看| 人妻夜夜爽99麻豆av| 狠狠狠狠99中文字幕| 亚洲在线观看片| 18禁黄网站禁片免费观看直播| 后天国语完整版免费观看| 757午夜福利合集在线观看| 久久香蕉国产精品| 国内久久婷婷六月综合欲色啪| av天堂在线播放| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 日韩三级视频一区二区三区| 亚洲国产精品久久男人天堂| 久久欧美精品欧美久久欧美| 十八禁人妻一区二区| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 国产成人啪精品午夜网站| av天堂在线播放| 亚洲欧美日韩高清专用| av天堂中文字幕网| 久久中文字幕一级| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 99久久精品国产亚洲精品| 精品不卡国产一区二区三区| 两个人视频免费观看高清| 亚洲av成人一区二区三| 亚洲熟妇中文字幕五十中出| 亚洲第一电影网av| 一级a爱片免费观看的视频| bbb黄色大片| 日韩中文字幕欧美一区二区| 免费观看人在逋| 国产av麻豆久久久久久久| 日韩欧美一区二区三区在线观看| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区视频在线观看免费| 日日干狠狠操夜夜爽| 国产av麻豆久久久久久久| 精品国产美女av久久久久小说| 性欧美人与动物交配| 日韩免费av在线播放| 国模一区二区三区四区视频 | 国产精品av视频在线免费观看| 国内精品久久久久久久电影| 国产99白浆流出| 色精品久久人妻99蜜桃| 免费在线观看视频国产中文字幕亚洲| 九九热线精品视视频播放| 精品一区二区三区av网在线观看| 久久精品夜夜夜夜夜久久蜜豆| 欧美色欧美亚洲另类二区| 国产高潮美女av| 男插女下体视频免费在线播放| 成人国产综合亚洲| 香蕉丝袜av| 中文字幕高清在线视频| 国产高清视频在线观看网站| svipshipincom国产片| 日韩成人在线观看一区二区三区| 成人性生交大片免费视频hd| 全区人妻精品视频| 国产精品久久视频播放| 国内精品一区二区在线观看| 俄罗斯特黄特色一大片| 99久久精品一区二区三区| 美女高潮喷水抽搐中文字幕| 精品久久久久久成人av| 亚洲美女黄片视频| xxxwww97欧美| 日本五十路高清| 久久这里只有精品19| 日本免费一区二区三区高清不卡| 麻豆国产av国片精品| 悠悠久久av| 一本一本综合久久| 国产精品亚洲一级av第二区| 欧美xxxx黑人xx丫x性爽| 亚洲午夜精品一区,二区,三区| 一个人免费在线观看电影 | 免费高清视频大片| 欧美大码av| 国产精品久久久久久精品电影| 久久伊人香网站| 婷婷六月久久综合丁香| 欧洲精品卡2卡3卡4卡5卡区| 午夜a级毛片| www.精华液| 免费av毛片视频| 人妻丰满熟妇av一区二区三区| 女生性感内裤真人,穿戴方法视频| 可以在线观看毛片的网站| 久久精品影院6| 欧美最黄视频在线播放免费| 欧美黑人欧美精品刺激| 久久热在线av| 亚洲av美国av| 黑人欧美特级aaaaaa片| 免费av毛片视频| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 99热这里只有精品一区 | 亚洲av日韩精品久久久久久密| 窝窝影院91人妻| 国产午夜精品久久久久久| 亚洲 欧美一区二区三区| 长腿黑丝高跟| 成人一区二区视频在线观看| 久久精品影院6| 窝窝影院91人妻| 久久久久久国产a免费观看| 脱女人内裤的视频| 19禁男女啪啪无遮挡网站| 国产精品野战在线观看| 成年女人永久免费观看视频| 国产精品野战在线观看| 国产亚洲欧美在线一区二区| 高潮久久久久久久久久久不卡| 久久精品影院6| 啦啦啦韩国在线观看视频| 色综合站精品国产| 91在线观看av| 在线观看美女被高潮喷水网站 | 国产又色又爽无遮挡免费看| 国产v大片淫在线免费观看| 巨乳人妻的诱惑在线观看| 欧美成人免费av一区二区三区| 男人舔女人下体高潮全视频| 亚洲国产精品久久男人天堂| 国产精品久久久久久精品电影| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 成人一区二区视频在线观看| 露出奶头的视频|