• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organization and storage model of marine information and its application in the“China Digital Ocean”

    2011-12-28 10:22:48LIUJinLIHaoqianZHUJicaiJIANGXiaoyiZHANGfeng
    海洋通報 2011年2期
    關(guān)鍵詞:格網(wǎng)數(shù)據(jù)倉庫數(shù)據(jù)模型

    LIU Jin,LI Hao-qian, ZHU Ji-cai,JIANG Xiao-yi,ZHANG feng

    1. National Marine Data and Information Service, Tianjin 300171, China;

    2. China Nuclear Geology, Beijing 100013, China

    Organization and storage model of marine information and its application in the“China Digital Ocean”

    LIU Jin1,LI Hao-qian1, ZHU Ji-cai2,JIANG Xiao-yi1,ZHANG feng1

    1. National Marine Data and Information Service, Tianjin300171, China;

    2. China Nuclear Geology, Beijing100013, China

    Based on the experience and achievement of the“China Digital Ocean”, the classification plan for Marine data elements is made, which can be classified into five,including marine point elements, marine line elements, marine polygon elements,marine grid elements and marine dynamic elements. In this paper, the technology of features and object-oriented method, a spatial-temporal data model is proposed, which can be applied in the large information system engineering like the “Digital Ocean”, and this paper discusses the application of spatial data model, marine three-dimensional raster data model and relation data model in the building of Data Warehouse in “China Digital Ocean”, and concludes the merits of these models.

    digital ocean, sphere model, data warehouse, ocean elements, data organization and storage

    Introduction

    “Digital Ocean” is a massive and complex system supported by the newest information technology, which relies on the national information facilities and marine spatial data establishment to research the marine phenomenon[1]. It is a virtual ocean world formed by massive marine observation data with multi-resolution, multi-phase and multi-space type, and also by its analysis algorithm and model. Data model and data structure are the foundation for constructing the digital ocean information system. Most of the ocean phenomenon has a dynamic spatio-temporal feature, which is the essential difference comparing to the land information, so the traditional GIS data model is facing many embarrassments in organizing or displaying the ocean information.

    Many researchers propose various types of spatio-temporal data models to organize and display the time-space phenomenon. In the Time Lab technology report, Achilleas Pand Babis T detailedly discussed 9 frequently used spatio-temporal data models and analyzed their merits and drawbacks and the relative application domain[2]. Yet, these models can not organize or display the time-space process of ocean phenomenon well,particularly when both the property and position are changeable, such as the ocean front,the vortex and the coastline, et al. LI Shan et al. proposed an “ocean line data model basing on features” and designed an ocean line storage structure with a time-space feature[3].XUE Cun-jin et al. discussed the process objects and their logical relation according to the inner characteristics of continuous gradual changing geography substantiality. They implicitly recorded the dynamic changing mechanism of the geography substantiality by the abstract process object, and defined the function interface mode whose changing mechanism is supplied by the process object storage list. Also, they realized the process organization, storage and dynamic analysis of continuous gradual changing geography substantiality[4]. The researches of LI and XUE solved the organization and storage of the marine data with line feature and continuous gradual change feature respectively. Their work can partly fulfill the demand of ocean information system. However, the digital ocean is an integrated information system containing various types of marine data, which requires an integrated and general solution.

    Aiming at project application, this paper researches the classification of marine data elements in the “Digital Ocean” system, designs a spatio-temporal data model that suits for large information system project like “Digital Ocean”. Its practical application performs well.

    1 Background

    “China Digital Ocean” is a macro system, which recurs and predicts the real ocean based on the integrated digital platform and the virtual environment supported by the techniques of database, geographic information system, network and so on. The data this system contains are obtained from marine investigation, ocean observation (including the satellite, plane, ship, buoy, and station data) and society statistic investigation. “Digital Ocean” directly displays the real ocean phenomenon and process, predicts and simulates the future ocean scene, improves ocean development and application reliably and effectively to keep the continuable development of ocean[5].

    The data sources of “Digital Ocean” information system involve: the whole data of 908 investigation project, investigation data of history projects of National Ocean Bureau,the massive marine science data and relative information conserved by subordinate ocean bureaus, marine business centers and research institutes. The data cover wide domains like ocean hydrology, meteorology (near sea surface), marine biology, marine chemistry,marine environment quality, marine geology, marine geophysics, marine basic geography,ocean aviation and remote sensing, marine economy, ocean resource, etc. The total global ocean data volume is greater than 10 billion kb.

    Compared to the other data, ocean information owns the characteristics of multi-source, multiform and multi-type. Various observation methods determine the multi-source of data, subsequently lead to accuracy differences and various formats, which cause the complex data structure. The multiform of data, namely, the ocean information are presented by various formats, like graph, image, text, etc, which induces a further complication of data processing methods. The multi-type of data means that the ocean data cover various disciplines, which brings complexity to the data management. One of the important tasks of “Digital Ocean” is to establish the data warehouse and integrate the complex various ocean data together for the further information service, what’s the key point is the proper data organization & storage that can fulfill the requirements of data application.

    2 Classification of the ocean data elements

    Considering the multi-source and multiform of ocean data, this paper chooses a feature-based method, to categorize the complex various data and pick up their special properties for establishing the element category and the data model. A clear catalog can be formed by classifying the ocean data, which is beneficial to the construction of the database and dataset. The feature-based method is adopted to extract the common spatial character and property information, abstract them into element categories. Meanwhile,establish the relationship among the data and design the data model according to the needs of the data application, and supply the data interface, method and operation for it.

    Features highly generalize and abstract the phenomenon and its display of the realistic world, which are the basic units of entity. All the objects in the realistic world are displayed by the features, which are composed of feature property and feature operation.The instantiation of the features turns out to be the object entity of the realistic world. Thus,this paper categorizes the marine data into five elements, which are marine point elements,marine line elements, marine polygon elements, marine grid elements and marine dynamic elements. The definitions and the contents of each element are as follow.

    2.1 Marine point elements

    The marine points can be classified into two kinds, which are feature points and measurement points. The measurement points can be similarly classified into time series points and instantaneous points, while the latter are formed by four subcategories.

    Tab. 1 Classification of marine point elements

    2.1.1 Time series points

    The fixed buoy, coast base and station et al. can be displayed by the Time Series Point Model due to their long time series’ data collection, while the Instantaneous Point relates with a certain time. In the Time Series Point property table, X-location and Y-location define the location of the point. As the foreign key equipment list, Device ID defines the equipment information of that point. The time series parameter table keeps the parameter information. TS Type is the host key and responsible for connecting the Time Series table.Z-location can display the different profiles of the same parameter variable. The values of each variable are stored in the time series table.

    Tab. 2 Parameters of time series points

    There’s no definition for the time series with irregular interval. The main time intervals are 1 min, 2 mins, 30 mins, 1h, 2h, 1d and 1mon. As its name, the DataType indicates the data type, including the instantaneous data, the accumulative data, the increment, the mean, the maximum and the minimum. The Origin indicates whether the time series data are produced by a model or the real measurement data.

    Tab. 3 Parameters of Time Series Point

    2.1.2 Location series

    Location Series is the subcategory of Instantaneous Point. It fits for storing the information of each point of the trace and can be used to display the information of ocean plankton. The single plankton information is stored in the Series. The Series ID represents animal, are every point of animal is described by Location Series. Property Time Value and XY coordinates represent a single point element. Property Z Value is responsible for storing the depth. As a foreign key, Survey ID connects the object class Survey Info through the relation class SurveyInfoHasPoints. Series ID is used to connect the object class Series.

    2.2 Marine line elements

    The profile contour, duration line, and the element line are three components of the marine line elements.

    2.2.1 Profile contour

    This subcategory supplies a public data type for describing the element property of the nodes along the profile contour. In ocean GIS, the profile lines frequently used are vertical profile line, section line and transport line.

    2.2.2 Duration line

    The initial and the end time, and the lasting time are 3 core properties of time continuous line. It can record the sample data measured on the ship, the lasting time of the trawl and the partial trace of the automatic ship. One of its subcategories is the trace line,which is used in the ship-base data model. Differing from the profile contour, the trace line is only the trace of one ship. The data along the trace may be collected, or may not. Yet the profile contour always contains data.

    2.2.3 Element line

    Many ocean elements, like the seafloor pipeline, the administerial boundary and the sea route, can be displayed by standard line feature. A unique symbol, the x y coordinate pair and a free style measurement property aiming for application are required.Coastline is an extended subcategory of the element line. When confirming a coastline, the vertical profile data need to be recorded. Thus, a vertical datum plane property is added to store the vertical data of the coastline.

    2.3 Marine polygon elements

    The two kinds of the polygon elements in marine environment are: the time-independent static element polygon and the time-continuous polygon with initial and end time and also variables.

    All the marine polygon elements of the static polygon can be displayed into element polygons, such as the ocean protection district and the exclusive economic zone. The element polygon need one and the only symbol, the x y coordinate pair that form the boundary, the depth and the measurement property defined by customer. A period of changing feature of the dynamic marine polygon elements can be described by time-continuous section.

    2.4 Marine grid elements

    There are some sea surface features, such as SST, SSH, chlorophyll a, and waterpower measurement. Three kinds of data types can display those features, which are the regular interpolation surface, the irregular interpolation surface and the grid volume component.

    2.4.1 Regular interpolation surface

    This model is normally used for the remote sensing data and pictures. So far the formats that support the raster data involve ArcGIS, GRID data, GeoTiff, Band Sequential(BSQ), and Band Interleaved (BIL) data. Besides, there are many oceanography and meteorology data products organized by network Common Data Form (netCDF) or hierarchical data format (HDF).

    2.4.2 Irregular interpol surface

    The irregular triangle grid and many finite element models are the typical types of this kind of data, which recognize the minimum triangle piece through the pivotal node and border. TIN is a precise and effective model for displaying the continuous surface.

    2.4.3 Grid volume component

    Meshes are defined to fulfill the requirements of the ocean grid model and the analytical application. It displays the data into several layer Mesh data stacks with lines and columns. The structure of the elements flexibly defines the grid elements with regular interval, and these grid points can be the discrete node data.

    Fig. 1 Model of ocean grid elements

    2.5 Ocean dynamic element

    The nontraditional spatial data including, cartoon, kinescope, video and so on, aim at displaying the dynamic feature of the ocean data. The video observation data can be obtained by automatic underwater measurement equipment, aerial survey, or the video camera fixed in port, which are used to display the dynamic ocean elements and phenomenon like storm tide and current field.

    3 Data model construction and application

    Classify the ocean data into 5 categories according to their features, and the“object-oriented” technique is adopted in data management and storage. The object mentioned above is a concept base on the class, and the relations between feature and the object are as follows: 1) Feature is the most basic unit of data model and data structure;2) One feature is corresponding to one object, and has one only ID. 3) Class describes the common property and type of the features, and realizes the instantiation of it. 4) The arithmetic operator of the inner class is adopted to connect the different features, so as to construct the interrelated geographical entities[3]. The foundational idea based on the feature data model is to take the feature as the basic unit and adopt the object-oriented technique to design the space, time, and time-space function, relation and operation between the features.

    Most point, line and polygon data are spatial vector data, which all own spatial feature and property features, and the only difference is their spatial display style, and they can be organized and stored by the “Ocean Spatial Data Model”. Although the ocean remote sensing data are raster data, its main feature is spatial feature, thus the model mentioned above can be adopted here, too. The ocean grid element, with great data volume and single property information, fits the “Ocean Grid Data Model”, while the ocean dynamic elements fit the “Relation Data Model” due to the property feature information which the elements mainly contained.

    3.1 Ocean spatial data model

    The “Feature Dataset-Feature Class-Element” relationship is adopted for the organization of vector element data. Multi feature datasets are allowed, which are established by certain data class respectively, and multi-feature class and object class can be contained in each dataset. Each feature class involves multi geography elements, while each geography element is composed of property information, geometry information,symbol information and label information.

    After setting certain grid dataset, the remote sensing image data element can be stored by Raster Mosaic method or Raster Catalog method or both. The grid datasets or grid catalogs are formed according to the name of the subjects, and can be accessed and queried through the related spatial database sheet of the ArcSDE Geodatabase.

    The physical storage of the vector spatial data elements is realized by the ArcSDE Geodatabase software. Its relation sheet structure of the storage model in the Geodatanbase is presented below:

    Fig. 2 ArcSDE model of vector data

    Every data element vector layer has corresponding Tab. F and Tab. S. There are a series of metadata tables in the ArcSDE Geodatabase responsible for the organization of the spatial metadata and index metadata of the element layer stored in it.

    The organization of the spatio-temporal dynamic data relies on the history achieving function of the Geodatabase, and below is the related storage structure.

    Tab. B only stores the initial state of the object without the time information, and keeps conservation when editing and updating the data. Table H stores the changing achieving information of the object, mainly the records of property information. For the convenience of object query and historical remount, the time information is directly marked onto the property of the object, and saved in Table H. The time information in Table H includes the object’s valid time (the start of the valid time Vt_start, and the end of the valid time Vt_end) and affair time (the start of the affair time GDB_from_date, and the end of the business time GDB_to_date), also supports double time operation. Table F is responsible for the storage of the spatial feature, while Table S is for the spatial index information. Table R records the changing relation among the objects, while Object ID records the element code of the new object. The label code of the father object is recorded in Father ID. The Event ID is the serial number of the event that affects the changing of the object, which presents the combination and abruption among the objects, makes the changing process of the object clear. The changing events mainly involve the naissance, perdition, abruption and combination of the objects. Only the object formed through abruption or combination has the father object, the object that directly appears or vanishes has no father object.

    Fig. 3 Spatio-temporal data schema of Geodatabase

    3.2 Ocean Solid Grid Data Model

    The multi-layer grid data are the foundation of the ocean solid grid data model. It combines multi-layers into a whole object by feature class association to realize the organization and storage of the ocean solid data. Both the regular and irregular interpolation sea surfaces are single layer grid data, which can be treated as the grid volume data with only one layer, while the grid volume element can be treat as the grid volume data with multi-relating layers. Thus, this model is suitable for both the 2-D grid data and the 3-D grid volume data.

    The organization and storage of the grid data are realized by designing certain feature element class and object class in the model. This paper adopts the Mesh feature element class to store the one layer or multi-layer data, which involve the vector data and the scalar data like temperature, salinity, density, sound speed, current, storm tide, single layer tide and tidal current and so on. The storage of these data needs the proper Mesh element type chosen according to the characters of the Mesh elements. For temperature,salinity, density and sound speed, we can take vertical multi-layer data at a same time as one Mesh element, or take one layer of it as one Mesh element; while for the storm tide and tide, the field data during a time period are considered as one Mesh element. For the grid field data like current and tidal current, the data of all layers at the same time can be regarded as one Mesh element, or a single layer data at the same time as one Mesh element. Other types of element field data can be analyzed similarly.

    Several relation tables need to be defined, such as grid table, grid point table, vector table, scalar table and parameters.

    Tab. 4 Construction of grid table

    Tab. 5 Construction of parameters table

    The relationship of the tables are as follows: the grid points relate to the Mesh table by grid label, while the vector and scalar tables relate to the grid point table by element label, and relate to the parameter table by parameter label. Besides, a metadatabase is needed to illustrate the information of various elements, including the range, name, type,grid resolution, layer depth and updating frequency, etc. The alterable grid element data require specially to be illustrated in the metadata.

    In the “digital ocean” system, the environment data like seawater temperature,salinity and current, are divided into several layers by depth and stored by the solid grid data model. Consequently the information of different cross sections and vertical profiles at the same time can be visualized by depth, longitude, latitude or arbitrary direction.

    3.3 Relation Data Model

    Relation data model sets a certain spatial entity as the object, transforms its data information into different property features, and combines the entity object and property feature together by relating the host keys. It establishes complex data relations and organizes the various multi-source ocean data into a whole. There are two storage methods of this model. One is to store the elements directly into the relation database,which is suitable for binary or text data due to their small data volume and high demand of single-layer accessing. The organization and storage method is to form a document by layering the element data and store this document directly into the database table, namely,to dispart the multi-layer grid elements into several layers and form several documents from one. This storage method is convenient for obtaining, querying and displaying the one-layer element data with little records. Yet for multi-layer profile element data, it’s not efficient. This storage method is mainly suitable for multi-layer regular binary grid data,such as temperature, salinity, density, sound speed, current, and the one-layer binary field data, like storm tide, tide, tidal current, and the modeling analysis and forecast data.

    Fig. 3 Temperature information in different depths

    Fig. 4 Temperature information in different profiles

    Another method is to integrate the database sheet and the document system together, namely, store the metadata and the corresponding storage path in the database sheet, while store the relevant data entity under the directory defined by the document system. It is most efficient for data accessing and reading, which is propitious to the fast obtaining and visualization of the ocean data.

    4 Conclusion

    This paper classifies the features of ocean data into 5 major categories, and designs 3 data models according to an idea of “object-oriented”. The 3 data models solve the organization and storage problem of the ocean spatial data, solid grid data and great volume text data, respectively. The ocean vector spatial data model integrates the common 2-D ArcGIS software to make the data storage and management easily, which can be viewed, edited and controlled (for popedom and version) by many desktop graphic software. The shortcoming of it is the low efficiency when directly accessing the vector data layer in the 3-D information system, especially the polygon layers, which need to issue the vector layers by web feature service or web map service before using in the 3-D system.The ocean grid data model is designed specially for the storage of solid grid data, which is effective in storing the great volume grid data (in TB). Thanks to the pyramid structure it adopted, the reading speed is fast enough to satisfy the demand of the 3-D information system. However, its disadvantage is the failure of directly data editing. The grid data need processing in advance before storing into the database. The relation data model is good at storing various types of property data, such as the picture, text, model and sound, etc. It’s a sharp instrument for storing the “sundries” data, which plays an important role in constructing the digital ocean information system.

    In conclusion, so far there is no universal model suitable for the organization and storage of all kinds of ocean element data. Each model has its own merits and drawbacks,and also the limitation in application. Thus, the choice of the organization & storage method need to base on the demand of realistic application. Some are suitable for the manner of document system, while some fit for the common relation database, also there are considerable part of them suitable for the spatial database model. New data model should be introduced to display the spatial dynamic behavior of ocean and visualize its elements. Our ocean solid grid data model is such an example. Although it still can not be realized without the Geodatabase spatial data model, the ocean data types mentioned in its model design and organization are suitable for the concrete ocean applications.

    Reference

    [1] HOU Wenfeng. Tentative Ideas on the Development of Digital Ocean in China [J]. Marine Science Bulletin, 1999, 12(6):1 - 10.

    [2] Pavlopoulos A, Theodoul I D. Review of spatio temporal data models [R]. Time Lab Technical Report TR-98-3, 1998, 2 629 - 2 640.

    [3] LI Shan, XUE Cunjin, HE Huizhong. Feature-Based Marine Line Data Model [J]. Sun Yatsen University Forum, 2006, 26(9):193 - 198.

    [4] XUE Cunjin, ZHOU Chenghu, SU Fenzhen, et al. Research on Process-Oriented Temporal-Spatio Data Model [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):95 - 101.

    [5] ZHANG Feng, SHI Suixiang, YIN Ruguang, et al. Research of Data Architecture in Digital Ocean[J], Marine Science Bulletin, 2009, 28(9):1 - 8.

    [6] SU Fenzhen, DU Yunyan, PEI Xiangbin, et al., Constructing Digital Sea of China with the Datum of Coastal Line [J]. Geo-information Science, 2006, 3, 8(1):12 - 15.

    [7] JIA Jun-tao, ZHAI Jing-sheng, WU Zhong-ding, et al. Constructing Digital Sea of China with the Datum of Coastal Line [J], Geo-information Science, 2007, 25(1):111 - 116.

    [8] BAO Yu-bin, LU Qun, CAI Jin-ming, et al. Domain Ontology-based Multidimensional Modeling of Marine Environmental Data Warehouse [J], Marine Science Bulletin, 2009, 28(4):132 - 140.

    [9] QIN Rufu, YE Na, XU Huiping, et al. Visualization of Multi-dimension Oceanographic Data in Geography Information System [J]. Journal of Tongji University (natural science), 2009, 37(2):272 -276.

    [10] HE Guangshun, LI Sihai. Constructing Spatial Information Database for Digital Ocean [J]. Marine Information, 2004, (1): 1 - 4.

    海洋信息組織與存儲模型研究及其在“數(shù)字海洋”中的應(yīng)用

    劉 金1,李昊倩1,朱吉才2,姜曉軼1,張 峰1

    (1. 國家海洋信息中心 天津 300171;2. 中國核工業(yè)地質(zhì)局 北京 100013)

    基于中國數(shù)字海洋建設(shè)的經(jīng)驗和成果,制定了海洋數(shù)據(jù)要素的分類方案,將海洋信息分為5大類:海洋點要素、海洋線要素、海洋面要素、海洋網(wǎng)格要素、海洋動態(tài)要素。采用基于特征的方法和面向?qū)ο蟮募夹g(shù)設(shè)計了適合數(shù)字海洋大型信息系統(tǒng)工程建設(shè)的時空數(shù)據(jù)模型,探討了海洋空間數(shù)據(jù)模型、海洋立體格網(wǎng)數(shù)據(jù)模型、關(guān)系數(shù)據(jù)模型在數(shù)字海洋數(shù)據(jù)倉庫建設(shè)中的應(yīng)用,并總結(jié)了其優(yōu)缺點。

    數(shù)字海洋;球體模型;數(shù)據(jù)倉庫;海洋要素;數(shù)據(jù)組織與存儲

    on May 5, 2011

    liujin@mail.nmdis.gov.cn

    猜你喜歡
    格網(wǎng)數(shù)據(jù)倉庫數(shù)據(jù)模型
    實時電離層格網(wǎng)數(shù)據(jù)精度評估
    基于數(shù)據(jù)倉庫的住房城鄉(xiāng)建設(shè)信息系統(tǒng)整合研究
    面板數(shù)據(jù)模型截面相關(guān)檢驗方法綜述
    加熱爐爐內(nèi)跟蹤數(shù)據(jù)模型優(yōu)化
    電子測試(2017年12期)2017-12-18 06:35:36
    分布式存儲系統(tǒng)在液晶面板制造數(shù)據(jù)倉庫中的設(shè)計
    電子制作(2016年15期)2017-01-15 13:39:15
    探析電力系統(tǒng)調(diào)度中數(shù)據(jù)倉庫技術(shù)的應(yīng)用
    基于空間信息格網(wǎng)與BP神經(jīng)網(wǎng)絡(luò)的災(zāi)損快速評估系統(tǒng)
    基于數(shù)據(jù)倉庫的數(shù)據(jù)分析探索與實踐
    平均Helmert空間重力異常格網(wǎng)構(gòu)制方法
    基于位置服務(wù)的地理格網(wǎng)編碼設(shè)計
    測繪通報(2013年2期)2013-12-11 07:27:50
    久久99精品国语久久久| 国产精品人妻久久久影院| 成人毛片60女人毛片免费| 十八禁网站网址无遮挡 | 秋霞伦理黄片| 午夜精品国产一区二区电影| 麻豆成人午夜福利视频| av国产久精品久网站免费入址| 久久青草综合色| 多毛熟女@视频| 七月丁香在线播放| 少妇丰满av| 最黄视频免费看| 男人舔奶头视频| 边亲边吃奶的免费视频| 国产熟女欧美一区二区| 看免费成人av毛片| 国产色爽女视频免费观看| 美女视频免费永久观看网站| 人妻系列 视频| 亚洲欧美日韩另类电影网站| 国产精品久久久久久精品电影小说| 亚洲欧洲精品一区二区精品久久久 | 99九九线精品视频在线观看视频| 极品人妻少妇av视频| 国产永久视频网站| 寂寞人妻少妇视频99o| 高清午夜精品一区二区三区| 插逼视频在线观看| av有码第一页| 久久久久久久久久成人| a级片在线免费高清观看视频| 午夜免费男女啪啪视频观看| 黄色欧美视频在线观看| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲高清精品| 最近2019中文字幕mv第一页| 久久久久网色| 午夜老司机福利剧场| 国产精品女同一区二区软件| 有码 亚洲区| 一边亲一边摸免费视频| 欧美精品一区二区免费开放| 亚洲精品视频女| 欧美精品一区二区大全| 在线看a的网站| 亚洲av二区三区四区| 日韩一区二区视频免费看| 丝瓜视频免费看黄片| 乱人伦中国视频| 丝瓜视频免费看黄片| av在线app专区| 国产亚洲av片在线观看秒播厂| 高清在线视频一区二区三区| av在线app专区| 日本91视频免费播放| 又黄又爽又刺激的免费视频.| 国产成人精品一,二区| 三上悠亚av全集在线观看 | 美女视频免费永久观看网站| 妹子高潮喷水视频| 99久久精品国产国产毛片| 国产黄片视频在线免费观看| 久久人人爽人人爽人人片va| 自拍偷自拍亚洲精品老妇| 人体艺术视频欧美日本| 久久人妻熟女aⅴ| 夫妻性生交免费视频一级片| 欧美日韩综合久久久久久| 亚洲av日韩在线播放| 欧美日韩在线观看h| 噜噜噜噜噜久久久久久91| 亚洲欧美一区二区三区国产| 在线播放无遮挡| 亚洲激情五月婷婷啪啪| 亚洲精品国产色婷婷电影| 国产 精品1| 日韩电影二区| 国产极品天堂在线| 91在线精品国自产拍蜜月| 91精品国产九色| 人人妻人人爽人人添夜夜欢视频 | 一本久久精品| 精品一区二区三卡| 婷婷色麻豆天堂久久| a级毛片免费高清观看在线播放| 午夜激情福利司机影院| 精品一品国产午夜福利视频| 日日啪夜夜撸| 国产精品一区二区在线不卡| 久热久热在线精品观看| 岛国毛片在线播放| 久久精品国产自在天天线| 免费观看性生交大片5| 国产日韩欧美视频二区| 国产精品.久久久| 亚洲精品日韩在线中文字幕| 久久久久久久精品精品| 亚洲精品一区蜜桃| 久久久久久久久久人人人人人人| 国产精品偷伦视频观看了| 在线观看美女被高潮喷水网站| 日本黄色片子视频| 黑丝袜美女国产一区| 女人精品久久久久毛片| 欧美日韩视频高清一区二区三区二| 日本黄色片子视频| 黑丝袜美女国产一区| 亚洲欧美成人综合另类久久久| 黄色毛片三级朝国网站 | 啦啦啦在线观看免费高清www| 老司机影院成人| 精品一品国产午夜福利视频| 少妇人妻一区二区三区视频| 最近手机中文字幕大全| 欧美一级a爱片免费观看看| 亚洲国产精品一区二区三区在线| 91久久精品国产一区二区三区| 韩国av在线不卡| 亚洲国产精品999| 精华霜和精华液先用哪个| 一区二区三区四区激情视频| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 日韩强制内射视频| 欧美xxxx性猛交bbbb| 熟妇人妻不卡中文字幕| 久久精品国产亚洲av天美| 日日摸夜夜添夜夜爱| 青春草国产在线视频| 精品一区二区三卡| 欧美日韩综合久久久久久| 又大又黄又爽视频免费| 嫩草影院入口| 九九爱精品视频在线观看| 尾随美女入室| 交换朋友夫妻互换小说| av又黄又爽大尺度在线免费看| 六月丁香七月| 免费黄色在线免费观看| 国产av一区二区精品久久| 国内少妇人妻偷人精品xxx网站| 精品午夜福利在线看| 热re99久久国产66热| 韩国高清视频一区二区三区| 精品一区二区三卡| 国产精品久久久久久久电影| 国产一区二区三区av在线| 午夜久久久在线观看| 亚洲欧美中文字幕日韩二区| 高清在线视频一区二区三区| 国产在线视频一区二区| 国产高清不卡午夜福利| 精品国产一区二区久久| 毛片一级片免费看久久久久| 男人爽女人下面视频在线观看| 国产爽快片一区二区三区| 亚洲国产精品成人久久小说| 大片免费播放器 马上看| 精品久久久久久久久av| 中国国产av一级| 国产一区亚洲一区在线观看| 99九九线精品视频在线观看视频| 综合色丁香网| 性色avwww在线观看| 成年人午夜在线观看视频| 狂野欧美白嫩少妇大欣赏| 美女视频免费永久观看网站| 国产黄色视频一区二区在线观看| 伊人久久国产一区二区| 99视频精品全部免费 在线| 亚洲精品日韩av片在线观看| 一本久久精品| 97超碰精品成人国产| 一级,二级,三级黄色视频| 伦理电影免费视频| 亚洲精品一区蜜桃| 两个人的视频大全免费| 亚洲情色 制服丝袜| 欧美高清成人免费视频www| 大陆偷拍与自拍| 亚洲一级一片aⅴ在线观看| 亚洲人与动物交配视频| 亚洲成人av在线免费| 亚洲欧洲日产国产| 极品教师在线视频| 国产免费一级a男人的天堂| 亚洲情色 制服丝袜| 亚洲图色成人| 只有这里有精品99| 一区二区三区乱码不卡18| 日韩欧美一区视频在线观看 | 春色校园在线视频观看| 国产成人一区二区在线| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 最近中文字幕2019免费版| 一本色道久久久久久精品综合| 少妇人妻精品综合一区二区| 国产成人freesex在线| 色网站视频免费| 欧美少妇被猛烈插入视频| 男人狂女人下面高潮的视频| 欧美日韩一区二区视频在线观看视频在线| 狂野欧美激情性xxxx在线观看| 欧美成人午夜免费资源| 国产精品国产三级专区第一集| 嫩草影院入口| 99re6热这里在线精品视频| 色吧在线观看| 欧美日韩亚洲高清精品| 亚洲精品日韩在线中文字幕| 在现免费观看毛片| 色网站视频免费| 一级二级三级毛片免费看| 日本91视频免费播放| 国产精品福利在线免费观看| 国产淫片久久久久久久久| 伊人久久精品亚洲午夜| a级毛片免费高清观看在线播放| 久久精品国产a三级三级三级| 精品人妻偷拍中文字幕| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| 亚洲色图综合在线观看| 秋霞伦理黄片| 亚洲国产欧美在线一区| 亚洲精品成人av观看孕妇| 国产一区二区三区综合在线观看 | 久久精品久久久久久噜噜老黄| 亚洲va在线va天堂va国产| 赤兔流量卡办理| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 一级毛片黄色毛片免费观看视频| 亚洲精品久久午夜乱码| 久久久精品免费免费高清| 日韩中字成人| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 一本色道久久久久久精品综合| 欧美丝袜亚洲另类| 国产成人精品无人区| 日本爱情动作片www.在线观看| av在线老鸭窝| 最新中文字幕久久久久| 丰满饥渴人妻一区二区三| 久久国产精品大桥未久av | 久久99蜜桃精品久久| 视频区图区小说| 热99国产精品久久久久久7| 蜜桃久久精品国产亚洲av| h日本视频在线播放| 亚洲精品国产成人久久av| videos熟女内射| 国产亚洲5aaaaa淫片| 久久韩国三级中文字幕| 尾随美女入室| 日本vs欧美在线观看视频 | 亚洲国产日韩一区二区| 又粗又硬又长又爽又黄的视频| 免费看日本二区| 久久国产精品大桥未久av | 久久人人爽人人片av| 欧美最新免费一区二区三区| 少妇裸体淫交视频免费看高清| 久久久久久久国产电影| 观看av在线不卡| 亚洲欧美日韩卡通动漫| 精品人妻熟女毛片av久久网站| 免费人妻精品一区二区三区视频| 国产 精品1| 欧美人与善性xxx| 99久久精品热视频| 亚洲国产欧美日韩在线播放 | 一本一本综合久久| 99久久精品一区二区三区| 色吧在线观看| 久久久久久人妻| 夜夜看夜夜爽夜夜摸| 高清不卡的av网站| 国产日韩欧美在线精品| 亚州av有码| 麻豆乱淫一区二区| 久久99一区二区三区| 国产日韩一区二区三区精品不卡 | 亚洲av不卡在线观看| 91午夜精品亚洲一区二区三区| 日韩欧美精品免费久久| 久久精品熟女亚洲av麻豆精品| 成人国产麻豆网| 老司机亚洲免费影院| 成人亚洲欧美一区二区av| 有码 亚洲区| 高清在线视频一区二区三区| 人人妻人人澡人人看| 乱系列少妇在线播放| 免费观看av网站的网址| 久久青草综合色| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 国产乱人偷精品视频| 波野结衣二区三区在线| 一级毛片久久久久久久久女| 高清在线视频一区二区三区| 在线观看免费日韩欧美大片 | 国产乱来视频区| 两个人的视频大全免费| 中文字幕精品免费在线观看视频 | 午夜激情福利司机影院| 在线观看av片永久免费下载| 国产男女内射视频| 丝袜喷水一区| 日韩中文字幕视频在线看片| 国产日韩欧美在线精品| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片| 欧美激情极品国产一区二区三区 | 精品亚洲乱码少妇综合久久| 在线看a的网站| 亚洲成人手机| 日本黄色片子视频| 成年美女黄网站色视频大全免费 | 免费av中文字幕在线| 欧美日韩av久久| 性高湖久久久久久久久免费观看| 大片电影免费在线观看免费| 超碰97精品在线观看| 欧美三级亚洲精品| 美女xxoo啪啪120秒动态图| 国产91av在线免费观看| 大话2 男鬼变身卡| 热re99久久国产66热| 国产色爽女视频免费观看| 如日韩欧美国产精品一区二区三区 | 国产精品国产三级国产专区5o| 99精国产麻豆久久婷婷| 国产日韩一区二区三区精品不卡 | 国模一区二区三区四区视频| 国产一区二区三区综合在线观看 | 亚洲国产精品成人久久小说| 久久久久久久久久久免费av| 免费久久久久久久精品成人欧美视频 | 久久精品夜色国产| 岛国毛片在线播放| 最近中文字幕高清免费大全6| 涩涩av久久男人的天堂| 日韩制服骚丝袜av| 简卡轻食公司| 午夜福利网站1000一区二区三区| 毛片一级片免费看久久久久| 午夜视频国产福利| 男女国产视频网站| 国产深夜福利视频在线观看| 自拍偷自拍亚洲精品老妇| 午夜福利视频精品| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久| 五月天丁香电影| 久久狼人影院| 久久国产乱子免费精品| 青青草视频在线视频观看| 国产色爽女视频免费观看| 欧美bdsm另类| 麻豆成人午夜福利视频| 国产av精品麻豆| 亚洲精品国产成人久久av| 久久婷婷青草| 精品久久国产蜜桃| 亚洲精品一区蜜桃| 亚洲综合色惰| 丝袜在线中文字幕| 搡女人真爽免费视频火全软件| 曰老女人黄片| 日韩av不卡免费在线播放| 下体分泌物呈黄色| 肉色欧美久久久久久久蜜桃| 亚洲四区av| 波野结衣二区三区在线| 最近手机中文字幕大全| 日本黄大片高清| 亚洲,一卡二卡三卡| 精品酒店卫生间| √禁漫天堂资源中文www| 在线观看免费视频网站a站| 精品一区二区免费观看| 在线观看一区二区三区激情| 日日撸夜夜添| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 一个人免费看片子| 精品国产一区二区久久| 又黄又爽又刺激的免费视频.| av在线观看视频网站免费| 国产精品久久久久久精品电影小说| 寂寞人妻少妇视频99o| 免费观看无遮挡的男女| .国产精品久久| 国产高清国产精品国产三级| 在线精品无人区一区二区三| 2018国产大陆天天弄谢| 国产精品不卡视频一区二区| 亚洲精品色激情综合| 蜜桃久久精品国产亚洲av| 亚洲怡红院男人天堂| 亚洲成人一二三区av| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| 国产熟女午夜一区二区三区 | av在线老鸭窝| 久久久久精品久久久久真实原创| 伊人久久国产一区二区| 一级片'在线观看视频| 国产精品久久久久久久久免| 亚洲欧洲国产日韩| 91精品国产九色| 黑丝袜美女国产一区| 亚洲高清免费不卡视频| 亚洲无线观看免费| 亚洲精品国产色婷婷电影| 久久精品国产亚洲网站| av福利片在线| 国产在线一区二区三区精| 日本免费在线观看一区| 最后的刺客免费高清国语| 岛国毛片在线播放| 免费观看性生交大片5| kizo精华| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 亚洲真实伦在线观看| 欧美成人精品欧美一级黄| 最新中文字幕久久久久| 午夜影院在线不卡| 丰满乱子伦码专区| 久久鲁丝午夜福利片| 99久久综合免费| 麻豆成人av视频| 在线观看免费高清a一片| 熟女电影av网| 一级毛片我不卡| 制服丝袜香蕉在线| 久久精品夜色国产| 交换朋友夫妻互换小说| 免费看av在线观看网站| 欧美精品一区二区大全| 国产美女午夜福利| 日本午夜av视频| 黄色视频在线播放观看不卡| 国产精品偷伦视频观看了| 三上悠亚av全集在线观看 | 极品教师在线视频| 2022亚洲国产成人精品| 91精品国产九色| 美女国产视频在线观看| 久久久久久久大尺度免费视频| 亚洲怡红院男人天堂| 精品久久久噜噜| 免费人妻精品一区二区三区视频| 简卡轻食公司| av免费观看日本| 丝袜在线中文字幕| 欧美日韩精品成人综合77777| 极品少妇高潮喷水抽搐| 国产成人91sexporn| 男女无遮挡免费网站观看| 亚洲精品国产成人久久av| 午夜视频国产福利| 又粗又硬又长又爽又黄的视频| 亚洲av成人精品一区久久| 精品一区二区免费观看| 亚洲国产精品国产精品| 日韩av免费高清视频| 在线播放无遮挡| 成人漫画全彩无遮挡| 黄色配什么色好看| 久久 成人 亚洲| 国产有黄有色有爽视频| 久久人人爽人人片av| 亚洲国产精品一区二区三区在线| 久久精品久久久久久久性| 国产精品无大码| 国产精品久久久久久精品古装| 色婷婷av一区二区三区视频| 国产色婷婷99| 国产精品免费大片| 99国产精品免费福利视频| av一本久久久久| 欧美激情极品国产一区二区三区 | 亚洲精品日韩av片在线观看| 韩国高清视频一区二区三区| 国产伦精品一区二区三区视频9| 丝袜在线中文字幕| av又黄又爽大尺度在线免费看| 熟女av电影| 国产日韩一区二区三区精品不卡 | 80岁老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 91精品一卡2卡3卡4卡| 美女福利国产在线| 亚洲国产精品一区二区三区在线| 国产片特级美女逼逼视频| 免费高清在线观看视频在线观看| 熟女人妻精品中文字幕| 汤姆久久久久久久影院中文字幕| 欧美成人午夜免费资源| 啦啦啦在线观看免费高清www| 精品一品国产午夜福利视频| 免费观看无遮挡的男女| 日韩,欧美,国产一区二区三区| 免费观看的影片在线观看| 蜜臀久久99精品久久宅男| 青春草国产在线视频| 国产成人91sexporn| 赤兔流量卡办理| 免费av中文字幕在线| 看十八女毛片水多多多| 国产老妇伦熟女老妇高清| 大话2 男鬼变身卡| 香蕉精品网在线| 777米奇影视久久| 免费少妇av软件| 校园人妻丝袜中文字幕| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 天堂中文最新版在线下载| 91精品国产国语对白视频| 高清黄色对白视频在线免费看 | 国产高清不卡午夜福利| 最近2019中文字幕mv第一页| 搡女人真爽免费视频火全软件| 中文字幕制服av| 免费久久久久久久精品成人欧美视频 | 人人妻人人澡人人看| 青春草视频在线免费观看| 青青草视频在线视频观看| 精品人妻熟女毛片av久久网站| 日本欧美国产在线视频| 免费观看在线日韩| 性色av一级| 国产欧美另类精品又又久久亚洲欧美| 黄色欧美视频在线观看| 精品少妇久久久久久888优播| 日本黄大片高清| 久久国内精品自在自线图片| 伊人亚洲综合成人网| 国产欧美日韩一区二区三区在线 | 青春草亚洲视频在线观看| 十八禁网站网址无遮挡 | 插逼视频在线观看| 麻豆乱淫一区二区| 亚洲美女黄色视频免费看| 免费黄频网站在线观看国产| 国产日韩一区二区三区精品不卡 | 日本黄色日本黄色录像| 在现免费观看毛片| 国产精品福利在线免费观看| 三上悠亚av全集在线观看 | 国产精品蜜桃在线观看| 777米奇影视久久| 看免费成人av毛片| 一二三四中文在线观看免费高清| 男女边摸边吃奶| 亚洲av在线观看美女高潮| 爱豆传媒免费全集在线观看| 在线精品无人区一区二区三| 国产淫片久久久久久久久| 亚洲av日韩在线播放| 精品99又大又爽又粗少妇毛片| 久久久精品94久久精品| 亚洲精品一二三| 插阴视频在线观看视频| 成人黄色视频免费在线看| 久久久久久人妻| av天堂久久9| 亚洲第一区二区三区不卡| 曰老女人黄片| 精品久久久久久电影网| 亚洲精品一二三| 免费观看性生交大片5| 精品人妻偷拍中文字幕| 极品少妇高潮喷水抽搐| 日韩中文字幕视频在线看片| 国产精品一区二区三区四区免费观看| 乱系列少妇在线播放| 亚洲精品,欧美精品| 黄色欧美视频在线观看| 亚洲欧美日韩卡通动漫| 欧美日韩综合久久久久久| 成人二区视频| 一级a做视频免费观看| 欧美变态另类bdsm刘玥| 夜夜骑夜夜射夜夜干| av播播在线观看一区| 国产色爽女视频免费观看| 成人影院久久| 大话2 男鬼变身卡| 久久精品国产亚洲av天美| 亚洲国产精品专区欧美| 尾随美女入室| 久久久久精品性色| 男人舔奶头视频| 精品亚洲成国产av| 久久精品久久精品一区二区三区| 亚洲性久久影院| a 毛片基地| 日韩大片免费观看网站| 日本黄色日本黄色录像| 精品久久久精品久久久| 精品久久久久久久久亚洲| 人人妻人人看人人澡| 五月玫瑰六月丁香| 秋霞伦理黄片| 国产av码专区亚洲av| 国产国拍精品亚洲av在线观看|