• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gender-based differences in cardiac diseases

    2011-12-23 03:56:52PeiChiYangColleenClancy
    THE JOURNAL OF BIOMEDICAL RESEARCH 2011年2期

    Pei-Chi Yang, Colleen E. Clancy

    Department of Pharmacology, University of California Davis. Davis, CA 96516-5270, USA.

    INTRODUCTION

    In the past decade, it has become increasingly clear that cardiac arrhythmia and heart failure (HF) have gender-based differences that increase or reduce disease susceptibility[1-3]. The mechanisms of arrhythmia initiation, sustenance and termination as well as HF presentation appear to be gender specific. Recent clinical and experimental studies suggest that these differences may stem in part from fundamental intrinsic gender differences in cardiac tissue[4-10]. These include intrinsic electrical differences resulting from variable ion channel expression and diverse sex hormonal regulations via long-term genomic and acute nongenomic pathways[6,11-14], though the exact role gender plays in cardiac diseases is not fully understood.

    GENDER-RELATED DIFFERENCES IN ELECTROPHYSIOLOGICAL REMODELING WITH HEART FAILURE

    In HF, the heart cannot supply an adequate amount of blood to the rest of body. Blood moves to the heart and body at a slower rate, and pressure increases in the heart. In order to sustain cardiac performance, the chambers of the heart stretch to hold more blood to pump through the body by becoming thickened and stiff. For a short period of time, this helps to maintain the blood pressure, but eventually leads to cardiac dysfunction[15,16].

    The common causes of HF include ischemic heart disease, cigarette smoking, hypertension, obesity, diabetes mellitus, and valvular heart disease. The causes of HF are difficult to analyze because of differences in gender, race and prevalence of causes changing with age. Clinical data confirm that HF is more common in patients older than 50 years[17]when testosterone levels are reduced. A number of studies have also found low levels of testosterone in HF patients[18], and have shown measurable short-term benefits from testosterone therapy[19,20]. However, no clear predictive role of testosterone levels has been defined. In addition, clinical trials have shown that the progression of HF is slower in women than in men, and females have improved survival in HF[21-25]. Compared to men, women tend to develop HF at older ages[26]. Interestingly, women are more likely to develop diastolic HF with normal left ventricular ejection fraction compared with men[39-41].

    Thus, although sex differences have been observed in HF, the underlying mechanisms are still not clear. There are a number of recent detailed reviews on ionchannel remodeling in HF[27-30]and gender differences in quality of life in HF patients[26,31,32]. Here, we focus on gender differences in some of the major channels and transporters during electrophysiological remod-eling.

    It is well known that HF causes cardiac functional changes. These changes make the heart prone to arrhythmias and diastolic and systolic contractile dysfunction. One of the important regulators of cardiac contractile function is phospholamban (PLB). During systole, PLB binds to a Ca2+pump and prevents Ca2+from being pumped back into the sarcoplasmic reticulum (SR). During muscle relaxation, PLB is in its phosphorylated state, which removes its inhibitory effect on the SR Ca2+-ATPase (SERCA) and restores low calcium levels in the cytoplasm[33]. In a gene expression study, PLB is found highly expressed in human failing hearts[34], and may be a mechanism of systolic contractile dysfunction[35]. Notably, in men, the expression levels of PLB are increased[36]. PLB has also been shown to be phosphorylated by cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase[37,38]. Calmodulin-3 has a lower expression level in men[36].

    The activity of the Na+/K+-ATPase via its interaction with the Na+/Ca2+exchanger (NCX) is important for maintaining Ca2+homeostasis in the heart. HF studies have found reduced expression of Na+/K+-ATPase-α1 in human failing heart tissue[34,42]. This may lead to decreasing Ca2+efflux by NCX, which increases cytoplasmic Ca2+concentration and causes development of Ca2+-dependent arrhythmias. In a gender difference study, it was discovered that men had reduced expression-levels of Na+/K+-ATPase-α1[36]. In addition, the plasma membrane Ca2+-ATPase isoform 4 was found to be less strongly expressed in HF mice[43]and in men[36].

    Other cardiac functional changes in HF include action potential duration (APD) prolongation, reduction of cell excitability[44], increased Na+/Ca2+exchange, preserved β-adrenergic responsiveness, and reduced outward K+currents (Itoor IK1), which may contribute to APD prolongation[45]. A HF study in porcine myocytes demonstrated that NCX is more phosphorylated in male pacing-induced failing swine and that β-adrenergic responsiveness was greatly reduced in males compared to females[46]. This study suggested that increased NCX activity could lead to impaired contractile function by decreasing SR Ca2+content and promote the development of arrhythmia triggers. Females may have better survival rates in HF because they have a smaller NCX current and larger preserved β-adrenergic regulation.

    In ischemic myocytes, high levels of intracellular Na+cause membrane potential changes that enhance Ca2+influx via NCX. This increased influx could lead to Ca2+“overload”. Various studies have been conducted to investigate the female gender in cardio-protection during ischemia and suggest a protective role of estrogen in hypertrophied and/or failing myocardium[47-51]. One recent study showed that acute effects of estrogen at physiological concentration (1 nmol/L) reduced the increase in [Na+]iduring metabolic inhibition (MI), and suggested that estrogen may regulate Ca2+influx through reverse NCX by lessening the magnitude of the rise in [Na+]iduring MI in ischemic hearts[47].

    BRUGADA SYNDROME AND MEN

    East Asia is an area of high prevalence of Brugada syndrome (BrS), and the male-female ratio of the clinical phenotype is 8:1[52,53]. BrS is a polymorphic ventricular tachycardia characterized by ST-segment elevation in the right precordial leads (V1-V3) and right bundle branch block. BrS has been linked to a number of mutations in the gene SCN5A encoding the cardiac Na+channel, all of which cause loss of channel function[54-60].

    Two hypotheses have been discussed recently — the "repolarization hypothesis" and "depolarization hypothesis". The repolarization hypothesis is based on evidence for transmural dispersion of repolarization between the canine right ventricle (RV) epicardium and endocardium[61]. Early repolarization due to loss of the AP-dome in the epicardium is expected to occur, which may induce phase 2-reentry and a substrate for the development of VT/VF[5,62,63].

    On the other hand, the depolarization hypothesis proposed by Wild and Postema suggests RV conduction delay as part of the pathophysiological mechanism of BrS that is supported by clinical data[64]. They propose that depolarization abnormalities with mild structural abnormalities[65]may explain the clinical observed repolarization abnormalities on the electrocardiogram (ECG). Antzelevitch et al[63]. agree that slowed conduction and mild structural defects exist in some BrS cases, especially in INaloss of function cases, but it is not absolutely required. They pointed out that noticeable accentuation of the epicardial AP notch can account for the ST segment elevation associated with BrS by causing loss of the AP dome in some cells and not others, leading to a dispersion of repolarization. Dispersion of repolarization might allow a premature beat to trigger reentrant arrhythmias[65].

    An ionic and cellular basis for the intriguing sexrelated distinction in presentation of BrS was first proposed by Di Diego and colleagues[4]. They suggested that a more prominent Itoin males leads to the predominance of Brugada phenotype in men. In a recent ion-channel expression-pattern study, Gaborit et al. found lower-level expression of repolarizing ionchannel subunits including KCHIP2, HERG, Kir2.3, Kir6.2 and SUR2 in females that may protect them against the Brugada phenotype (but also make them susceptible to long QT as discussed below). In male RV-epicardium, higher-level expression of the Itoβ-subunit KChIP2 has been observed. Larger male current may favor early repolarization in Brugada-patients[36]. However, no gender-differences were found in epicardial KChIP2-expression in human LV (Fig. 1). This finding is compatible with a canine model of sex-related differences conducted by Di Diego et al.[4], showing no sex differences on Itocurrent and epicardial phase-1 repolarization in LV.

    LONG QT SYNDROME AND WOMEN

    Female gender is a determinant of susceptibility to certain types of cardiac arrhythmia. For example, female sex is a risk factor for inherited and acquired long-QT (LQT) syndrome and associated with torsade de pointes (TdP) arrhythmias[9,12,66-69]. Various studies have shown that females have a higher risk of a first cardiac event between 15 and 40 years[70], and observed that women are at higher risk than men of drug-induced TdP by class Ⅲ anti-arrhythmic drugs and other drugs that block HERG[71-78]. Animal studies have shown higher-level inward currents in females[67,79,80]. These agree with a recent expression-pattern study, where the authors found lower expression-levels of K+channel α- (Kir2.3, Kv1.4 and HERG) and β- (minK) subunits in female heart[36]. The differences between male and female HERG were significant in RV only, while the sex differences on Kir2.3, Kv1.4 and minK were significant in both RV and LV (Fig. 2)[36].

    The fact that women are at particular risk for druginduced arrhythmias and that arrhythmia risk rises around the time of puberty, suggests the dominant female hormones estrogen and progesterone modulate arrhythmia vulnerability. While estrogen may exacerbate arrhythmia susceptibility[8,81]by directly interacting with the drug binding site on the promiscuous hERG subunit and reducing IKrcurrent and increasing the rate of channel deactivation[81], progesterone is apparently protective and reduces QT intervals[82]. Studies suggested that both progesterone and testosterone acutely modulate IKsand ICaLthrough phosphoinositide 3-kinase (PI3K)/AKT-dependent endothelial nitric oxide (NO) synthase (eNOS) activation pathway[11,82], resulting in suppressing ICaLcurrents and increasing IKscurrent density.

    Fig. 1 Expression-profile of KChIP2 and Iroquois transcription factors.

    Fig. 2 Expression-profile of gender-differential K+-channel genes.

    It has been recently suggested that the N-terminal truncated isoform of the androgen receptor (AR45) plays an essential role in the heart since the transcript level of the AR45 is high in human heart tissue. An experiment of AR45 effects on the HERG potassium channel demonstrated that AR45 enhanced HERG channels by stabilizing HERG channel protein via ERK1/2 stimulations[83]. Other studies also indicated that the male hormone testosterone (5a-DHT) increased repolarizing K+currents density (IK1and IKr) and acts to protect against arrhythmia initiation[11,74,78,84].

    Nakagawa et al.[85]have observed that during the follicular phase (prior to ovulation) of the menstrual cycle, QT interval is longer than that in the luteal phase (following ovulation) when progesterone is increased. Arrhythmic events associated with acquired and inherited LQTs are significantly reduced during phases where progesterone level is high[85]. Moreover, QT is significantly increased by estrogen hormone replacement therapy in females and susceptibility to drug-induced arrhythmias is exaggerated in the late follicular phase where estrogen level is the highest[85]. In contrast, Burke et al.[86]found that in pre-menopausal women the corrected QT (QTc) interval does not greatly change through the menstrual cycle, but QTc is reduced in the luteal phase after autonomic blockade. Furthermore, one study showed that QTc did not change during the menstrual cycle, but its shortening was more pronounced in the luteal phase with ibutilide application in women[87]. The disparity in these studies may be due to the fact that corrected QT interval measurements were based on a single point or a few points with the individual patient at rest. Such an analysis is unlikely to be sensitive enough to observe significant individual differences in QT intervals as they fluctuate throughout the menstrual cycle since biological variability between patients may be larger than fluctuations in individual patients.

    In addition, some drug studies demonstrated that females have greatly increased QT intervals compared with males during treatment with d,I-sotalol[73]and quinidine[88-90]. IKrblockers seem to increase early after depolarization (EAD) development and prolong repolarization in females, both primary and critical predictors of drug-induced TdP[91,92].

    SIMULATION APPROACH TO UNDERSTAND EFFECTS OF SEX STEROID HORMONES AND DRUGS

    It is challenging to determine the role of gender experimentally in complex cardiac functioning since gender effects are multi-factorial and affect cardiac components at different scales of the cardiac system. However, a computational approach can be useful in this respect as it allows study of specific effects in isolation without other perturbations to the system. For example, it is not easy to determine how much a role physiological concentrations of circulating sex steroid hormones play in gender linked arrhythmia susceptibility. Computational models can incorporate the effects of sex hormones measured experimentally and test these changes specifically from non-linear interactions within cells, between cells and among various tissue components that culminate to produce the overall effects of gender on the heart. In this case, simulations can be used to investigate how acute sex hormones and drugs affect system behavior[93]. The tissue simulations shown in Fig. 3 predict the effects of sex steroid hormones on clinically observed QT intervals and on drug-induced LQTS. Estrogen significantly increases susceptibility to drug-induced arrhythmias. However, low concentrations of testosterone are sufficient to protect against drug-induced arrhythmias (Fig. 3). Our simulation studies have resulted in improved understanding of mechanisms of estrogen-mediated susceptibility to drug-induced arrhythmia initiation[93]and protective effects of progesterone and testosterone against congenital and druginduced LQT syndrome[82,93]. Moreover, theoretical studies have revealed gender effects at the cellular and tissue-levels as well as predicted effects of sex steroid hormone on the body surface by computing "pseudo" electro-cardiograms[82,93].

    Fig. 3 2D heterogeneous tissue simulations during short-long-short pacing protocols.

    [1] Andelfinger G, Tapper AR, Welch RC, Vanoye CG, George AL Jr, Benson DW. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet 2002;71:663-8.

    [2] Arya A. Gender-related differences in ventricular repolarization: beyond gonadal steroids. J Cardiovasc Electrophysiol 2005;16:525-7.

    [3] Teplitz L, Igic R, Berbaum ML, Schwertz DW. Sex differences in susceptibility to epinephrine-induced arrhythmias. J Cardiovasc Pharmacol 2005;46:548-55.

    [4] Di Diego JM, Cordeiro JM, Goodrow RJ, Fish JM, Zygmunt AC, Perez GJ, et al. Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation 2002;106:2004-11.

    [5] Fish JM, Antzelevitch C. Cellular and ionic basis for the sex-related difference in the manifestation of the Brugada syndrome and progressive conduction disease phenotypes. J Electrocardiol 2003;36(Suppl):S173-9.

    [6] Xiao L, Zhang L, Han W, Wang Z, Nattel S. Sex-based transmural differences in cardiac repolarization and ionic-current properties in canine left ventricles. Am J Physiol Heart Circ Physiol 2006;291:H570-80.

    [7] Pham TV, Robinson RB, Danilo P, Jr., Rosen MR. Effects of gonadal steroids on gender-related differences in transmural dispersion of L-type calcium current. Cardiovasc Res 2002;53:752-62.

    [8] Hara M, Danilo P, Jr., Rosen MR. Effects of gonadal steroids on ventricular repolarization and on the response to E4031. J Pharmacol Exp Ther 1998;285:1068-72.

    [9] Pham TV, Rosen MR. Sex, hormones, and repolarization. Cardiovasc Res 2002;53:740-51.

    [10] Gowda RM, Khan IA, Punukollu G, Vasavada BC, Sacchi TJ, Wilbur SL. Female preponderance in ibutilideinduced torsade de pointes. Int J Cardiol 2004;95:219-22.

    [11] Bai CX, Kurokawa J, Tamagawa M, Nakaya H, Furukawa T. Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation 2005;112:1701-10.

    [12] Furukawa T, Kurokawa J. Regulation of cardiac ion channels via non-genomic action of sex steroid hormones: implication for the gender difference in cardiac arrhythmias. Pharmacol Ther 2007;115:106-15.

    [13] Korte T, Fuchs M, Arkudas A, Geertz S, Meyer R, Gardiwal A, et al. Female mice lacking estrogen receptor beta display prolonged ventricular repolarization and reduced ventricular automaticity after myocardial infarction. Circulation 2005;111:2282-90.

    [14] Nakagawa M, Ooie T, Ou B, Ichinose M, Takahashi N, Hara M, et al. Gender differences in autonomic modulation of ventricular repolarization in humans. J Cardiovasc Electrophysiol 2005;16:278-84.

    [15] What is heart failure? [cited 2010 Sep. 20]; Available from: http://www.americanheart.org/print_presenter.jhtml?identifier=337

    [16] Definition of Heart failure. June 18, 2002 [cited 2010 Sep. 20]; Available from: http://www.medterms.com/script/main/art.asp?articlekey=3672

    [17] Heart Disease and Stroke Statistics -- 2010 Update. [cited 2010 Oct. 22]; Available from: http://americanheart.org/presenter.jhtml?identifier=3000090

    [18] Theodoraki A, Bouloux PM. Low sex hormones in heart failure. Heart 2010;96:496-7.

    [19] Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS. Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J 2006;27:57-64.

    [20] Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol 2009;54:919-27.

    [21] Adams KF, Jr., Sueta CA, Gheorghiade M, O'Connor CM, Schwartz TA, Koch GG, et al. Gender differences in survival in advanced heart failure. Insights from the FIRST study. Circulation 1999;99:1816-21.

    [22] Ho KK, Anderson KM, Kannel WB, Grossman W, Levy D. Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 1993;88: 107-15.

    [23] Adams KF Jr, Dunlap SH, Sueta CA, Clarke SW, Patterson JH, Blauwet MB, et al. Relation between gender, etiology and survival in patients with symptomatic heart failure. J Am Coll Cardiol 1996;28:1781-8.

    [24] Croft JB, Giles WH, Pollard RA, Keenan NL, Casper ML, Anda RF. Heart failure survival among older adults in the United States: a poor prognosis for an emerging epidemic in the Medicare population. Arch Intern Med 1999;159:505-10.

    [25] Simon T, Mary-Krause M, Funck-Brentano C, Jaillon P. Sex differences in the prognosis of congestive heart failure: results from the Cardiac Insufficiency Bisoprolol Study (CIBIS II). Circulation 2001;103:375-80.

    [26] Stromberg A, Martensson J. Gender differences in patients with heart failure. Eur J Cardiovasc Nurs 2003;2: 7-18.

    [27] Wang Y, Hill JA. Electrophysiological remodeling in heart failure. J Mol Cell Cardiol 2010;48:619-32.

    [28] Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res 2004;95:754-63.

    [29] Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 2007;87:425-56.

    [30] Nass RD, Aiba T, Tomaselli GF, Akar FG. Mechanisms of disease: ion channel remodeling in the failing ventricle. Nat Clin Pract Cardiovasc Med 2008;5:196-207.

    [31] Heo S, Moser DK, Widener J. Gender differences in the effects of physical and emotional symptoms on healthrelated quality of life in patients with heart failure. Eur J Cardiovasc Nurs 2007;6:146-52.

    [32] Riedinger MS, Dracup KA, Brecht ML, Padilla G, Sarna L, Ganz PA. Quality of life in patients with heart failure: do gender differences exist? Heart Lung 2001;30:105-16.

    [33] Frank K, Kranias EG. Phospholamban and cardiac contractility. Ann Med 2000;32:572-8.

    [34] Borlak J, Thum T. Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J 2003;17: 1592-608.

    [35] Freeman K, Lerman I, Kranias EG, Bohlmeyer T, Bristow MR, Lefkowitz RJ, et al. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J Clin Invest 2001;107:967-74.

    [36] Gaborit N, Varro A, Le Bouter S, Szuts V, Escande D, Nattel S, et al. Gender-related differences in ion-channel and transporter subunit expression in non-diseased human hearts. J Mol Cell Cardiol 2010;49:639-46.

    [37] Yang D, Song LS, Zhu WZ, Chakir K, Wang W, Wu C, et al. Calmodulin regulation of excitation-contraction coupling in cardiac myocytes. Circ Res 2003;92:659-67.

    [38] Lindemann JP, Watanabe AM. Phosphorylation of phospholamban in intact myocardium. Role of Ca2+-calmodulin-dependent mechanisms. J Biol Chem 1985;260: 4516-25.

    [39] Redfield MM, Jacobsen SJ, Burnett JC, Jr., Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 2003;289:194-202.

    [40] Vasan RS, Larson MG, Benjamin EJ, Evans JC, Reiss CK, Levy D. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J Am Coll Cardiol 1999;33:1948-55.

    [42] Schwinger RH, Wang J, Frank K, Muller-Ehmsen J, Brixius K, McDonough AA, et al. Reduced sodium pump alpha1, alpha3, and beta1-isoform protein levels and Na+,K+-ATPase activity but unchanged Na+-Ca2+ exchanger protein levels in human heart failure. Circulation 1999;99:2105-12.

    [43] Wu X, Chang B, Blair NS, Sargent M, York AJ, Robbins J, et al. Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. J Clin Invest 2009;119: 976-85.

    [41] Masoudi FA, Havranek EP, Smith G, Fish RH, Steiner JF, Ordin DL, et al. Gender, age, and heart failure with preserved left ventricular systolic function. J Am Coll Cardiol 2003;41:217-23.

    [44] Vermeulen JT. Mechanisms of arrhythmias in heart failure. J Cardiovasc Electrophysiol 1998;9:208-21.

    [46] Wei SK, McCurley JM, Hanlon SU, Haigney MC. Gender differences in Na/Ca exchanger current and betaadrenergic responsiveness in heart failure in pig myocytes. Ann N Y Acad Sci 2007;1099:183-9.

    [45] Pogwizd SM, Bers DM. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 2004; 14:61-6.

    [47] Sugishita K, Su Z, Li F, Philipson KD, Barry WH. Gender influences [Ca(2+)](i) during metabolic inhibition in myocytes overexpressing the Na(+)-Ca(2+) exchanger. Circulation 2001;104:2101-6.

    [49] Jovanovic S, Jovanovic A, Shen WK, Terzic A. Low concentrations of 17beta-estradiol protect single cardiac cells against metabolic stress-induced Ca2+ loading. J Am Coll Cardiol 2000;36:948-52.

    [48] Cross HR, Lu L, Steenbergen C, Philipson KD, Murphy E. Overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ischemia/reperfusion injury in male, but not female, transgenic mice. Circ Res 1998;83: 1215-23.

    [50] Fraser H, Davidge ST, Clanachan AS. Enhancement of post-ischemic myocardial function by chronic 17 beta -estradiol treatment: role of alterations in glucose metabolism. J Mol Cell Cardiol 1999;31:1539-49.

    [51] Keller JN, Germeyer A, Begley JG, Mattson MP. 17Beta-estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport, and glutamate transport induced by amyloid beta-peptide and iron. J Neurosci Res 1997;50:522-30.

    [52] Sarkozy A, Brugada P. Sudden cardiac death and inherited arrhythmia syndromes. J Cardiovasc Electrophysiol 2005;16 (Suppl 1):S8-20.

    [53] Wilde AA, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, et al. Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 2002;106:2514-9.

    [54] Clancy CE, Rudy Y. Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 2002;105: 1208-13.

    [55] Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C, et al. Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest 2002;110:1201-9.

    [56] Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003;112:1019-28.

    [57] Bennett PB, Yazawa K, Makita N, George AL, Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995;376:683-5.

    [58] Tan HL, Bink-Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort-Krol GC, van Tintelen PJ, et al. A sodiumchannel mutation causes isolated cardiac conduction disease. Nature 2001;409:1043-7.

    [59] Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AA, Balser JR. Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ Res 2000;86:E91-7.

    [60] Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998; 392:293-6.

    [61] Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 1999; 100:1660-6.

    [62] Antzelevitch C, Brugada P, Brugada J, Brugada R, Shimizu W, Gussak I, et al. Brugada syndrome: a decade of progress. Circ Res 2002;91:1114-8.

    [63] Antzelevitch C, Brugada P, Brugada J, Brugada R, Towbin JA, Nademanee K. Brugada syndrome: 1992-2002: a historical perspective. J Am Coll Cardiol 2003;41:1665-71.

    [64] Wilde AA, Postema PG, Di Diego JM, Viskin S, Morita H, Fish JM, et al. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J Mol Cell Cardiol 2010;49:543-53.

    [65] Meregalli PG, Wilde AA, Tan HL. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more? Cardiovasc Res 2005;67:367-78.

    [66] Abi-Gerges N, Philp K, Pollard C, Wakefield I, Hammond TG, Valentin JP. Sex differences in ventricular repolarization: from cardiac electrophysiology to Torsades de Pointes. Fundam Clin Pharmacol 2004;18:139-51.

    [67] James AF, Choisy SC, Hancox JC. Recent advances in understanding sex differences in cardiac repolarization. Prog Biophys Mol Biol 2007;94:265-319.

    [70] Locati EH, Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Lehmann MH, et al. Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: findings from the International LQTS Registry. Circulation 1998;97:2237-44.

    [69] Stramba-Badiale M, Spagnolo D, Bosi G, Schwartz PJ. Are gender differences in QTc present at birth? MISNES Investigators. Multicenter Italian Study on Neonatal Electrocardiography and Sudden Infant Death Syndrome. Am J Cardiol 1995;75:1277-8.

    [71] Drici MD, Knollmann BC, Wang WX, Woosley RL. Cardiac actions of erythromycin: influence of female sex. JAMA 1998;280:1774-6.

    [68] Rautaharju PM, Zhou SH, Wong S, Calhoun HP, Berenson GS, Prineas R, et al. Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol 1992;8:690-5.

    [72] Makkar RR, Fromm BS, Steinman RT, Meissner MD, Lehmann MH. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 1993;270:2590-7.

    [73] Lehmann MH, Hardy S, Archibald D, quart B, MacNeil DJ. Sex difference in risk of torsade de pointes with d,lsotalol. Circulation 1996;94:2535-41.

    [74] Pham TV, Sosunov EA, Gainullin RZ, Danilo P, Jr., Rosen MR. Impact of sex and gonadal steroids on prolongation of ventricular repolarization and arrhythmias induced by I(K)-blocking drugs. Circulation 2001; 103:2207-12.

    [75] Ruan YF, Liu N, Zhou Q, Li Y, Wang L. Experimental study on the mechanism of sex difference in the risk of torsade de pointes. Chin Med J (Engl) 2004;117:538-41.

    [76] Spear JF, Moore EN. Gender and seasonally related differences in myocardial recovery and susceptibility to sotalol-induced arrhythmias in isolated rabbit hearts. J Cardiovasc Electrophysiol 2000;11:880-7.

    [77] Liu XK, Wang W, Ebert SN, Franz MR, Katchman A, Woosley RL. Female gender is a risk factor for torsades de pointes in an in vitro animal model. J Cardiovasc Pharmacol 1999;34:287-94.

    [79] Liu XK, Katchman A, Drici MD, Ebert SN, Ducic I, Morad M, et al. Gender difference in the cycle lengthdependent QT and potassium currents in rabbits. J Pharmacol Exp Ther 1998;285:672-9.

    [78] Pham TV, Sosunov EA, Anyukhovsky EP, Danilo P, Jr., Rosen MR. Testosterone diminishes the proarrhythmic effects of dofetilide in normal female rabbits. Circulation 2002;106:2132-6.

    [80] James AF, Arberry LA, Hancox JC. Gender-related differences in ventricular myocyte repolarization in the guinea pig. Basic Res Cardiol 2004;99:183-92.

    [81] Kurokawa J, Tamagawa M, Harada N, Honda SI, Bai CX, Nakaya H, et al. Acute effects of estrogen on the guinea pig and human IKr channels and drug-induced prolongation of cardiac repolarization. J Physiol 2008; 586(Pt12):2961-73.

    [82] Nakamura H, Kurokawa J, Bai CX, Asada K, Xu J, Oren RV, et al. Progesterone regulates cardiac repolarization through a nongenomic pathway: an in vitro patch-clamp and computational modeling study. Circulation 2007; 116:2913-22.

    [83] Wu ZY, Chen K, Haendler B, McDonald TV, Bian JS. Stimulation of N-terminal truncated isoform of androgen receptor stabilizes human ether-a-go-go-related geneencoded potassium channel protein via activation of extracellular signal regulated kinase 1/2. Endocrinology 2008;149:5061-9.

    [84] Liu XK, Katchman A, Whitfield BH, Wan G, Janowski EM, Woosley RL, et al. In vivo androgen treatment shortens the QT interval and increases the densities of inward and delayed rectifier potassium currents in orchiectomized male rabbits. Cardiovasc Res 2003;57:28-36.

    [85] Nakagawa M, Ooie T, Takahashi N, Taniguchi Y, Anan F, Yonemochi H, et al. Influence of menstrual cycle on QT interval dynamics. Pacing Clin Electrophysiol 2006; 29:607-13.

    [86] Burke JH, Ehlert FA, Kruse JT, Parker MA, Goldberger JJ, Kadish AH. Gender-specific differences in the QT interval and the effect of autonomic tone and menstrual cycle in healthy adults. Am J Cardiol 1997;79:178-81.

    [87] Rodriguez I, Kilborn MJ, Liu XK, Pezzullo JC, Woosley RL. Drug-induced QT prolongation in women during the menstrual cycle. JAMA 2001;285:1322-6.

    [88] Benton RE, Sale M, Flockhart DA, Woosley RL. Greater quinidine-induced QTc interval prolongation in women. Clin Pharmacol Ther 2000;67:413-8.

    [89] Ebert SN, Liu XK, Woosley RL. Female gender as a risk factor for drug-induced cardiac arrhythmias: evaluation of clinical and experimental evidence. J Womens Health 1998;7:547-57.

    [90] El-Eraky H, Thomas SH. Effects of sex on the pharmacokinetic and pharmacodynamic properties of quinidine. Br J Clin Pharmacol 2003;56:198-204.

    [91] el-Sherif N, Zeiler RH, Craelius W, Gough WB, Henkin R. QTU prolongation and polymorphic ventricular tachyarrhythmias due to bradycardia-dependent early afterdepolarizations. Afterdepolarizations and ventricular arrhythmias. Circ Res 1988;63:286-305.

    [92] Roden DM. Early after-depolarizations and torsade de pointes: implications for the control of cardiac arrhythmias by prolonging repolarization. Eur Heart J 1993;14 (Suppl H):56-61.

    [93] Yang PC, Kurokawa J, Furukawa T, Clancy CE. Acute effects of sex steroid hormones on susceptibility to cardiac arrhythmias: a simulation study. PLoS Comput Biol 2010;6:e1000658. doI:10.1371/fournal.pcbi-1000658.

    亚洲人成网站高清观看| 九九在线视频观看精品| 无遮挡黄片免费观看| 久久久久久久久久黄片| 久久天躁狠狠躁夜夜2o2o| 日本黄色片子视频| 日日摸夜夜添夜夜添av毛片 | 男女边吃奶边做爰视频| 成人性生交大片免费视频hd| av专区在线播放| 成年女人看的毛片在线观看| 五月玫瑰六月丁香| 最近在线观看免费完整版| 久久久久精品国产欧美久久久| 久久久久国产精品人妻aⅴ院| 欧美日本亚洲视频在线播放| 久久久久久大精品| 欧美色欧美亚洲另类二区| 99热精品在线国产| 日本免费一区二区三区高清不卡| a级毛片a级免费在线| 成人性生交大片免费视频hd| 窝窝影院91人妻| 永久网站在线| 五月玫瑰六月丁香| 亚洲欧美日韩高清专用| 久久人妻av系列| 一个人看的www免费观看视频| 波野结衣二区三区在线| 日韩精品有码人妻一区| a级毛片免费高清观看在线播放| 久久6这里有精品| 成年女人毛片免费观看观看9| 久久久久免费精品人妻一区二区| 深夜a级毛片| 欧美性感艳星| 97超级碰碰碰精品色视频在线观看| 看片在线看免费视频| 三级国产精品欧美在线观看| 亚洲av日韩精品久久久久久密| 亚洲国产色片| 18+在线观看网站| 中文字幕av成人在线电影| 亚洲熟妇中文字幕五十中出| 无人区码免费观看不卡| 国产伦一二天堂av在线观看| 一a级毛片在线观看| 日本爱情动作片www.在线观看 | 看片在线看免费视频| 91久久精品电影网| 国产一区二区亚洲精品在线观看| aaaaa片日本免费| 亚洲精华国产精华液的使用体验 | 成年女人看的毛片在线观看| 久久精品综合一区二区三区| 久久久国产成人精品二区| 国产精品不卡视频一区二区| 男女下面进入的视频免费午夜| 久久6这里有精品| 亚洲avbb在线观看| 免费av不卡在线播放| 男女做爰动态图高潮gif福利片| 亚洲黑人精品在线| 国产在线精品亚洲第一网站| 大型黄色视频在线免费观看| 我要搜黄色片| 国产单亲对白刺激| 国产精品98久久久久久宅男小说| 亚洲av免费在线观看| 美女cb高潮喷水在线观看| 老女人水多毛片| av.在线天堂| 国产精品国产三级国产av玫瑰| 给我免费播放毛片高清在线观看| 中文字幕av在线有码专区| 此物有八面人人有两片| а√天堂www在线а√下载| 久久久国产成人精品二区| 国产精品乱码一区二三区的特点| 他把我摸到了高潮在线观看| 麻豆成人午夜福利视频| 尾随美女入室| 搡女人真爽免费视频火全软件 | 亚洲国产色片| 中文字幕av在线有码专区| 午夜免费成人在线视频| 一个人观看的视频www高清免费观看| 中文字幕免费在线视频6| 国产精品国产高清国产av| 少妇丰满av| 日本 欧美在线| 国产在视频线在精品| 日韩中文字幕欧美一区二区| 天堂√8在线中文| 在线免费十八禁| 看黄色毛片网站| 亚洲精品在线观看二区| 少妇猛男粗大的猛烈进出视频 | 精品日产1卡2卡| 网址你懂的国产日韩在线| 男女做爰动态图高潮gif福利片| 日韩欧美精品免费久久| 天堂av国产一区二区熟女人妻| 亚洲av中文av极速乱 | 三级男女做爰猛烈吃奶摸视频| 久久久成人免费电影| 亚洲五月天丁香| 级片在线观看| 欧美又色又爽又黄视频| 日本免费a在线| 不卡视频在线观看欧美| 九九久久精品国产亚洲av麻豆| 一边摸一边抽搐一进一小说| 免费一级毛片在线播放高清视频| 婷婷色综合大香蕉| 久久国内精品自在自线图片| 欧美日本视频| 精品一区二区免费观看| bbb黄色大片| 日日摸夜夜添夜夜添av毛片 | 国产在线精品亚洲第一网站| 嫩草影视91久久| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久久免| 在线天堂最新版资源| 少妇的逼好多水| 很黄的视频免费| 国产精品99久久久久久久久| 国产91精品成人一区二区三区| 亚洲av免费高清在线观看| 美女被艹到高潮喷水动态| 2021天堂中文幕一二区在线观| 午夜亚洲福利在线播放| 午夜久久久久精精品| 色哟哟哟哟哟哟| 欧美日韩中文字幕国产精品一区二区三区| 人妻久久中文字幕网| 亚洲经典国产精华液单| 久久久久久久午夜电影| 亚洲美女搞黄在线观看 | 欧美黑人欧美精品刺激| 很黄的视频免费| 黄色一级大片看看| 少妇的逼好多水| 欧美丝袜亚洲另类 | 在现免费观看毛片| 亚洲无线观看免费| 99热只有精品国产| 免费看av在线观看网站| 国产精品亚洲一级av第二区| 九九热线精品视视频播放| 久久精品国产亚洲网站| 一区二区三区激情视频| 我要搜黄色片| 联通29元200g的流量卡| 黄片wwwwww| 男人的好看免费观看在线视频| 日日摸夜夜添夜夜添小说| 色在线成人网| 国产欧美日韩一区二区精品| 免费看光身美女| 日韩精品有码人妻一区| 美女 人体艺术 gogo| 黄色配什么色好看| 在线免费观看的www视频| 久99久视频精品免费| 伊人久久精品亚洲午夜| 亚洲av成人av| 亚洲人成网站在线播| 国产高清不卡午夜福利| 嫩草影院精品99| 99热这里只有精品一区| 欧美又色又爽又黄视频| 男插女下体视频免费在线播放| 国产激情偷乱视频一区二区| 黄色女人牲交| 国产成人aa在线观看| 国产精品乱码一区二三区的特点| 亚洲内射少妇av| 干丝袜人妻中文字幕| 欧美最新免费一区二区三区| 亚洲无线在线观看| 国产在视频线在精品| 97碰自拍视频| 俺也久久电影网| 色综合婷婷激情| 午夜福利欧美成人| 国产成人av教育| 国内精品一区二区在线观看| 国产国拍精品亚洲av在线观看| 色视频www国产| 国产精品1区2区在线观看.| 变态另类丝袜制服| 欧美国产日韩亚洲一区| 午夜影院日韩av| 欧美xxxx黑人xx丫x性爽| 成人欧美大片| 丰满的人妻完整版| 久久精品国产99精品国产亚洲性色| 欧美区成人在线视频| 嫩草影院精品99| 午夜久久久久精精品| 午夜免费成人在线视频| 99在线视频只有这里精品首页| 国产精品亚洲美女久久久| 久久中文看片网| 亚洲成人久久爱视频| h日本视频在线播放| 成人特级av手机在线观看| 国产久久久一区二区三区| 久久热精品热| 男插女下体视频免费在线播放| 欧美日韩国产亚洲二区| 麻豆国产97在线/欧美| 亚洲欧美精品综合久久99| 永久网站在线| 国产精品久久视频播放| 中文字幕高清在线视频| 国产高清视频在线观看网站| 亚洲男人的天堂狠狠| 一区二区三区高清视频在线| 午夜老司机福利剧场| 亚洲无线观看免费| 免费高清视频大片| 精品久久久久久久久久久久久| 99国产极品粉嫩在线观看| 一区二区三区免费毛片| 免费av观看视频| 日日撸夜夜添| 啦啦啦啦在线视频资源| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| 亚洲欧美日韩东京热| 99在线人妻在线中文字幕| 亚洲av电影不卡..在线观看| 日本五十路高清| 久久久久九九精品影院| 国产白丝娇喘喷水9色精品| 男女边吃奶边做爰视频| 午夜精品一区二区三区免费看| 亚洲国产精品sss在线观看| 在现免费观看毛片| 国产视频一区二区在线看| 亚洲性夜色夜夜综合| 十八禁国产超污无遮挡网站| 热99在线观看视频| 女人被狂操c到高潮| 国产一级毛片七仙女欲春2| 一个人免费在线观看电影| 天堂网av新在线| eeuss影院久久| 一进一出抽搐动态| 国产精品一区二区性色av| 久久久久久久精品吃奶| 国产探花极品一区二区| av在线天堂中文字幕| 久久国产精品人妻蜜桃| 搡女人真爽免费视频火全软件 | 尤物成人国产欧美一区二区三区| 少妇被粗大猛烈的视频| 久久久国产成人精品二区| 国产精品综合久久久久久久免费| 春色校园在线视频观看| 欧美最新免费一区二区三区| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 床上黄色一级片| 别揉我奶头 嗯啊视频| 欧美日韩国产亚洲二区| a级毛片免费高清观看在线播放| 老师上课跳d突然被开到最大视频| 又粗又爽又猛毛片免费看| 日韩欧美精品免费久久| 波野结衣二区三区在线| 免费人成视频x8x8入口观看| 欧美精品啪啪一区二区三区| 我要搜黄色片| 91狼人影院| 亚洲熟妇熟女久久| 成人美女网站在线观看视频| 他把我摸到了高潮在线观看| 亚洲精品乱码久久久v下载方式| av天堂在线播放| 久9热在线精品视频| 一个人看的www免费观看视频| 99九九线精品视频在线观看视频| 看片在线看免费视频| 久久久久久久久久黄片| 观看免费一级毛片| www.色视频.com| 蜜桃亚洲精品一区二区三区| 国产精品福利在线免费观看| 精品无人区乱码1区二区| 动漫黄色视频在线观看| 日韩高清综合在线| 一个人看的www免费观看视频| 日本免费a在线| 色综合婷婷激情| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 国产91精品成人一区二区三区| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 啦啦啦啦在线视频资源| 国产午夜精品久久久久久一区二区三区 | 中文字幕熟女人妻在线| 国产精品野战在线观看| 国产av不卡久久| 国产 一区 欧美 日韩| 一区福利在线观看| 国产单亲对白刺激| 国产 一区精品| x7x7x7水蜜桃| 亚洲精品亚洲一区二区| 午夜激情福利司机影院| 91午夜精品亚洲一区二区三区 | 少妇人妻一区二区三区视频| 美女高潮的动态| 此物有八面人人有两片| 免费在线观看成人毛片| 午夜免费成人在线视频| 欧美色欧美亚洲另类二区| 在线观看av片永久免费下载| 乱系列少妇在线播放| 人妻夜夜爽99麻豆av| 国产成人影院久久av| 看十八女毛片水多多多| 成年女人永久免费观看视频| 久久精品国产亚洲av天美| 国产黄a三级三级三级人| 极品教师在线视频| 悠悠久久av| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 精品一区二区三区人妻视频| 欧美在线一区亚洲| 国产激情偷乱视频一区二区| 色噜噜av男人的天堂激情| www.www免费av| 色综合婷婷激情| 黄色女人牲交| 国产精品美女特级片免费视频播放器| 日韩国内少妇激情av| 久久久久久国产a免费观看| 午夜福利成人在线免费观看| 不卡一级毛片| 欧美日韩乱码在线| 欧美高清性xxxxhd video| 欧美日本亚洲视频在线播放| 日本欧美国产在线视频| 伊人久久精品亚洲午夜| 琪琪午夜伦伦电影理论片6080| 国内久久婷婷六月综合欲色啪| 成人av一区二区三区在线看| 国产精品精品国产色婷婷| 成年女人毛片免费观看观看9| 亚洲中文字幕日韩| 久久久精品欧美日韩精品| 欧美另类亚洲清纯唯美| 亚洲av中文av极速乱 | 男女那种视频在线观看| 2021天堂中文幕一二区在线观| 99riav亚洲国产免费| 欧美日本视频| 国产精品一及| 无人区码免费观看不卡| 国产精品亚洲一级av第二区| 国内毛片毛片毛片毛片毛片| 成人美女网站在线观看视频| 国产精品无大码| 毛片女人毛片| 欧美+日韩+精品| 88av欧美| 久久草成人影院| 国产爱豆传媒在线观看| 亚洲av第一区精品v没综合| 久久国产精品人妻蜜桃| 亚洲欧美日韩无卡精品| 日韩亚洲欧美综合| 伦理电影大哥的女人| 国产精品三级大全| 亚洲久久久久久中文字幕| 久久热精品热| 在线观看午夜福利视频| 国产伦在线观看视频一区| 免费高清视频大片| 午夜福利成人在线免费观看| 国产爱豆传媒在线观看| 欧美成人一区二区免费高清观看| netflix在线观看网站| 高清日韩中文字幕在线| 51国产日韩欧美| 变态另类成人亚洲欧美熟女| a级毛片免费高清观看在线播放| 国产 一区 欧美 日韩| 精品久久久久久久久亚洲 | 又粗又爽又猛毛片免费看| 日韩欧美精品免费久久| 特级一级黄色大片| 欧美黑人欧美精品刺激| 亚洲久久久久久中文字幕| 午夜福利在线在线| 久久久色成人| 国产乱人伦免费视频| 99九九线精品视频在线观看视频| 亚洲在线自拍视频| 日韩中字成人| 可以在线观看的亚洲视频| 99视频精品全部免费 在线| 欧美成人性av电影在线观看| 看片在线看免费视频| 在线免费观看的www视频| 午夜福利成人在线免费观看| 午夜福利在线在线| 99在线视频只有这里精品首页| .国产精品久久| 狠狠狠狠99中文字幕| 中文字幕高清在线视频| 美女黄网站色视频| 如何舔出高潮| 亚洲av中文av极速乱 | 人妻夜夜爽99麻豆av| 日韩高清综合在线| 欧美激情国产日韩精品一区| 亚洲精品国产成人久久av| 午夜精品一区二区三区免费看| 男女做爰动态图高潮gif福利片| 亚洲一区高清亚洲精品| 日本免费一区二区三区高清不卡| 日韩高清综合在线| 国产亚洲欧美98| 三级国产精品欧美在线观看| а√天堂www在线а√下载| 天堂av国产一区二区熟女人妻| 五月玫瑰六月丁香| 精品久久久久久成人av| 一级a爱片免费观看的视频| 51国产日韩欧美| 国产高潮美女av| 亚洲va在线va天堂va国产| 老熟妇乱子伦视频在线观看| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添小说| 国产男人的电影天堂91| 级片在线观看| 草草在线视频免费看| 蜜桃亚洲精品一区二区三区| 国产三级在线视频| 免费在线观看成人毛片| 免费看a级黄色片| av国产免费在线观看| 深夜精品福利| 中文字幕免费在线视频6| 无遮挡黄片免费观看| 精品人妻熟女av久视频| 999久久久精品免费观看国产| 亚洲精品影视一区二区三区av| 亚洲无线观看免费| 国产一区二区在线av高清观看| 国产又黄又爽又无遮挡在线| 一a级毛片在线观看| 国产单亲对白刺激| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 国产精品一区二区三区四区免费观看 | 国产精品98久久久久久宅男小说| 亚洲av一区综合| 成人一区二区视频在线观看| 久久久久久伊人网av| 极品教师在线视频| 精品人妻偷拍中文字幕| 久久国内精品自在自线图片| 91狼人影院| 精华霜和精华液先用哪个| 美女cb高潮喷水在线观看| 免费看光身美女| 高清日韩中文字幕在线| 啦啦啦啦在线视频资源| 亚洲乱码一区二区免费版| 亚洲成人久久爱视频| 国产女主播在线喷水免费视频网站 | 国产成人一区二区在线| 国产黄a三级三级三级人| 国产又黄又爽又无遮挡在线| 亚洲成人中文字幕在线播放| 99在线视频只有这里精品首页| 欧美最新免费一区二区三区| 成人午夜高清在线视频| 中文资源天堂在线| 国产成人福利小说| 日韩大尺度精品在线看网址| 在线免费观看的www视频| 国产精品久久电影中文字幕| 精品久久久久久久久亚洲 | 悠悠久久av| 欧美黑人巨大hd| 精品福利观看| 国产伦人伦偷精品视频| 色综合婷婷激情| 国产精品,欧美在线| 欧美3d第一页| 波多野结衣高清无吗| 亚洲人成伊人成综合网2020| 97碰自拍视频| 国产视频内射| 色哟哟哟哟哟哟| 一本一本综合久久| 在线观看66精品国产| videossex国产| 亚洲av中文av极速乱 | 日本黄大片高清| 亚洲四区av| 国产精品久久久久久久电影| 亚洲欧美清纯卡通| 国产精品国产高清国产av| 免费观看人在逋| 91狼人影院| 免费大片18禁| 国产亚洲精品av在线| 久久久精品欧美日韩精品| 国产在线男女| 亚洲内射少妇av| 可以在线观看毛片的网站| 国产亚洲91精品色在线| 国产在线精品亚洲第一网站| 久久久久久久久久黄片| 十八禁国产超污无遮挡网站| 免费电影在线观看免费观看| 国产aⅴ精品一区二区三区波| 99久久精品热视频| 久久久久精品国产欧美久久久| 国产蜜桃级精品一区二区三区| 蜜桃久久精品国产亚洲av| 欧美日韩精品成人综合77777| 极品教师在线视频| 午夜福利18| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲 | 老熟妇仑乱视频hdxx| 日韩欧美精品免费久久| 亚洲中文字幕一区二区三区有码在线看| 桃红色精品国产亚洲av| 久久精品91蜜桃| 午夜免费激情av| 午夜福利在线观看免费完整高清在 | 国产高清三级在线| 亚洲自偷自拍三级| 国产色爽女视频免费观看| 亚洲一级一片aⅴ在线观看| 午夜久久久久精精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲乱码一区二区免费版| 国产精品一区www在线观看 | 在线免费十八禁| 1000部很黄的大片| 久久国内精品自在自线图片| 亚洲一区二区三区色噜噜| 桃红色精品国产亚洲av| 久久精品91蜜桃| 成人av在线播放网站| 97碰自拍视频| 夜夜夜夜夜久久久久| 久久人人精品亚洲av| 色av中文字幕| 精华霜和精华液先用哪个| 蜜桃久久精品国产亚洲av| 高清日韩中文字幕在线| 老师上课跳d突然被开到最大视频| 在线免费观看的www视频| 大又大粗又爽又黄少妇毛片口| 哪里可以看免费的av片| 精品久久久久久久人妻蜜臀av| 综合色av麻豆| 国产伦一二天堂av在线观看| 日日干狠狠操夜夜爽| 亚洲av五月六月丁香网| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 免费不卡的大黄色大毛片视频在线观看 | 国产三级中文精品| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av在线| 蜜桃亚洲精品一区二区三区| 国产不卡一卡二| 成熟少妇高潮喷水视频| 日日撸夜夜添| 啦啦啦韩国在线观看视频| 淫秽高清视频在线观看| 国产精品亚洲美女久久久| 亚洲av熟女| 国产老妇女一区| 美女xxoo啪啪120秒动态图| 人妻制服诱惑在线中文字幕| 性色avwww在线观看| 又粗又爽又猛毛片免费看| 99久国产av精品| 色综合亚洲欧美另类图片| 美女被艹到高潮喷水动态| 18禁在线播放成人免费| 国产精品国产高清国产av| 亚洲精品久久国产高清桃花| 麻豆久久精品国产亚洲av| 国产69精品久久久久777片| 国产高清激情床上av| 国内精品久久久久精免费| 国产一区二区亚洲精品在线观看| 亚洲,欧美,日韩| 国产成人影院久久av| 免费在线观看影片大全网站| 两人在一起打扑克的视频| avwww免费| 啦啦啦观看免费观看视频高清| 极品教师在线免费播放| 中文资源天堂在线| 亚洲精品影视一区二区三区av|