• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鎳摻雜花狀納米碳片的制備及其在超級電容器中的應(yīng)用

    2011-11-10 01:00:46易觀貴謝春林莫珊珊賀文啟率劉應(yīng)亮袁定勝黃浪歡譚紹早
    關(guān)鍵詞:花狀電容器納米

    易觀貴 肖 勇 謝春林 莫珊珊 賀文啟 趙 率劉應(yīng)亮 袁定勝 黃浪歡 譚紹早

    (暨南大學(xué)化學(xué)系,納米化學(xué)研究所,廣州 510632)

    鎳摻雜花狀納米碳片的制備及其在超級電容器中的應(yīng)用

    易觀貴 肖 勇 謝春林 莫珊珊 賀文啟 趙 率劉應(yīng)亮*袁定勝 黃浪歡 譚紹早

    (暨南大學(xué)化學(xué)系,納米化學(xué)研究所,廣州 510632)

    本文通過溶劑熱法“一鍋”制備了鎳摻雜的花狀納米碳片(Ni/FCNAs)。借助X射線衍射儀(XRD)、掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)對該復(fù)合材料的表面形貌和結(jié)構(gòu)進(jìn)行了分析。循環(huán)伏安和恒流充/放電測試結(jié)果表明,Ni/FCNAs具有較大的比電容值且電化學(xué)穩(wěn)定性良好。在電流密度為0.1 A·g-1時,Ni/FCNAs電極的比電容可達(dá)176 F·g-1。本文同時也提出了Ni/FCNAs可能的形成機(jī)理。

    鎳摻雜;納米碳片;溶劑熱;超級電容器

    Electrochemical double layer capacitor(EDLC)has attracted considerable attention because of its wide potential applications in electric vehicles and other high power applications due to its high power density and long cycle life[1-4].Various materials have been tried for developing supercapacitors[5-10],but the application is still limited due to the low energy density.Carbon materials can be promising candidates for supercapacitor applications because of their chemical stability,low-cost,fineconductivity andkinds of existing forms[11].Novel carbon materials,such as carbon nanofibers[12],nanotubes[13],nanospheres[14-16]and nanoflakes[17]have successfully applied for EDLC.Recently,Yuan et al.[18]reported the synthesis of flower-like mesoporouscarbon from metal-organic coordination polymers with high specific surface area and high specific capacitance.Flower-like microconstruction is composed of a number of 1 or 2-dimensoinal subunits with one end aggregating together[19].The microstructure gives rise to a relatively high specific surface area and evenly distributed mesoporosity,which are favorable for their application as electrode material in supercapacitors.

    In recent years,several works have been reported on Ni-doped carbon materials applied as an electrode material for supercapacitors[20-21].Their results show that the doped nickel particles play an important role in improving electrochemical reaction of the Ni-doped carbon materials.Therefore,the Ni-doped carbon materials exhibit an excellent capacitive behavior compared with the pure carbon materials.

    In this paper,we report an easy route for the largescale production ofNi-doped flower-like carbon nanosheet aggregations(Ni/FCNAs)via a one-pot solvothermal method followed by a subsequent calcination process at 900 ℃ in nitrogen atmosphere.The electrochemical capacitive properties for this material have been characterized via cyclic voltammetry and galvanostatic charge/discharge experiments.The results show that the Ni/FCNAs have good electrochemical performance.To the best of our knowledge,there has been no reporton Ni-doped flower-like carbon nanosheet aggregations as electrode materials for supercapacitors.

    1 Experimental

    1.1 Synthesis of flower-like products

    All the chemical reagents were analytically pure and used without further purification.In a typical procedure,0.3 g of Nickelacetate tetrahydrate was introduced to 30 mL of a mixed H2O and ethylene glycol(EG)solution (1 ∶1,V/V).About 0.8 mL of furfural was added under stirring until a reddish-brown solution was obtained.The solution was then transferred into a 40 mL Teflon-lined stainless-steel autoclave that was sealed and heated at 180℃for 24 h before cooled to room temperature.The resulting solid material was collected by centrifugation,washed with deionized water and ethanol,and finally dried at 80℃for 4 h in vacuum.The as-obtained precursor sample was heated to 900℃ at a rate of 2℃·min-1and kept at the final temperature for 3 h in flowing N2.The as-synthesized black wool-like raw product was referred as Ni/FCNAs.For comparison, Nickel-free flower-like carbon nanosheet aggregations was prepared following the similar procedure,the difference was that the precursor was boiled in nitric acid before calcined at 900℃,and the nickel-free material was denoted as FCNAs.

    1.2 Characterization of flower-like products

    The structure of as-prepared product was analyzed by a MSAL-XD2 X-ray diffractometer(Cu Kα,36 kV,20 mA, λ =0.154 060 nm).The morphologies were observed via on a Philips SEM-XL30S scanning electron microscope and a JEOL TEM-2010 transmission electron microscope using an accelerating voltage of 200 kV.The specific surface area was measured via the Micromeritics TriStar 3000 analyzer.

    1.3 Electrochemical performance

    The working electrode was prepared by pressing the mixture of active materials、carbon black and 5%-PTFE (75∶15∶10,w/w)onto a foam nickel electrode under 35 MPa.Cyclic voltammetry and galvanostatic charge/discharge measurements were conducted on CHI 660B electrochemical workstation.All experiments were carried out at room temperature in a standard three-compartment cell containing a nickel~foil~electrode as the current collector and an Hg/HgO(6.0 mol·L-1KOH)as a reference electrode and the abovementioned as working electrode.Different sweep rates were employed in cyclic voltammetry within the range of-0.9 to 0.1 V.Cycling stability of Ni/FCNAs was evaluated by repeated cyclic voltammetry at a rate of 20 mV·s-1.

    2 Results and discussion

    2.1 Structural characterization

    Fig.1 XRD patterns of the precursor(a)and Ni/FCNAs(b)

    Fig.1 shows the X-ray diffraction(XRD)patterns of the the precursor and as-synthesized products.The peaks in Fig.1a at about 19°,33°,39°,52°,59°,63°can be indexed to diffraction planes ofβ-Ni(OH)2,respectively.Fig.1b at about 45°,52°and 76°can be assigned to the(111),(200)and (220)planes of the cubic structure of Ni.The broad low intensity peaks were produced by disordered carbon.According to the following Scherrers equation:where D is the average diameter of the crystals in nm,λ is the X-ray wavelength (λ=0.154 060 nm),k is the shape factor (k=0.89),and θ is the Bragg angle in degrees and β=B-b.Here B is the full-width at half maximum (FWHM)and b represents the instrumental line broadening (assuming null instrumental in the paper).The reflecting peaks at 2θ=45°,52°and 76°are chosen to calculate the average diameter,the average size of Ni particles is about 18 nm.

    Typical SEM image of the precursor is shown in Fig.2a.According to the observation of SEM image,flower-like microstructures account for the majority of the precursor,which consists of nanosheets.Fig.2b shows the SEM image of Ni/FCNAs,the flower-like morphology can be maintained during the subsequent calcination step.The nanosheets are just a few nanometers in thickness.Fig.2c shows a SEM image of the product FCNAs.The flower-like morphology is only slightly distorted even though the precursor was boiled in nitric acid before calcined.

    Fig.3a shows a TEM image of Ni/FCNAs.The product is composed of nanosheets that root deeply inside the flower-like aggregation.The dispersion and size of Ni nanoparticles on the carbon materials are further characterized by the high resolution TEM(HRTEM)analysis.Fig.3b shows the typical HTEM image of the Ni/FCNAs.The dark spots with diameters ranging from 10 nm to 25 nm are Ni nanoparticles.Abetter dispersion of Ni nanoparticles on carbon support with narrower size distribution is found.The average size of the particles is estimated to be 18 nm by counting more than 100 Ni particles from the HTEM image,which is consistent with the XRD results.

    Fig.2 SEM images of the precursor(a),Ni/FCNAs(b)and FCNAs(c)

    Fig.3 TEM image(a)and HTEM image(b)of Ni/FCNAs

    Fig.4 Adsorption-desorption isotherms of FCNAs(a)and Ni/FCNAs(b)

    The nitrogen adsorption-desorption isotherms of Ni/FCNAs and FCNAs are shown in Fig.4.The isotherm of typeⅣwith a sharp capillary condensation step is observed and a hysteresis loop near relative pressure of~0.5 in the desorption branch indicates the presence of mesopores.BET specific area of Ni/FCNAs and FCNAs are measured to be 455 m2·g-1and 562 m2·g-1,respectively.

    2.2 Growth mechanism of Ni/FCNAs

    Based on the experimental results,the procedure for the formation of Ni/FCNAs has been proposed in Scheme 1.The procedure can be divided into two steps:(1)Formation of Ni(OH)2nanoplatelets;and (2)the growth of flower-like product.The possible formation mechanism can be explained as following.During the formation of Ni(OH)2nanoplatelets in solvothermal condition,the related reaction equationscan be described as follows[22].

    Scheme 1 Possible mechanism for the formation of Ni/FCNAs

    In the primary stage of the reaction,ethylene glycol (EG)molecules react with Ni2+ions to form coordinated complexes (EG-Ni2+)(Eq.(2)),and the hydrolysis of the acetate group provides OH-ions(Eq.(3)).Ni(OH)2nuclei are formed instantaneously in solution via the reaction between Ni2+cations and OH-anions,which are released through complexationdissociation equilibrium and hydrolysis equilibrium(Eq.(4)).The ions are released slowly through the above-mentioned chemical regulation process,wherefore itisbeneficialto form nanoplatelets.Synchronously,furfural polymerizes to form colloidal carbon spheres and strongly adsorbs on the surface of the Ni(OH)2nanoplatelets.As a result,large Ni(OH)2/polymer nanoplatelets are produced.The nanoplatelets can aggregate into the flower-like morphology through self-assembly process by the driving forces,such as electrostatic and dipolar fields associated with the aggregate,hydrophobic interactions,hydrogen bonds,crystal-face attraction,and van der Waals forces[23].During the subsequent carbonization process,flowerlike morphology can be maintained and nickel ions are reduced to metal nickel,consequently this leads to the formation of Ni/FCNAs.

    2.3 Electrochemical tests

    For researching the electrochemical performance of the as-synthesized products,we have employed two electrochemical methods involving cyclic voltammetry and galvanostatic charge/discharge.The voltammograms of Ni/FCNAs and FCNAs under different sweep rates are shown in Fig.5a and b,respectively.It is well known that an ideal capacitance behavior of a carbon material electrode is expressed in the form of a rectangular shape on the voltammetry characteristics.As shown in Fig.5a,cyclic voltammogram (CV)of Ni/FCNAs presents a near rectangular shapes with slightly distorted,which is charac teristic of electrochemical capacitor.Note that the slopes of current variation near the vertex potentials are almost verticalatCV,illustrating the excellent behaviour of Ni/FCNAs as electrode materials with very small equivalent series resistance.However,in Fig.5b the slopes of current variation vs potentials are obvious to indicate that forms IR drops in the FCNAs material electrodes.

    Fig.5 CVs of Ni/FCNAs and FCNAs in 6 mol·L-1KOH at room temperature

    The specific capacitances (C)of electrodes is calculated according to the following equation from the measured CVs:where i,w and△v are the sample current,the weight of active materials and the voltage window,respectively.The data calculated from CVs of Ni/FCNAs and FCNAs is summarized in Table 1.A maximum C of 165 F·g-1is obtained for Ni/FCNAs at the sweep rate of 2 mV·s-1.Although the surface area of sample FCNAs is larger than that of the Ni/FCNAs materials,the specific capacitance is only 79 F·g-1at 2 mV·s-1,less than half of that for Ni/FCNAs.Total electroactive sites on the surface of carbon materials are strongly affected not only by the specific surface area for electrolyte accessibility but also by the electrical conductivity for electron transfer.Probably,the higher capacitance of Ni/FCNAs may be due to that the doped metallic nickel considerably may alleviate the electron-conducting resistance and facilitate the electrochemical reaction.The introduction of Ni species imparts a surface polarity to the carbon surface,thus enhancing dipole affinity towards OH-to cause capacitance increase[24].In addition,the surface polarity can improve the wettability of carbon micropores,thus increasing the surface area accessible to electrolyte or hydrated molecules for double-layer formation, thereby increasing the capacitive behavior of the Ni/FCNAs.

    The capacitances per surface area (CSA)were also calculated.It was found that the value of Ni/FCNAs is larger than usually reported for the double-layer capacitance(0.1~0.2 F·m-2)[25].

    The galvanostatic charge/discharge measurements are performed with various current densities in order to further investigate the performances of as-synthesized products.The specific capacitance (C)of the sampleswas calculated according to the following equation:which i,t,w and Δv are the constant current and discharge time and the weight of active materials and the voltage window,respectively.Fig.6a shows the potential-time curves of Ni/FCNAs as well as FCNAs at the constant current density of 0.1 A·g-1.The charge/discharge curves ofNi/FCNAs are linear and symmetrical,and the IR drop is not obvious,which shows good capacitance,highly reversible charge/discharge efficiency.In particular,discharging time of the FCNAs electrode unloaded Ni content was 1 322 s,while that of the Ni/FCNAs electrodes increased 450 s.

    Table 1 Specic gravimetric capacitances(C)and specific capacitances per surface area(CSA)of Ni/FCNAs as well as FCNAs

    Fig.6b is galvanostatic charge/discharge curves of Ni/FCNAs at current densities of 0.1,0.25,0.5 and 1 A·g-1,respectively.The specific capacitance of Ni/FCNAs is 176 F·g-1with the current density of 0.1 A·g-1.The data agrees well with from CV tests.The results show that over two times of capacitance enhancement can be achieved through carbon without Ni and carbon with an appreciable amountNi (the specific capacitance of FCNAs is 86 F·g-1in 0.1 A·g-1).With the increase of current densities from 0.1 A·g-1to 2 A·g-1,the capacitances remained 78%and 71%for Ni/FCNAs and FCNAs(Fig.7a),respectively.

    The cyclic voltammetry experiments were performed at a sweep rate of 20 mV·s-1for 1000 cycles in order to investigate the cycling stability of Ni/FCNAs(Fig.7b)The specific capacitance of Ni/FCNAs is to a 163 F·g-1for the first cycle and the 160 F·g-1after 1000 cycles.Over 98% of the originalspecific capacitance remained for Ni/FCNAs.

    Fig.6 Galvanostatic charge/discharge curves of Ni/FCNAs and FCNAs with current 0.1 A·g-1(a)and of Ni/FCNAs(b)with currents of 0.1,0.2,0.5,1 and 2 A·g-1

    Fig.7 Dependence of specific capacitances on the different current density for Ni/FCNAs and FCNAs electrodes(a)and cycle life for Ni/FCNAs measured at 20 mV·s-1(b)

    3 Conclusions

    Ni-doped flower-like carbon nanosheet aggregations was successfully prepared via a one-pot solvothermal method followed by a subsequent calcination process at 900℃in nitrogen atmosphere.The asproduced Ni/FCNAs possess a specific surface area of 493.6 m2·g-1after the precursors were calcined at 900℃.The experimental results show that the specific capacitance of the Ni/FCNAs is176 F·g-1at the current density of 0.1 A·g-1and the retained capacitance is up to 160 F·g-1at 20 mV·s-1after 1 000 cycles,which will make Ni/FCNAs the potential material for supercapacitors.

    [1]Lee J,Yoon S,Hyeon T,et al.Chem.Commun.,1999,21:2177-2178

    [2]Moriguchi I,Koga Y,Matsukura R,et al.Chem.Commun.,2002,24:1844-1854

    [3]Lee J,Yoon S,Oh S M,et al.Adv.Mater.,2000,12:359-362

    [4]MI Hong-Yu(米紅宇),ZHANG Xiao-Gang(張校剛),WANG Xin-Lei(王興磊),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(1):159-163

    [5]Liu F J.J.Power Sources,2008,182:383-388

    [6]SHEN Lai-Fa(申來法),ZHANG Xiao-Gang(張校剛),YUAN Chang-Zhou(原長洲),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2009,25(9):1601-1606

    [7]WANG Xiao-Fen(王曉峰),WANG Da-Zhi(王大志),LIANG Ji(梁吉).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2003,19(2):137-141

    [8]Zhao D D,Xu M W,Zhou W J,et al.Electrochim.Acta,2008,53:2699-2705

    [9]QIAO Song(喬松),SUN Gang-Wei(孫剛偉),ZHANG Jian-Hua(張建華),et al.Carbon Techniques(Tansu Jishu),2010,29(1):14-19

    [10]DU Xuan(杜嬛),WANG Cheng-Yang(王成揚(yáng)),CHEN Ming-Ming(陳明鳴),et al.J.Inorg.Mater.(Wuji Cailiao Xuebaoi),2010,23(6):1193-1198

    [11]Frackowiak E.Phys.Chem.Chem.Phys.,2007,9:1774-1785

    [12]Kim C,Park S H,Lee W J,et al.Electrochim.Acta,2004,50:877-881

    [13]Wang L,Li C,Zhou Q,et al.Physica B,2007,398:18-22

    [14]Li F,Zou Q Q,Xia Y Y.J.Power Sources,2008,177:546-552

    [15]Li H P,Zhao N Q,He C N,et al.J.Alloys Compd.,2008,465:387

    [16]Yuan D S,Chen J X,Zeng J H,et al.Electrochem.Commun.,2008,10:1067-1070

    [17]Yuan D S,Chen J X,Hu X C,et al.Int.J.Electrochem.Sci.,2008,3:1268-1276

    [18]Yuan D S,Chen J X,Tan S X,et al.Electrochem.Commun.,2009,11:1191-1194

    [19]ShenJM,Feng YT.J.Phys.Chem.C,2008,112:13114-13120

    [20]Li J,Liu E H,Li W,et al.J.Alloys Compd.,2009,478:371-374

    [21]Wu M S,Lin K H.J.Phys.Chem.C,2010,114:6190-6196

    [22]Wang L,Zhao Y,Lai Q Y,et al.J.Alloys Compd.,2010,495:82-87

    [23]Xu L P,Ding Y S,Chen C H,et al.Chem.Mater.,2008,20:308-316

    [24]Tai Y L,Teng H.Carbon,2004,42:2335-2342

    [25]Rojo J M,Fuertes A B,Pico F.J.Power Sources,2004,133:329-336

    Synthesis of Ni-doped Flower-Like Carbon Nanosheet Aggregations for Supercapacitors

    YI Guan-GuiXIAO Yong XIE Chun-Lin MO Shan-Shan HE Wen-QiZHAO Shuai LIU Ying-Liang*YUAN Ding-Sheng HUANG Lang-Huan TAN Shao-Zao
    (Department of Chemistry and Institute of Nanochemistry,Jinan University,Guangzhou 510632,China)

    Ni-doped flower-like carbon nanosheet aggregations (Ni/FCNAs)were synthesized via a one-pot solvothermal method followed by a subsequent calcination process at 900℃in nitrogen atmosphere.The surface morphologies and structures of composites were examined by scanning electron microscope (SEM),transmission electron microscope (TEM)and X-ray diffraction (XRD).Cyclic voltammetry and galvanostatic charge/discharge experiments were adopted to investigate their electrochemical behaviors.The results show that the doped nickel particles could enhance both specific capacitance and electrochemical stability.The Ni/FCNAs show large specific capacitance up to 176 F·g-1with the current density of 0.1 A·g-1.The possible formation mechanism of Ni/FCNAs has also been proposed on the basis of experimental results.

    Ni-doped;carbon nanosheet;solvothermal;supercapacitors

    TB333;TB383

    A

    1001-4861(2011)04-0764-07

    2010-08-24。收修改稿日期:2010-11-09。

    國家-廣東聯(lián)合基金(No.U0734005);國家自然科學(xué)青年基金(No.20906037);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(No.21610102)資助項(xiàng)目。*

    。 E-mail:tliuyl@jnu.edu.cn;會員登記號:S060017521P。

    猜你喜歡
    花狀電容器納米
    納米潛艇
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    電容器的實(shí)驗(yàn)教學(xué)
    物理之友(2020年12期)2020-07-16 05:39:20
    含有電容器放電功能的IC(ICX)的應(yīng)用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補(bǔ)償電容器的應(yīng)用
    山東冶金(2019年5期)2019-11-16 09:09:38
    石墨烯在超級電容器中的應(yīng)用概述
    一種制備空心花狀氫氧化鋅的方法及利用空心花狀氫氧化鋅制備空心花狀氧化鋅的方法
    納米SiO2的制備與表征
    三維花狀BiOBr/CNTs復(fù)合光催化劑降解羅丹明廢水研究
    三維花狀Fe2(MoO4)3微米球的水熱制備及電化學(xué)性能
    精品一区二区三区四区五区乱码 | videosex国产| 国产免费现黄频在线看| 视频区图区小说| 国产精品 欧美亚洲| 热re99久久国产66热| 狂野欧美激情性bbbbbb| 人妻 亚洲 视频| 国产成人精品在线电影| 26uuu在线亚洲综合色| 中国国产av一级| 亚洲国产精品成人久久小说| 日韩精品免费视频一区二区三区| 黑丝袜美女国产一区| 日本午夜av视频| www.精华液| 在现免费观看毛片| 男女午夜视频在线观看| 在线精品无人区一区二区三| 69精品国产乱码久久久| 久久精品久久精品一区二区三区| 中文字幕亚洲精品专区| 国产免费现黄频在线看| 少妇人妻久久综合中文| 久久国内精品自在自线图片| 男女无遮挡免费网站观看| 日本-黄色视频高清免费观看| 日韩伦理黄色片| 日韩成人av中文字幕在线观看| 侵犯人妻中文字幕一二三四区| 欧美97在线视频| 免费观看av网站的网址| 久久久久国产一级毛片高清牌| 丰满少妇做爰视频| 国产又爽黄色视频| 亚洲欧美一区二区三区黑人 | 久久久a久久爽久久v久久| 久久久国产精品麻豆| 亚洲天堂av无毛| 国产精品一区二区在线不卡| 超碰97精品在线观看| a级片在线免费高清观看视频| 久久久久久久久久久久大奶| 成人影院久久| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放| 99香蕉大伊视频| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| 午夜免费男女啪啪视频观看| 青草久久国产| av卡一久久| 午夜精品国产一区二区电影| 成人亚洲欧美一区二区av| 一区二区av电影网| 欧美日韩国产mv在线观看视频| 麻豆精品久久久久久蜜桃| 99久久人妻综合| 91久久精品国产一区二区三区| 黑人猛操日本美女一级片| 色视频在线一区二区三区| 一级毛片我不卡| 下体分泌物呈黄色| av女优亚洲男人天堂| 欧美另类一区| av国产精品久久久久影院| 女性被躁到高潮视频| 香蕉精品网在线| 天天影视国产精品| 熟女av电影| 国产探花极品一区二区| 男的添女的下面高潮视频| 青草久久国产| 欧美国产精品一级二级三级| 国产一区二区 视频在线| 亚洲四区av| 国产欧美日韩一区二区三区在线| 天天影视国产精品| 日韩,欧美,国产一区二区三区| 亚洲成色77777| 中文天堂在线官网| av免费在线看不卡| 在线观看美女被高潮喷水网站| 不卡av一区二区三区| 在线观看www视频免费| 久久精品国产鲁丝片午夜精品| 91成人精品电影| 高清在线视频一区二区三区| 久久国产亚洲av麻豆专区| 最近2019中文字幕mv第一页| 一级爰片在线观看| 国产一区二区三区综合在线观看| 黄频高清免费视频| 高清黄色对白视频在线免费看| 搡女人真爽免费视频火全软件| 人人澡人人妻人| 一区二区三区乱码不卡18| 亚洲一区中文字幕在线| 在线免费观看不下载黄p国产| 欧美成人精品欧美一级黄| 亚洲精品一区蜜桃| 免费少妇av软件| 欧美激情 高清一区二区三区| 国产欧美亚洲国产| 最近最新中文字幕大全免费视频 | 亚洲精品成人av观看孕妇| 日日啪夜夜爽| 日韩电影二区| 国产成人精品在线电影| 国产精品一国产av| 国产免费一区二区三区四区乱码| 国产亚洲精品第一综合不卡| 亚洲av国产av综合av卡| 亚洲,一卡二卡三卡| 久久人人97超碰香蕉20202| 人人妻人人澡人人爽人人夜夜| 国产精品秋霞免费鲁丝片| 丝袜美足系列| 青春草视频在线免费观看| 人成视频在线观看免费观看| xxxhd国产人妻xxx| 亚洲国产成人一精品久久久| 久久人妻熟女aⅴ| 亚洲内射少妇av| 一级a爱视频在线免费观看| 宅男免费午夜| 少妇人妻 视频| 国产成人a∨麻豆精品| videos熟女内射| 国产成人精品久久二区二区91 | 国产综合精华液| 如何舔出高潮| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 久久久久网色| 十八禁网站网址无遮挡| 中国三级夫妇交换| 国产精品一二三区在线看| 免费大片黄手机在线观看| 一区二区av电影网| www日本在线高清视频| h视频一区二区三区| 亚洲av中文av极速乱| 久久久久久久久免费视频了| 熟妇人妻不卡中文字幕| 亚洲av欧美aⅴ国产| 久久午夜综合久久蜜桃| 亚洲国产精品国产精品| 电影成人av| 亚洲av电影在线观看一区二区三区| 丝袜在线中文字幕| 中文字幕人妻丝袜制服| 精品少妇久久久久久888优播| www.自偷自拍.com| 永久免费av网站大全| 久久ye,这里只有精品| 蜜桃国产av成人99| 午夜福利在线观看免费完整高清在| 男女边吃奶边做爰视频| 青春草国产在线视频| 日本黄色日本黄色录像| xxx大片免费视频| 97精品久久久久久久久久精品| 亚洲久久久国产精品| 亚洲国产av影院在线观看| 免费日韩欧美在线观看| 99国产精品免费福利视频| 菩萨蛮人人尽说江南好唐韦庄| 老司机影院成人| 1024香蕉在线观看| 日韩大片免费观看网站| 免费黄色在线免费观看| 亚洲成人一二三区av| 亚洲成人av在线免费| 欧美日韩亚洲国产一区二区在线观看 | 国产成人精品在线电影| 国产人伦9x9x在线观看 | 日韩中文字幕视频在线看片| 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看| 国产精品欧美亚洲77777| 久久久精品区二区三区| 黄频高清免费视频| 久久 成人 亚洲| 巨乳人妻的诱惑在线观看| 1024视频免费在线观看| 欧美人与性动交α欧美软件| 捣出白浆h1v1| 免费久久久久久久精品成人欧美视频| 亚洲国产精品国产精品| 亚洲av中文av极速乱| 国产精品久久久久久av不卡| 国产不卡av网站在线观看| 最新中文字幕久久久久| 一本久久精品| 国产乱人偷精品视频| 精品人妻熟女毛片av久久网站| 日本-黄色视频高清免费观看| 国产国语露脸激情在线看| av天堂久久9| 亚洲精品第二区| 少妇精品久久久久久久| 国产有黄有色有爽视频| 校园人妻丝袜中文字幕| 男人添女人高潮全过程视频| 日韩不卡一区二区三区视频在线| 三级国产精品片| 色94色欧美一区二区| 多毛熟女@视频| 欧美成人精品欧美一级黄| 制服丝袜香蕉在线| av卡一久久| 两个人免费观看高清视频| 少妇被粗大猛烈的视频| 久久人人爽人人片av| videosex国产| 日韩成人av中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲人成电影观看| av女优亚洲男人天堂| www.av在线官网国产| 国产成人精品婷婷| 免费黄网站久久成人精品| 交换朋友夫妻互换小说| 一本久久精品| 精品酒店卫生间| 一边亲一边摸免费视频| 国产乱人偷精品视频| 国产极品天堂在线| 免费日韩欧美在线观看| 99精国产麻豆久久婷婷| 久久青草综合色| 欧美97在线视频| 日韩中字成人| 在线免费观看不下载黄p国产| 午夜福利在线免费观看网站| 欧美日韩视频高清一区二区三区二| 精品亚洲乱码少妇综合久久| 免费观看a级毛片全部| 国产精品嫩草影院av在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 不卡av一区二区三区| 不卡视频在线观看欧美| 免费av中文字幕在线| 自线自在国产av| 91午夜精品亚洲一区二区三区| 精品少妇内射三级| 国产毛片在线视频| 高清av免费在线| 三上悠亚av全集在线观看| 精品福利永久在线观看| 一级毛片我不卡| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 香蕉精品网在线| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 久久久久国产一级毛片高清牌| 飞空精品影院首页| 青草久久国产| 亚洲欧美中文字幕日韩二区| 欧美日韩一区二区视频在线观看视频在线| 在线观看免费高清a一片| 秋霞伦理黄片| 日日撸夜夜添| www.自偷自拍.com| 黄片无遮挡物在线观看| 亚洲五月色婷婷综合| 香蕉丝袜av| xxxhd国产人妻xxx| 18禁国产床啪视频网站| 欧美中文综合在线视频| 观看美女的网站| 亚洲精品中文字幕在线视频| 午夜日本视频在线| 曰老女人黄片| 日本-黄色视频高清免费观看| 一二三四中文在线观看免费高清| 亚洲久久久国产精品| 国产亚洲午夜精品一区二区久久| 国产亚洲av片在线观看秒播厂| 日本色播在线视频| 韩国av在线不卡| 男女免费视频国产| av不卡在线播放| 亚洲经典国产精华液单| 国产1区2区3区精品| 尾随美女入室| 中文字幕最新亚洲高清| 少妇的逼水好多| av免费在线看不卡| 99久久人妻综合| 日本av免费视频播放| a级毛片黄视频| 久久国产精品大桥未久av| 天堂8中文在线网| 久久狼人影院| 亚洲av.av天堂| 久久久久久久大尺度免费视频| 一级,二级,三级黄色视频| 欧美人与性动交α欧美软件| 精品国产一区二区三区久久久樱花| 色视频在线一区二区三区| 少妇被粗大的猛进出69影院| 大片电影免费在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩精品成人综合77777| 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| 中文字幕av电影在线播放| 熟女av电影| 日本猛色少妇xxxxx猛交久久| 涩涩av久久男人的天堂| 国产精品秋霞免费鲁丝片| 国产一级毛片在线| 18在线观看网站| 五月天丁香电影| 波野结衣二区三区在线| 少妇猛男粗大的猛烈进出视频| 久久亚洲国产成人精品v| www.精华液| 国产精品久久久av美女十八| 亚洲美女视频黄频| 国产爽快片一区二区三区| 超色免费av| 中文乱码字字幕精品一区二区三区| 国产男女超爽视频在线观看| 色播在线永久视频| 女性生殖器流出的白浆| 亚洲精品av麻豆狂野| 大片免费播放器 马上看| 国产在线视频一区二区| 久久青草综合色| 高清视频免费观看一区二区| 亚洲国产精品一区三区| 亚洲欧美成人精品一区二区| 久久ye,这里只有精品| 一区二区日韩欧美中文字幕| 丰满乱子伦码专区| 国产精品国产av在线观看| 有码 亚洲区| 日韩精品免费视频一区二区三区| 欧美中文综合在线视频| 成人午夜精彩视频在线观看| 伦理电影免费视频| 久久亚洲国产成人精品v| 伦理电影免费视频| 宅男免费午夜| 人人澡人人妻人| 免费在线观看完整版高清| 中文字幕最新亚洲高清| 国产成人一区二区在线| 亚洲情色 制服丝袜| 热99久久久久精品小说推荐| 精品第一国产精品| 高清视频免费观看一区二区| 久久热在线av| 亚洲,欧美精品.| 亚洲欧洲精品一区二区精品久久久 | 欧美成人精品欧美一级黄| 午夜av观看不卡| 久久久精品区二区三区| 哪个播放器可以免费观看大片| 丰满饥渴人妻一区二区三| 国产精品av久久久久免费| www.熟女人妻精品国产| 精品99又大又爽又粗少妇毛片| 亚洲成色77777| 桃花免费在线播放| 黄色视频在线播放观看不卡| 亚洲久久久国产精品| 18禁裸乳无遮挡动漫免费视频| 国产精品99久久99久久久不卡 | 日本黄色日本黄色录像| 一级毛片 在线播放| 麻豆乱淫一区二区| 熟女av电影| 日本vs欧美在线观看视频| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av涩爱| 色婷婷av一区二区三区视频| 国产精品国产三级国产专区5o| 亚洲成色77777| 久久久久人妻精品一区果冻| 在线观看免费视频网站a站| www.精华液| 精品人妻在线不人妻| 丰满乱子伦码专区| 久久av网站| 午夜免费鲁丝| 岛国毛片在线播放| 亚洲,一卡二卡三卡| 伦理电影大哥的女人| 精品少妇内射三级| 亚洲成人av在线免费| 久久精品国产综合久久久| 看十八女毛片水多多多| av国产久精品久网站免费入址| 夫妻性生交免费视频一级片| 免费在线观看视频国产中文字幕亚洲 | 亚洲 欧美一区二区三区| 大香蕉久久网| 美国免费a级毛片| 你懂的网址亚洲精品在线观看| 亚洲四区av| 精品福利永久在线观看| 国产精品一二三区在线看| 男人操女人黄网站| 自线自在国产av| 桃花免费在线播放| h视频一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 国产日韩欧美在线精品| 激情五月婷婷亚洲| 十八禁网站网址无遮挡| av国产久精品久网站免费入址| 日本免费在线观看一区| 亚洲欧美精品综合一区二区三区 | 下体分泌物呈黄色| 久久精品亚洲av国产电影网| 在线亚洲精品国产二区图片欧美| 日韩一卡2卡3卡4卡2021年| 久久久国产欧美日韩av| 多毛熟女@视频| 午夜福利,免费看| 精品少妇久久久久久888优播| 看十八女毛片水多多多| 热99国产精品久久久久久7| 日韩人妻精品一区2区三区| 建设人人有责人人尽责人人享有的| 一区在线观看完整版| 成年av动漫网址| 免费高清在线观看视频在线观看| 亚洲欧美一区二区三区国产| 黄片无遮挡物在线观看| 狠狠精品人妻久久久久久综合| 汤姆久久久久久久影院中文字幕| 丝袜脚勾引网站| 汤姆久久久久久久影院中文字幕| 国产欧美日韩一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频网站a站| 成人漫画全彩无遮挡| 在线天堂中文资源库| 99九九在线精品视频| 免费观看av网站的网址| 少妇熟女欧美另类| 精品国产乱码久久久久久小说| 男女午夜视频在线观看| 欧美国产精品一级二级三级| 国产在线视频一区二区| 夜夜骑夜夜射夜夜干| 母亲3免费完整高清在线观看 | 精品人妻偷拍中文字幕| 亚洲国产欧美日韩在线播放| 日韩大片免费观看网站| 18+在线观看网站| 黄色怎么调成土黄色| 大香蕉久久网| 国产精品久久久久成人av| 日韩人妻精品一区2区三区| 亚洲精品第二区| 视频在线观看一区二区三区| 人妻系列 视频| 只有这里有精品99| 免费在线观看视频国产中文字幕亚洲 | 色吧在线观看| 国产精品麻豆人妻色哟哟久久| 丰满乱子伦码专区| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| av有码第一页| www日本在线高清视频| 中文字幕色久视频| 伊人久久国产一区二区| 精品久久久久久电影网| h视频一区二区三区| www.精华液| 成年动漫av网址| www.熟女人妻精品国产| 亚洲精华国产精华液的使用体验| 日日爽夜夜爽网站| 五月开心婷婷网| 国产精品熟女久久久久浪| 国产成人精品无人区| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看| 黄色毛片三级朝国网站| 久久国产精品大桥未久av| 黄色视频在线播放观看不卡| a级毛片在线看网站| 国产精品蜜桃在线观看| 国产极品粉嫩免费观看在线| 飞空精品影院首页| 777米奇影视久久| 老女人水多毛片| 丰满乱子伦码专区| 女性生殖器流出的白浆| 国产片特级美女逼逼视频| 亚洲精品aⅴ在线观看| 国产一级毛片在线| xxx大片免费视频| 久久av网站| 亚洲,一卡二卡三卡| 久久精品国产亚洲av高清一级| 日韩中文字幕欧美一区二区 | 一边摸一边做爽爽视频免费| 精品国产乱码久久久久久小说| 欧美成人午夜免费资源| 国产精品三级大全| 看十八女毛片水多多多| 又黄又粗又硬又大视频| 久久精品亚洲av国产电影网| 久久久国产欧美日韩av| 国产精品三级大全| 看十八女毛片水多多多| 国产精品免费视频内射| 久久精品亚洲av国产电影网| 在线观看人妻少妇| 亚洲国产精品一区三区| 亚洲国产日韩一区二区| 亚洲国产色片| 99热国产这里只有精品6| 老熟女久久久| 成人影院久久| 精品少妇黑人巨大在线播放| 色婷婷久久久亚洲欧美| av免费观看日本| 亚洲av在线观看美女高潮| 免费av中文字幕在线| 国产精品不卡视频一区二区| 国产成人免费无遮挡视频| 美女脱内裤让男人舔精品视频| 欧美成人午夜精品| av免费观看日本| 男人添女人高潮全过程视频| 亚洲欧洲日产国产| 国产成人精品在线电影| 中文字幕精品免费在线观看视频| 日本av免费视频播放| 熟妇人妻不卡中文字幕| 男女高潮啪啪啪动态图| 欧美日韩综合久久久久久| 老司机影院成人| 看非洲黑人一级黄片| 男女午夜视频在线观看| 日韩伦理黄色片| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 成年动漫av网址| 男女国产视频网站| 久久精品熟女亚洲av麻豆精品| 久久久国产一区二区| 国产爽快片一区二区三区| 免费高清在线观看视频在线观看| 性色av一级| 母亲3免费完整高清在线观看 | 国产爽快片一区二区三区| 亚洲精品自拍成人| 最近2019中文字幕mv第一页| 老司机影院毛片| 久久国内精品自在自线图片| 美女脱内裤让男人舔精品视频| 99久国产av精品国产电影| 亚洲av电影在线进入| 欧美另类一区| 欧美变态另类bdsm刘玥| 夫妻午夜视频| 国产不卡av网站在线观看| www.精华液| 亚洲国产看品久久| 黑人猛操日本美女一级片| h视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美日韩一区二区三区在线| freevideosex欧美| 亚洲五月色婷婷综合| 中国三级夫妇交换| 国产午夜精品一二区理论片| av电影中文网址| 最近最新中文字幕大全免费视频 | 久久影院123| 久久久久久久久久久免费av| 麻豆乱淫一区二区| 亚洲美女视频黄频| 午夜福利,免费看| 嫩草影院入口| 最新的欧美精品一区二区| 成人二区视频| 国产精品 欧美亚洲| 成年人免费黄色播放视频| 97人妻天天添夜夜摸| 久久久亚洲精品成人影院| 亚洲国产精品国产精品| 我的亚洲天堂| 精品国产乱码久久久久久男人| 香蕉精品网在线| 一级毛片电影观看| 五月开心婷婷网| 建设人人有责人人尽责人人享有的| 777米奇影视久久| 亚洲第一青青草原| 久久久久网色| 国产成人91sexporn| 99re6热这里在线精品视频| 日韩免费高清中文字幕av| av免费观看日本| 欧美成人午夜免费资源| 男女边吃奶边做爰视频| 你懂的网址亚洲精品在线观看| 又黄又粗又硬又大视频| 国产极品粉嫩免费观看在线| 亚洲,欧美精品.| 久久国产亚洲av麻豆专区|