• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organization and storage model of marine information and its application in the“China Digital Ocean”

    2011-12-28 10:22:48LIUJinLIHaoqianZHUJicaiJIANGXiaoyiZHANGfeng
    海洋通報 2011年2期
    關(guān)鍵詞:格網(wǎng)數(shù)據(jù)倉庫數(shù)據(jù)模型

    LIU Jin,LI Hao-qian, ZHU Ji-cai,JIANG Xiao-yi,ZHANG feng

    1. National Marine Data and Information Service, Tianjin 300171, China;

    2. China Nuclear Geology, Beijing 100013, China

    Organization and storage model of marine information and its application in the“China Digital Ocean”

    LIU Jin1,LI Hao-qian1, ZHU Ji-cai2,JIANG Xiao-yi1,ZHANG feng1

    1. National Marine Data and Information Service, Tianjin300171, China;

    2. China Nuclear Geology, Beijing100013, China

    Based on the experience and achievement of the“China Digital Ocean”, the classification plan for Marine data elements is made, which can be classified into five,including marine point elements, marine line elements, marine polygon elements,marine grid elements and marine dynamic elements. In this paper, the technology of features and object-oriented method, a spatial-temporal data model is proposed, which can be applied in the large information system engineering like the “Digital Ocean”, and this paper discusses the application of spatial data model, marine three-dimensional raster data model and relation data model in the building of Data Warehouse in “China Digital Ocean”, and concludes the merits of these models.

    digital ocean, sphere model, data warehouse, ocean elements, data organization and storage

    Introduction

    “Digital Ocean” is a massive and complex system supported by the newest information technology, which relies on the national information facilities and marine spatial data establishment to research the marine phenomenon[1]. It is a virtual ocean world formed by massive marine observation data with multi-resolution, multi-phase and multi-space type, and also by its analysis algorithm and model. Data model and data structure are the foundation for constructing the digital ocean information system. Most of the ocean phenomenon has a dynamic spatio-temporal feature, which is the essential difference comparing to the land information, so the traditional GIS data model is facing many embarrassments in organizing or displaying the ocean information.

    Many researchers propose various types of spatio-temporal data models to organize and display the time-space phenomenon. In the Time Lab technology report, Achilleas Pand Babis T detailedly discussed 9 frequently used spatio-temporal data models and analyzed their merits and drawbacks and the relative application domain[2]. Yet, these models can not organize or display the time-space process of ocean phenomenon well,particularly when both the property and position are changeable, such as the ocean front,the vortex and the coastline, et al. LI Shan et al. proposed an “ocean line data model basing on features” and designed an ocean line storage structure with a time-space feature[3].XUE Cun-jin et al. discussed the process objects and their logical relation according to the inner characteristics of continuous gradual changing geography substantiality. They implicitly recorded the dynamic changing mechanism of the geography substantiality by the abstract process object, and defined the function interface mode whose changing mechanism is supplied by the process object storage list. Also, they realized the process organization, storage and dynamic analysis of continuous gradual changing geography substantiality[4]. The researches of LI and XUE solved the organization and storage of the marine data with line feature and continuous gradual change feature respectively. Their work can partly fulfill the demand of ocean information system. However, the digital ocean is an integrated information system containing various types of marine data, which requires an integrated and general solution.

    Aiming at project application, this paper researches the classification of marine data elements in the “Digital Ocean” system, designs a spatio-temporal data model that suits for large information system project like “Digital Ocean”. Its practical application performs well.

    1 Background

    “China Digital Ocean” is a macro system, which recurs and predicts the real ocean based on the integrated digital platform and the virtual environment supported by the techniques of database, geographic information system, network and so on. The data this system contains are obtained from marine investigation, ocean observation (including the satellite, plane, ship, buoy, and station data) and society statistic investigation. “Digital Ocean” directly displays the real ocean phenomenon and process, predicts and simulates the future ocean scene, improves ocean development and application reliably and effectively to keep the continuable development of ocean[5].

    The data sources of “Digital Ocean” information system involve: the whole data of 908 investigation project, investigation data of history projects of National Ocean Bureau,the massive marine science data and relative information conserved by subordinate ocean bureaus, marine business centers and research institutes. The data cover wide domains like ocean hydrology, meteorology (near sea surface), marine biology, marine chemistry,marine environment quality, marine geology, marine geophysics, marine basic geography,ocean aviation and remote sensing, marine economy, ocean resource, etc. The total global ocean data volume is greater than 10 billion kb.

    Compared to the other data, ocean information owns the characteristics of multi-source, multiform and multi-type. Various observation methods determine the multi-source of data, subsequently lead to accuracy differences and various formats, which cause the complex data structure. The multiform of data, namely, the ocean information are presented by various formats, like graph, image, text, etc, which induces a further complication of data processing methods. The multi-type of data means that the ocean data cover various disciplines, which brings complexity to the data management. One of the important tasks of “Digital Ocean” is to establish the data warehouse and integrate the complex various ocean data together for the further information service, what’s the key point is the proper data organization & storage that can fulfill the requirements of data application.

    2 Classification of the ocean data elements

    Considering the multi-source and multiform of ocean data, this paper chooses a feature-based method, to categorize the complex various data and pick up their special properties for establishing the element category and the data model. A clear catalog can be formed by classifying the ocean data, which is beneficial to the construction of the database and dataset. The feature-based method is adopted to extract the common spatial character and property information, abstract them into element categories. Meanwhile,establish the relationship among the data and design the data model according to the needs of the data application, and supply the data interface, method and operation for it.

    Features highly generalize and abstract the phenomenon and its display of the realistic world, which are the basic units of entity. All the objects in the realistic world are displayed by the features, which are composed of feature property and feature operation.The instantiation of the features turns out to be the object entity of the realistic world. Thus,this paper categorizes the marine data into five elements, which are marine point elements,marine line elements, marine polygon elements, marine grid elements and marine dynamic elements. The definitions and the contents of each element are as follow.

    2.1 Marine point elements

    The marine points can be classified into two kinds, which are feature points and measurement points. The measurement points can be similarly classified into time series points and instantaneous points, while the latter are formed by four subcategories.

    Tab. 1 Classification of marine point elements

    2.1.1 Time series points

    The fixed buoy, coast base and station et al. can be displayed by the Time Series Point Model due to their long time series’ data collection, while the Instantaneous Point relates with a certain time. In the Time Series Point property table, X-location and Y-location define the location of the point. As the foreign key equipment list, Device ID defines the equipment information of that point. The time series parameter table keeps the parameter information. TS Type is the host key and responsible for connecting the Time Series table.Z-location can display the different profiles of the same parameter variable. The values of each variable are stored in the time series table.

    Tab. 2 Parameters of time series points

    There’s no definition for the time series with irregular interval. The main time intervals are 1 min, 2 mins, 30 mins, 1h, 2h, 1d and 1mon. As its name, the DataType indicates the data type, including the instantaneous data, the accumulative data, the increment, the mean, the maximum and the minimum. The Origin indicates whether the time series data are produced by a model or the real measurement data.

    Tab. 3 Parameters of Time Series Point

    2.1.2 Location series

    Location Series is the subcategory of Instantaneous Point. It fits for storing the information of each point of the trace and can be used to display the information of ocean plankton. The single plankton information is stored in the Series. The Series ID represents animal, are every point of animal is described by Location Series. Property Time Value and XY coordinates represent a single point element. Property Z Value is responsible for storing the depth. As a foreign key, Survey ID connects the object class Survey Info through the relation class SurveyInfoHasPoints. Series ID is used to connect the object class Series.

    2.2 Marine line elements

    The profile contour, duration line, and the element line are three components of the marine line elements.

    2.2.1 Profile contour

    This subcategory supplies a public data type for describing the element property of the nodes along the profile contour. In ocean GIS, the profile lines frequently used are vertical profile line, section line and transport line.

    2.2.2 Duration line

    The initial and the end time, and the lasting time are 3 core properties of time continuous line. It can record the sample data measured on the ship, the lasting time of the trawl and the partial trace of the automatic ship. One of its subcategories is the trace line,which is used in the ship-base data model. Differing from the profile contour, the trace line is only the trace of one ship. The data along the trace may be collected, or may not. Yet the profile contour always contains data.

    2.2.3 Element line

    Many ocean elements, like the seafloor pipeline, the administerial boundary and the sea route, can be displayed by standard line feature. A unique symbol, the x y coordinate pair and a free style measurement property aiming for application are required.Coastline is an extended subcategory of the element line. When confirming a coastline, the vertical profile data need to be recorded. Thus, a vertical datum plane property is added to store the vertical data of the coastline.

    2.3 Marine polygon elements

    The two kinds of the polygon elements in marine environment are: the time-independent static element polygon and the time-continuous polygon with initial and end time and also variables.

    All the marine polygon elements of the static polygon can be displayed into element polygons, such as the ocean protection district and the exclusive economic zone. The element polygon need one and the only symbol, the x y coordinate pair that form the boundary, the depth and the measurement property defined by customer. A period of changing feature of the dynamic marine polygon elements can be described by time-continuous section.

    2.4 Marine grid elements

    There are some sea surface features, such as SST, SSH, chlorophyll a, and waterpower measurement. Three kinds of data types can display those features, which are the regular interpolation surface, the irregular interpolation surface and the grid volume component.

    2.4.1 Regular interpolation surface

    This model is normally used for the remote sensing data and pictures. So far the formats that support the raster data involve ArcGIS, GRID data, GeoTiff, Band Sequential(BSQ), and Band Interleaved (BIL) data. Besides, there are many oceanography and meteorology data products organized by network Common Data Form (netCDF) or hierarchical data format (HDF).

    2.4.2 Irregular interpol surface

    The irregular triangle grid and many finite element models are the typical types of this kind of data, which recognize the minimum triangle piece through the pivotal node and border. TIN is a precise and effective model for displaying the continuous surface.

    2.4.3 Grid volume component

    Meshes are defined to fulfill the requirements of the ocean grid model and the analytical application. It displays the data into several layer Mesh data stacks with lines and columns. The structure of the elements flexibly defines the grid elements with regular interval, and these grid points can be the discrete node data.

    Fig. 1 Model of ocean grid elements

    2.5 Ocean dynamic element

    The nontraditional spatial data including, cartoon, kinescope, video and so on, aim at displaying the dynamic feature of the ocean data. The video observation data can be obtained by automatic underwater measurement equipment, aerial survey, or the video camera fixed in port, which are used to display the dynamic ocean elements and phenomenon like storm tide and current field.

    3 Data model construction and application

    Classify the ocean data into 5 categories according to their features, and the“object-oriented” technique is adopted in data management and storage. The object mentioned above is a concept base on the class, and the relations between feature and the object are as follows: 1) Feature is the most basic unit of data model and data structure;2) One feature is corresponding to one object, and has one only ID. 3) Class describes the common property and type of the features, and realizes the instantiation of it. 4) The arithmetic operator of the inner class is adopted to connect the different features, so as to construct the interrelated geographical entities[3]. The foundational idea based on the feature data model is to take the feature as the basic unit and adopt the object-oriented technique to design the space, time, and time-space function, relation and operation between the features.

    Most point, line and polygon data are spatial vector data, which all own spatial feature and property features, and the only difference is their spatial display style, and they can be organized and stored by the “Ocean Spatial Data Model”. Although the ocean remote sensing data are raster data, its main feature is spatial feature, thus the model mentioned above can be adopted here, too. The ocean grid element, with great data volume and single property information, fits the “Ocean Grid Data Model”, while the ocean dynamic elements fit the “Relation Data Model” due to the property feature information which the elements mainly contained.

    3.1 Ocean spatial data model

    The “Feature Dataset-Feature Class-Element” relationship is adopted for the organization of vector element data. Multi feature datasets are allowed, which are established by certain data class respectively, and multi-feature class and object class can be contained in each dataset. Each feature class involves multi geography elements, while each geography element is composed of property information, geometry information,symbol information and label information.

    After setting certain grid dataset, the remote sensing image data element can be stored by Raster Mosaic method or Raster Catalog method or both. The grid datasets or grid catalogs are formed according to the name of the subjects, and can be accessed and queried through the related spatial database sheet of the ArcSDE Geodatabase.

    The physical storage of the vector spatial data elements is realized by the ArcSDE Geodatabase software. Its relation sheet structure of the storage model in the Geodatanbase is presented below:

    Fig. 2 ArcSDE model of vector data

    Every data element vector layer has corresponding Tab. F and Tab. S. There are a series of metadata tables in the ArcSDE Geodatabase responsible for the organization of the spatial metadata and index metadata of the element layer stored in it.

    The organization of the spatio-temporal dynamic data relies on the history achieving function of the Geodatabase, and below is the related storage structure.

    Tab. B only stores the initial state of the object without the time information, and keeps conservation when editing and updating the data. Table H stores the changing achieving information of the object, mainly the records of property information. For the convenience of object query and historical remount, the time information is directly marked onto the property of the object, and saved in Table H. The time information in Table H includes the object’s valid time (the start of the valid time Vt_start, and the end of the valid time Vt_end) and affair time (the start of the affair time GDB_from_date, and the end of the business time GDB_to_date), also supports double time operation. Table F is responsible for the storage of the spatial feature, while Table S is for the spatial index information. Table R records the changing relation among the objects, while Object ID records the element code of the new object. The label code of the father object is recorded in Father ID. The Event ID is the serial number of the event that affects the changing of the object, which presents the combination and abruption among the objects, makes the changing process of the object clear. The changing events mainly involve the naissance, perdition, abruption and combination of the objects. Only the object formed through abruption or combination has the father object, the object that directly appears or vanishes has no father object.

    Fig. 3 Spatio-temporal data schema of Geodatabase

    3.2 Ocean Solid Grid Data Model

    The multi-layer grid data are the foundation of the ocean solid grid data model. It combines multi-layers into a whole object by feature class association to realize the organization and storage of the ocean solid data. Both the regular and irregular interpolation sea surfaces are single layer grid data, which can be treated as the grid volume data with only one layer, while the grid volume element can be treat as the grid volume data with multi-relating layers. Thus, this model is suitable for both the 2-D grid data and the 3-D grid volume data.

    The organization and storage of the grid data are realized by designing certain feature element class and object class in the model. This paper adopts the Mesh feature element class to store the one layer or multi-layer data, which involve the vector data and the scalar data like temperature, salinity, density, sound speed, current, storm tide, single layer tide and tidal current and so on. The storage of these data needs the proper Mesh element type chosen according to the characters of the Mesh elements. For temperature,salinity, density and sound speed, we can take vertical multi-layer data at a same time as one Mesh element, or take one layer of it as one Mesh element; while for the storm tide and tide, the field data during a time period are considered as one Mesh element. For the grid field data like current and tidal current, the data of all layers at the same time can be regarded as one Mesh element, or a single layer data at the same time as one Mesh element. Other types of element field data can be analyzed similarly.

    Several relation tables need to be defined, such as grid table, grid point table, vector table, scalar table and parameters.

    Tab. 4 Construction of grid table

    Tab. 5 Construction of parameters table

    The relationship of the tables are as follows: the grid points relate to the Mesh table by grid label, while the vector and scalar tables relate to the grid point table by element label, and relate to the parameter table by parameter label. Besides, a metadatabase is needed to illustrate the information of various elements, including the range, name, type,grid resolution, layer depth and updating frequency, etc. The alterable grid element data require specially to be illustrated in the metadata.

    In the “digital ocean” system, the environment data like seawater temperature,salinity and current, are divided into several layers by depth and stored by the solid grid data model. Consequently the information of different cross sections and vertical profiles at the same time can be visualized by depth, longitude, latitude or arbitrary direction.

    3.3 Relation Data Model

    Relation data model sets a certain spatial entity as the object, transforms its data information into different property features, and combines the entity object and property feature together by relating the host keys. It establishes complex data relations and organizes the various multi-source ocean data into a whole. There are two storage methods of this model. One is to store the elements directly into the relation database,which is suitable for binary or text data due to their small data volume and high demand of single-layer accessing. The organization and storage method is to form a document by layering the element data and store this document directly into the database table, namely,to dispart the multi-layer grid elements into several layers and form several documents from one. This storage method is convenient for obtaining, querying and displaying the one-layer element data with little records. Yet for multi-layer profile element data, it’s not efficient. This storage method is mainly suitable for multi-layer regular binary grid data,such as temperature, salinity, density, sound speed, current, and the one-layer binary field data, like storm tide, tide, tidal current, and the modeling analysis and forecast data.

    Fig. 3 Temperature information in different depths

    Fig. 4 Temperature information in different profiles

    Another method is to integrate the database sheet and the document system together, namely, store the metadata and the corresponding storage path in the database sheet, while store the relevant data entity under the directory defined by the document system. It is most efficient for data accessing and reading, which is propitious to the fast obtaining and visualization of the ocean data.

    4 Conclusion

    This paper classifies the features of ocean data into 5 major categories, and designs 3 data models according to an idea of “object-oriented”. The 3 data models solve the organization and storage problem of the ocean spatial data, solid grid data and great volume text data, respectively. The ocean vector spatial data model integrates the common 2-D ArcGIS software to make the data storage and management easily, which can be viewed, edited and controlled (for popedom and version) by many desktop graphic software. The shortcoming of it is the low efficiency when directly accessing the vector data layer in the 3-D information system, especially the polygon layers, which need to issue the vector layers by web feature service or web map service before using in the 3-D system.The ocean grid data model is designed specially for the storage of solid grid data, which is effective in storing the great volume grid data (in TB). Thanks to the pyramid structure it adopted, the reading speed is fast enough to satisfy the demand of the 3-D information system. However, its disadvantage is the failure of directly data editing. The grid data need processing in advance before storing into the database. The relation data model is good at storing various types of property data, such as the picture, text, model and sound, etc. It’s a sharp instrument for storing the “sundries” data, which plays an important role in constructing the digital ocean information system.

    In conclusion, so far there is no universal model suitable for the organization and storage of all kinds of ocean element data. Each model has its own merits and drawbacks,and also the limitation in application. Thus, the choice of the organization & storage method need to base on the demand of realistic application. Some are suitable for the manner of document system, while some fit for the common relation database, also there are considerable part of them suitable for the spatial database model. New data model should be introduced to display the spatial dynamic behavior of ocean and visualize its elements. Our ocean solid grid data model is such an example. Although it still can not be realized without the Geodatabase spatial data model, the ocean data types mentioned in its model design and organization are suitable for the concrete ocean applications.

    Reference

    [1] HOU Wenfeng. Tentative Ideas on the Development of Digital Ocean in China [J]. Marine Science Bulletin, 1999, 12(6):1 - 10.

    [2] Pavlopoulos A, Theodoul I D. Review of spatio temporal data models [R]. Time Lab Technical Report TR-98-3, 1998, 2 629 - 2 640.

    [3] LI Shan, XUE Cunjin, HE Huizhong. Feature-Based Marine Line Data Model [J]. Sun Yatsen University Forum, 2006, 26(9):193 - 198.

    [4] XUE Cunjin, ZHOU Chenghu, SU Fenzhen, et al. Research on Process-Oriented Temporal-Spatio Data Model [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):95 - 101.

    [5] ZHANG Feng, SHI Suixiang, YIN Ruguang, et al. Research of Data Architecture in Digital Ocean[J], Marine Science Bulletin, 2009, 28(9):1 - 8.

    [6] SU Fenzhen, DU Yunyan, PEI Xiangbin, et al., Constructing Digital Sea of China with the Datum of Coastal Line [J]. Geo-information Science, 2006, 3, 8(1):12 - 15.

    [7] JIA Jun-tao, ZHAI Jing-sheng, WU Zhong-ding, et al. Constructing Digital Sea of China with the Datum of Coastal Line [J], Geo-information Science, 2007, 25(1):111 - 116.

    [8] BAO Yu-bin, LU Qun, CAI Jin-ming, et al. Domain Ontology-based Multidimensional Modeling of Marine Environmental Data Warehouse [J], Marine Science Bulletin, 2009, 28(4):132 - 140.

    [9] QIN Rufu, YE Na, XU Huiping, et al. Visualization of Multi-dimension Oceanographic Data in Geography Information System [J]. Journal of Tongji University (natural science), 2009, 37(2):272 -276.

    [10] HE Guangshun, LI Sihai. Constructing Spatial Information Database for Digital Ocean [J]. Marine Information, 2004, (1): 1 - 4.

    海洋信息組織與存儲模型研究及其在“數(shù)字海洋”中的應(yīng)用

    劉 金1,李昊倩1,朱吉才2,姜曉軼1,張 峰1

    (1. 國家海洋信息中心 天津 300171;2. 中國核工業(yè)地質(zhì)局 北京 100013)

    基于中國數(shù)字海洋建設(shè)的經(jīng)驗和成果,制定了海洋數(shù)據(jù)要素的分類方案,將海洋信息分為5大類:海洋點要素、海洋線要素、海洋面要素、海洋網(wǎng)格要素、海洋動態(tài)要素。采用基于特征的方法和面向?qū)ο蟮募夹g(shù)設(shè)計了適合數(shù)字海洋大型信息系統(tǒng)工程建設(shè)的時空數(shù)據(jù)模型,探討了海洋空間數(shù)據(jù)模型、海洋立體格網(wǎng)數(shù)據(jù)模型、關(guān)系數(shù)據(jù)模型在數(shù)字海洋數(shù)據(jù)倉庫建設(shè)中的應(yīng)用,并總結(jié)了其優(yōu)缺點。

    數(shù)字海洋;球體模型;數(shù)據(jù)倉庫;海洋要素;數(shù)據(jù)組織與存儲

    on May 5, 2011

    liujin@mail.nmdis.gov.cn

    猜你喜歡
    格網(wǎng)數(shù)據(jù)倉庫數(shù)據(jù)模型
    實時電離層格網(wǎng)數(shù)據(jù)精度評估
    基于數(shù)據(jù)倉庫的住房城鄉(xiāng)建設(shè)信息系統(tǒng)整合研究
    面板數(shù)據(jù)模型截面相關(guān)檢驗方法綜述
    加熱爐爐內(nèi)跟蹤數(shù)據(jù)模型優(yōu)化
    電子測試(2017年12期)2017-12-18 06:35:36
    分布式存儲系統(tǒng)在液晶面板制造數(shù)據(jù)倉庫中的設(shè)計
    電子制作(2016年15期)2017-01-15 13:39:15
    探析電力系統(tǒng)調(diào)度中數(shù)據(jù)倉庫技術(shù)的應(yīng)用
    基于空間信息格網(wǎng)與BP神經(jīng)網(wǎng)絡(luò)的災(zāi)損快速評估系統(tǒng)
    基于數(shù)據(jù)倉庫的數(shù)據(jù)分析探索與實踐
    平均Helmert空間重力異常格網(wǎng)構(gòu)制方法
    基于位置服務(wù)的地理格網(wǎng)編碼設(shè)計
    測繪通報(2013年2期)2013-12-11 07:27:50
    视频在线观看一区二区三区| 搡老熟女国产l中国老女人| 亚洲中文字幕日韩| 少妇被粗大的猛进出69影院| 午夜福利在线观看吧| 国产成人av教育| 黄色丝袜av网址大全| 又黄又粗又硬又大视频| 日韩成人在线观看一区二区三区| 欧美日本中文国产一区发布| 青草久久国产| 最新美女视频免费是黄的| 97人妻天天添夜夜摸| 亚洲国产精品sss在线观看| or卡值多少钱| 国产熟女午夜一区二区三区| 精品国产乱子伦一区二区三区| 少妇 在线观看| 午夜福利欧美成人| 免费看美女性在线毛片视频| av片东京热男人的天堂| 亚洲av成人一区二区三| 欧美日本亚洲视频在线播放| 90打野战视频偷拍视频| www.www免费av| 无人区码免费观看不卡| 99香蕉大伊视频| 精品一区二区三区四区五区乱码| 免费在线观看黄色视频的| 午夜精品久久久久久毛片777| 又大又爽又粗| 男人操女人黄网站| 在线观看免费午夜福利视频| 在线观看免费午夜福利视频| av片东京热男人的天堂| 成人三级做爰电影| 亚洲精品国产色婷婷电影| 久久久久精品国产欧美久久久| 亚洲精品av麻豆狂野| 动漫黄色视频在线观看| 国产一区二区三区综合在线观看| 18禁黄网站禁片午夜丰满| 精品国产乱子伦一区二区三区| 精品一区二区三区视频在线观看免费| 国产黄a三级三级三级人| 波多野结衣一区麻豆| 50天的宝宝边吃奶边哭怎么回事| 午夜福利高清视频| 久久中文字幕人妻熟女| 精品午夜福利视频在线观看一区| 国产乱人伦免费视频| 日韩精品免费视频一区二区三区| 一级,二级,三级黄色视频| 亚洲精品国产一区二区精华液| 少妇熟女aⅴ在线视频| 午夜福利18| 亚洲av日韩精品久久久久久密| 黄色片一级片一级黄色片| 国产精品电影一区二区三区| 韩国精品一区二区三区| 欧美日韩乱码在线| 法律面前人人平等表现在哪些方面| 欧美绝顶高潮抽搐喷水| 国产av一区二区精品久久| 一级片免费观看大全| 国产激情久久老熟女| 757午夜福利合集在线观看| 免费少妇av软件| 黄频高清免费视频| 天堂影院成人在线观看| 少妇粗大呻吟视频| 90打野战视频偷拍视频| www国产在线视频色| 搞女人的毛片| 日韩精品免费视频一区二区三区| 欧美成狂野欧美在线观看| 久久久久久久久免费视频了| 久久人人97超碰香蕉20202| 欧美激情极品国产一区二区三区| 久久久精品国产亚洲av高清涩受| 欧美国产精品va在线观看不卡| 国产又爽黄色视频| 日日干狠狠操夜夜爽| 欧美一级毛片孕妇| 亚洲av五月六月丁香网| 免费在线观看完整版高清| 成人手机av| 淫妇啪啪啪对白视频| 欧美日韩黄片免| 久久精品影院6| 午夜精品久久久久久毛片777| 日日摸夜夜添夜夜添小说| 男人舔女人的私密视频| 搡老妇女老女人老熟妇| 国产片内射在线| 国产亚洲av高清不卡| 中文字幕久久专区| 国产乱人伦免费视频| 久久国产乱子伦精品免费另类| 91精品三级在线观看| 国产成人精品无人区| 很黄的视频免费| 午夜久久久久精精品| 好看av亚洲va欧美ⅴa在| 久久婷婷成人综合色麻豆| 日韩 欧美 亚洲 中文字幕| 亚洲性夜色夜夜综合| 欧美人与性动交α欧美精品济南到| 色av中文字幕| 欧美日本视频| 国产午夜福利久久久久久| 午夜a级毛片| 欧美激情 高清一区二区三区| 亚洲av熟女| 免费在线观看亚洲国产| 国产激情欧美一区二区| 777久久人妻少妇嫩草av网站| 亚洲视频免费观看视频| 女警被强在线播放| 91九色精品人成在线观看| 97人妻精品一区二区三区麻豆 | 制服丝袜大香蕉在线| 久久久久国产一级毛片高清牌| 国产精品国产高清国产av| 久久精品aⅴ一区二区三区四区| 久久久久国内视频| 国产成人精品久久二区二区免费| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 亚洲 欧美一区二区三区| 此物有八面人人有两片| 亚洲国产精品成人综合色| 美女扒开内裤让男人捅视频| 老汉色∧v一级毛片| 色综合站精品国产| 熟女少妇亚洲综合色aaa.| 在线观看免费视频日本深夜| 精品久久久久久久毛片微露脸| 两人在一起打扑克的视频| 国产精品乱码一区二三区的特点 | 黄色毛片三级朝国网站| 男女下面进入的视频免费午夜 | 欧美日韩福利视频一区二区| 色婷婷久久久亚洲欧美| 老汉色av国产亚洲站长工具| 热99re8久久精品国产| 精品久久久精品久久久| 亚洲,欧美精品.| 黄色片一级片一级黄色片| 日韩国内少妇激情av| 日韩欧美一区二区三区在线观看| 国产欧美日韩综合在线一区二区| 免费在线观看视频国产中文字幕亚洲| 欧美黑人欧美精品刺激| 国产成人一区二区三区免费视频网站| 色尼玛亚洲综合影院| 日日摸夜夜添夜夜添小说| 国产成人欧美| 欧美老熟妇乱子伦牲交| 免费搜索国产男女视频| 9色porny在线观看| 亚洲成人精品中文字幕电影| 色精品久久人妻99蜜桃| 欧美乱码精品一区二区三区| 在线永久观看黄色视频| 日本撒尿小便嘘嘘汇集6| 国产乱人伦免费视频| 欧美日本中文国产一区发布| 午夜久久久在线观看| 丝袜在线中文字幕| 高清黄色对白视频在线免费看| av天堂久久9| 天天躁夜夜躁狠狠躁躁| 在线观看午夜福利视频| 国产亚洲精品一区二区www| 亚洲片人在线观看| 极品人妻少妇av视频| 手机成人av网站| 亚洲久久久国产精品| 老司机午夜十八禁免费视频| 国产精品1区2区在线观看.| 亚洲av成人av| 久久久久国产一级毛片高清牌| 亚洲 欧美 日韩 在线 免费| 搡老妇女老女人老熟妇| 国产在线精品亚洲第一网站| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| 欧美精品啪啪一区二区三区| 国产精品九九99| 午夜福利成人在线免费观看| 国产一区二区三区视频了| 极品教师在线免费播放| 亚洲在线自拍视频| 巨乳人妻的诱惑在线观看| 桃红色精品国产亚洲av| 色老头精品视频在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 老司机靠b影院| 免费女性裸体啪啪无遮挡网站| 日韩欧美国产在线观看| 亚洲国产精品999在线| 91国产中文字幕| 无限看片的www在线观看| 99热只有精品国产| 日韩欧美在线二视频| 亚洲 国产 在线| av超薄肉色丝袜交足视频| 看片在线看免费视频| 久久亚洲精品不卡| 99久久精品国产亚洲精品| 麻豆成人av在线观看| 国产成人精品在线电影| 中文字幕最新亚洲高清| 成人三级黄色视频| 国产国语露脸激情在线看| 曰老女人黄片| av在线天堂中文字幕| 欧美久久黑人一区二区| 亚洲精品久久成人aⅴ小说| 女警被强在线播放| 精品少妇一区二区三区视频日本电影| 18禁美女被吸乳视频| 一级毛片女人18水好多| av视频免费观看在线观看| 亚洲欧美激情综合另类| 国产一级毛片七仙女欲春2 | 正在播放国产对白刺激| 国产在线观看jvid| 久9热在线精品视频| 老熟妇乱子伦视频在线观看| 久久人妻福利社区极品人妻图片| 国产激情欧美一区二区| 美女高潮喷水抽搐中文字幕| 久久久国产成人精品二区| 亚洲精品国产区一区二| 国产精品久久视频播放| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦 在线观看视频| √禁漫天堂资源中文www| av天堂在线播放| 日韩大码丰满熟妇| 亚洲精品国产区一区二| 变态另类丝袜制服| 很黄的视频免费| 欧美精品啪啪一区二区三区| 一区二区日韩欧美中文字幕| 男人的好看免费观看在线视频 | 禁无遮挡网站| 国产99久久九九免费精品| 韩国精品一区二区三区| 男女之事视频高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 777久久人妻少妇嫩草av网站| 在线永久观看黄色视频| 真人一进一出gif抽搐免费| 精品久久久久久久人妻蜜臀av | 亚洲国产欧美一区二区综合| 伦理电影免费视频| 女同久久另类99精品国产91| 亚洲av成人av| 操出白浆在线播放| 咕卡用的链子| 国产精品香港三级国产av潘金莲| 亚洲精品美女久久久久99蜜臀| 少妇被粗大的猛进出69影院| 日日干狠狠操夜夜爽| 久久久久国产一级毛片高清牌| 激情在线观看视频在线高清| 91麻豆精品激情在线观看国产| 国产成人av教育| 国产精品亚洲美女久久久| 在线视频色国产色| 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 亚洲精品国产区一区二| 国产一区二区三区在线臀色熟女| 中出人妻视频一区二区| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 日本一区二区免费在线视频| 国产免费男女视频| 婷婷六月久久综合丁香| 真人一进一出gif抽搐免费| 午夜日韩欧美国产| 国产真人三级小视频在线观看| 丝袜人妻中文字幕| 啦啦啦韩国在线观看视频| 人人妻人人澡欧美一区二区 | 欧洲精品卡2卡3卡4卡5卡区| 久热爱精品视频在线9| 亚洲第一青青草原| 国产麻豆成人av免费视频| 中文字幕av电影在线播放| 男女午夜视频在线观看| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 亚洲av日韩精品久久久久久密| 国内精品久久久久久久电影| 美国免费a级毛片| 美女午夜性视频免费| 中亚洲国语对白在线视频| 国产精品一区二区在线不卡| 一级黄色大片毛片| 国产免费av片在线观看野外av| 黄片大片在线免费观看| 国产精品电影一区二区三区| 国产野战对白在线观看| 人成视频在线观看免费观看| 久久影院123| 黑人巨大精品欧美一区二区蜜桃| 欧美激情高清一区二区三区| 中文字幕色久视频| 黄网站色视频无遮挡免费观看| 国产精品爽爽va在线观看网站 | 久久久久久久午夜电影| 精品日产1卡2卡| 中文亚洲av片在线观看爽| videosex国产| 中文字幕色久视频| 久热爱精品视频在线9| 免费高清视频大片| 国产精品秋霞免费鲁丝片| 少妇熟女aⅴ在线视频| 亚洲av美国av| 亚洲人成伊人成综合网2020| 美女国产高潮福利片在线看| 欧美黑人欧美精品刺激| 国产国语露脸激情在线看| 欧美性长视频在线观看| 黄片小视频在线播放| 操出白浆在线播放| 成年版毛片免费区| 精品乱码久久久久久99久播| 99久久精品国产亚洲精品| 少妇熟女aⅴ在线视频| 久久久水蜜桃国产精品网| 久久草成人影院| 91成人精品电影| 99久久精品国产亚洲精品| 国产精品久久久久久亚洲av鲁大| 极品人妻少妇av视频| 久久人人97超碰香蕉20202| 欧美日韩福利视频一区二区| 欧美+亚洲+日韩+国产| 可以在线观看的亚洲视频| 动漫黄色视频在线观看| 成年人黄色毛片网站| 亚洲电影在线观看av| 男人的好看免费观看在线视频 | 色婷婷久久久亚洲欧美| 91av网站免费观看| 又黄又爽又免费观看的视频| а√天堂www在线а√下载| 欧美乱色亚洲激情| 两个人视频免费观看高清| 无限看片的www在线观看| 香蕉丝袜av| 女人爽到高潮嗷嗷叫在线视频| 黄色视频,在线免费观看| 咕卡用的链子| 制服丝袜大香蕉在线| 在线观看舔阴道视频| 免费高清在线观看日韩| 熟妇人妻久久中文字幕3abv| 久久人妻福利社区极品人妻图片| www日本在线高清视频| 亚洲七黄色美女视频| 99国产精品一区二区三区| 丝袜美腿诱惑在线| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av高清一级| 色婷婷久久久亚洲欧美| 亚洲国产欧美一区二区综合| 午夜激情av网站| 亚洲国产精品成人综合色| 欧美 亚洲 国产 日韩一| 一夜夜www| 天天一区二区日本电影三级 | 亚洲国产高清在线一区二区三 | 两人在一起打扑克的视频| 久久人人精品亚洲av| 最新在线观看一区二区三区| 午夜免费成人在线视频| 国产成人欧美在线观看| avwww免费| 色尼玛亚洲综合影院| 国产一卡二卡三卡精品| 久久青草综合色| 久久久久久国产a免费观看| 一级毛片精品| 免费高清在线观看日韩| 91av网站免费观看| 久久 成人 亚洲| 亚洲激情在线av| 十分钟在线观看高清视频www| 欧美亚洲日本最大视频资源| 老鸭窝网址在线观看| 韩国av一区二区三区四区| 十八禁网站免费在线| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 麻豆国产av国片精品| 国产熟女xx| 亚洲久久久国产精品| 欧美日韩亚洲国产一区二区在线观看| 伊人久久大香线蕉亚洲五| 一本久久中文字幕| 亚洲午夜精品一区,二区,三区| av在线天堂中文字幕| 国产1区2区3区精品| 男女床上黄色一级片免费看| 国产精品久久电影中文字幕| 日韩欧美国产一区二区入口| 免费看十八禁软件| 国产亚洲精品一区二区www| 人人妻人人爽人人添夜夜欢视频| 亚洲免费av在线视频| 亚洲熟女毛片儿| 99国产精品一区二区蜜桃av| 一级毛片高清免费大全| 久久中文看片网| 欧美成人免费av一区二区三区| 日本撒尿小便嘘嘘汇集6| 在线观看66精品国产| 欧美乱妇无乱码| 亚洲国产欧美日韩在线播放| 热99re8久久精品国产| 久久人人精品亚洲av| 午夜福利成人在线免费观看| 国产精品免费一区二区三区在线| 看片在线看免费视频| 99国产综合亚洲精品| 欧美性长视频在线观看| 日韩高清综合在线| 久久久久久人人人人人| 欧美中文日本在线观看视频| 在线永久观看黄色视频| 日日爽夜夜爽网站| 国产亚洲精品久久久久5区| 777久久人妻少妇嫩草av网站| 午夜福利视频1000在线观看 | 国产欧美日韩综合在线一区二区| 色在线成人网| 成人18禁在线播放| 黄色视频不卡| 一本大道久久a久久精品| 狠狠狠狠99中文字幕| 麻豆成人av在线观看| 好男人在线观看高清免费视频 | 欧美日韩亚洲综合一区二区三区_| 欧美精品啪啪一区二区三区| 大香蕉久久成人网| 99国产极品粉嫩在线观看| 中出人妻视频一区二区| 在线免费观看的www视频| 国产1区2区3区精品| 黄频高清免费视频| 中文亚洲av片在线观看爽| 日韩有码中文字幕| 亚洲国产精品999在线| 国产片内射在线| 国产黄a三级三级三级人| 美国免费a级毛片| 国产精品 国内视频| 亚洲精品在线美女| 桃色一区二区三区在线观看| 国产免费av片在线观看野外av| 中文字幕久久专区| 久久人妻熟女aⅴ| 国产精品一区二区精品视频观看| 精品欧美国产一区二区三| 亚洲少妇的诱惑av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品美女久久av网站| 搡老熟女国产l中国老女人| 一级片免费观看大全| 老司机靠b影院| 十分钟在线观看高清视频www| 两个人免费观看高清视频| 国内精品久久久久精免费| av在线天堂中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 69精品国产乱码久久久| 97人妻精品一区二区三区麻豆 | 久久久久久久久中文| 男女下面插进去视频免费观看| 精品国产超薄肉色丝袜足j| 极品人妻少妇av视频| 国产主播在线观看一区二区| 日日爽夜夜爽网站| 大型av网站在线播放| 亚洲精品国产区一区二| 国产单亲对白刺激| 国产欧美日韩一区二区三| 一级毛片高清免费大全| 久久久久久久久久久久大奶| 日韩免费av在线播放| 精品午夜福利视频在线观看一区| 88av欧美| 亚洲自偷自拍图片 自拍| 午夜免费激情av| 日本五十路高清| 精品久久久久久成人av| 国产午夜精品久久久久久| 女性被躁到高潮视频| 亚洲色图 男人天堂 中文字幕| 午夜福利18| 九色国产91popny在线| 黄色视频,在线免费观看| 久久国产精品影院| 国产成人av教育| 国产主播在线观看一区二区| 国产1区2区3区精品| 人成视频在线观看免费观看| ponron亚洲| 久久久久国产一级毛片高清牌| 深夜精品福利| 欧美性长视频在线观看| 亚洲色图 男人天堂 中文字幕| 日韩成人在线观看一区二区三区| 国产精品一区二区免费欧美| 免费观看人在逋| 亚洲精品在线美女| 亚洲第一欧美日韩一区二区三区| 十八禁网站免费在线| 欧美国产精品va在线观看不卡| tocl精华| 精品国产一区二区三区四区第35| 久久青草综合色| 高清黄色对白视频在线免费看| 黄色 视频免费看| 老司机福利观看| 啦啦啦 在线观看视频| 美女国产高潮福利片在线看| 国产精品美女特级片免费视频播放器 | 长腿黑丝高跟| 中文字幕精品免费在线观看视频| 香蕉国产在线看| 亚洲欧美日韩无卡精品| 精品久久久久久久久久免费视频| 日本a在线网址| 亚洲成人久久性| 校园春色视频在线观看| 女性生殖器流出的白浆| 国产精品99久久99久久久不卡| 精品国产一区二区久久| 精品国产美女av久久久久小说| 亚洲国产欧美网| 日韩大码丰满熟妇| 亚洲成人精品中文字幕电影| 精品国产乱子伦一区二区三区| 欧美成人性av电影在线观看| 午夜福利高清视频| 黄色丝袜av网址大全| 国产精品精品国产色婷婷| 日本黄色视频三级网站网址| 久久久久国产一级毛片高清牌| 在线天堂中文资源库| 曰老女人黄片| 亚洲欧美激情综合另类| 欧美黄色片欧美黄色片| 色婷婷久久久亚洲欧美| 18禁黄网站禁片午夜丰满| 两个人免费观看高清视频| 欧美日本视频| 久久午夜亚洲精品久久| 亚洲第一av免费看| 国产成人免费无遮挡视频| a级毛片在线看网站| 亚洲精品在线观看二区| 黄片播放在线免费| 性色av乱码一区二区三区2| 少妇粗大呻吟视频| 国内久久婷婷六月综合欲色啪| 国产精品精品国产色婷婷| 国产一级毛片七仙女欲春2 | 国产精品98久久久久久宅男小说| 日本撒尿小便嘘嘘汇集6| 岛国视频午夜一区免费看| 757午夜福利合集在线观看| 一进一出抽搐动态| 国产精品,欧美在线| 国产成+人综合+亚洲专区| 欧美人与性动交α欧美精品济南到| 国产高清激情床上av| 亚洲av成人一区二区三| 嫁个100分男人电影在线观看| 日本欧美视频一区| 成人精品一区二区免费| 在线观看午夜福利视频| 国产在线观看jvid| 男男h啪啪无遮挡| 午夜福利视频1000在线观看 | 国产精品一区二区免费欧美| 久久久久久国产a免费观看| 国产免费男女视频| 又大又爽又粗| 好男人电影高清在线观看| 中文字幕色久视频| 宅男免费午夜| 一级毛片精品| 欧美激情高清一区二区三区| 一二三四在线观看免费中文在| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人精品中文字幕电影| 亚洲第一电影网av| 国产亚洲欧美在线一区二区| 亚洲专区字幕在线| 日韩大码丰满熟妇| 波多野结衣高清无吗| 国产成人啪精品午夜网站| 日本精品一区二区三区蜜桃|