• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    靜電自組裝制備納米TiO2/SiO2光催化材料

    2011-11-10 02:08:26施惠生郭曉潞
    無機(jī)化學(xué)學(xué)報 2011年11期
    關(guān)鍵詞:施惠銳鈦礦同濟(jì)大學(xué)

    王 程 施惠生 李 艷 郭曉潞

    (1同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室,上海 201804)(2石家莊經(jīng)濟(jì)學(xué)院材料科學(xué)與工程研究所,石家莊 050031)

    靜電自組裝制備納米TiO2/SiO2光催化材料

    王 程1,2施惠生*,1李 艷2郭曉潞1

    (1同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室,上海 201804)(2石家莊經(jīng)濟(jì)學(xué)院材料科學(xué)與工程研究所,石家莊 050031)

    采用靜電自組裝方法制備了納米TiO2/SiO2光催化材料。采用巰丙基三甲氧基硅烷偶聯(lián)劑對SiO2進(jìn)行干法改性,采用雙氧水/冰醋酸將偶聯(lián)劑巰基基團(tuán)氧化為磺酸基基團(tuán)。在正負(fù)電荷的吸引下,帶負(fù)電荷的SiO2與帶正電荷的鈦聚合陽離子自發(fā)地組裝在一起,經(jīng)一定溫度熱處理得到納米TiO2/SiO2光催化材料。采用XRD、FTIR、PL、UV-Vis DRS、SEM和ICP等對材料進(jìn)行了分析和表征。采用甲基橙溶液評價材料的光催化性能。結(jié)果表明:SiO2促使銳鈦礦的形成,抑制銳鈦礦向金紅石的轉(zhuǎn)變,減小TiO2的晶粒尺寸,使得TiO2光吸收波長發(fā)生藍(lán)移。TiO2與SiO2通過Si-O-Ti鍵發(fā)生結(jié)合。采用靜電自組裝方法制備的材料中TiO2的含量高于傳統(tǒng)方法,導(dǎo)致材料的光催化性能有所提高。

    靜電自組裝;TiO2;SiO2;光催化材料;甲基橙

    Nano-sized TiO2as one of the most promising photocatalysts has attracted much attention owing to its photocatalytic degradation of organic pollutants,photocatalytic dissociation ofwater,solarenergyconversion,and disinfection[1-4].However,it is difficult and expensive to recycle TiO2nanopowders in the practical utilization due to the formation of milky dispersion after mixing the nanopowders into the wastewater.

    TiO2/SiO2oxides were found to be a good candidate material to overcome the above problem.Further more,it was demonstrated that SiO2could improve the thermal stability,decrease TiO2particle size and thus improve the UV photocatalytic activity of TiO2[5-8].So far,the TiO2/SiO2photocatalysts have been prepared by several approaches including impregnation[9],precipitation[10]and sol-gel techniques[5-8].However,during the preparation procedures mentioned above,the surface of SiO2is positively charged in acid aqueous environments,thus resulting in the mutual exclusion of SiO2and titanium polycation.This phenomenon may further lead to a low composite efficiency of SiO2with TiO2and furtherreduce the photocatalytic activity ofthe photocatalysts.Recently,researchers have adopted different methods to solve the above problems,for example,using liquid-phase deposition (LPD)method from a (NH4)2TiF6aqueous solution upon addition of boric acid (H3BO3)[11],using hydroxypropyl cellulose(HPC)as a surface esterification agent to modify the substrate[12].Decher et al.[13]reported in 1991 a novel method called electrostatic self-assembly method(ESAM).According to the ESAM,the opposite electric charge elements self-assemble with each other by electrostatic interaction.Related to that,Shin et al.[14]found that TiO2films on silicon prepared by ESAM showed densely packed anatase crystallites.Chen et al.[15]used ESAM to prepare Iron (Ⅲ)-doped TiO2/SiO2particles and the results showed that TiO2nanopowders were well distributed on the surface of SiO2.

    In this paper,ESAM method was used to prepare nano TiO2/SiO2photocatalysts.The aim of this work was to investigate the photocatalytic property ofthe prepared photocatalysts and the interrelationship of SiO2with TiO2.Based on the above goals,XRD,FTIR,PL,UV-Vis DRS,ICP and SEM were employed to characterize the microstructure and morphology of the photocatalysts.The photocatalytic activtiy of nano TiO2/SiO2photocatalysts for the degradation of methyl orange was also evaluated.

    1 Experimental

    1.1 Photocatalysts preparation

    Silane coupling agent of (OCH3)3Si(CH2)3SH(Wuhan University Silicone New Material Co.,Ltd.,China)was used to modify the SiO2powders(Zhoushan Mingri Nano-material Ltd.,China,average grain size of 10 nm).In a typical preparation,2wt%silane (it was diluted by the same volume of ethanol)was mixed with SiO2powders and then the mixture was stirred at 120℃for 30 min.The modified SiO2powders were oxidized by 30%H2O2/HOAc(hydrogen peroxide/glacial acetic acid)at 50℃ for 2 h.

    The modified and oxidized SiO2powders were mixed up with decuple distilled water and heated up to 70℃.Subsequently,TiCl4solution (the theoretical proportion of TiO2in the photocatalyst was 30wt%)was added drop wise into the above mortar and the pH value of the dispersion was adjusted to about 2.0.The system was vigorously stirred at 70 ℃ for 4 h.After aging for 12 h,the product was filtrated and washed repeatedly three times with distilled water,and then dried at 80℃for 2 h.The above samples were finally calcined at 200~700℃ for 2 h in a muffle furnace to obtain the TiO2/SiO2photocatalysts.

    Unmodified SiO2powders were used to prepare TiO2/SiO2photocatalyst(referring to as conventional method here after)in order to compare with the photocatalyst prepared by ESAM.Pure TiO2powders were also prepared by the conventional method too.

    1.2 Characterization

    The structure of samples was characterized by XRD (D/max 2550VB3+/PC,Rigaku International Corporation,Japan)under the following conditions:graphite monochromatic copper radiation (Cu Kα,λ=0.154 18 nm);40 kV as accelerating voltage;40 mA as emission current;and the 2θ range of 3°~70°at a scan rate of 4°·min-1.The sizes of TiO2were estimated using the Scherrer equation.FTIR spectra, for the determination of Si-O-Ti bond of the photocatalysts,were recorded by a spectrometer (Nexus,Thermo Nicolet Corporation,America)using KBr pellets at room temperature in the region of 400~4 000 cm-1.The photoluminescence (PL)spectra of the samples were recorded with RF-540 spectrofluorophotometer(RF-540,Shimadzu Instruments,Japan),using the 280 nm excitation line of a Xe lamp.UV-Vis absorption spectra(UV-Vis DRS)of the samples were obtained for the drypressed disk samples using a UV-Visible spectrophotometer with an integrating sphere(UV-3010,HITA-CHI,Japan).The morphology of the photocatalyst was examined by field-emission scanning electron microscope (FESEM)(Quanta 200 FEG,FEI Company,America)with an accelerating voltage of 10 kV.The content of TiO2in the photocatalyst was examined by ICP(Optima 4300DV,Perkin Elmer Ltd.,America).

    1.3 Photocatalytic activity tests

    The photocatalytic activity of the sample was evaluated by the degradation of methyl orange(MO)in an aqueous solution.The photocatalytic reactor system consisted of a 40 W UV lamp centered at 253.7 nm and a magnetic stirrer for obtaining dispersion.In a typical test for MO degradation,the photocatalyst(1 g)was suspended in a 100 mL MO solution (10 mg·L-1)and then treated under UV light for different times.The concentration of the MO solution was monitored at regular time intervals by measuring the maximum absorbance of MO (464 nm),using 722S spectrometer(722S,Shanghai Precision&Scientific Instrument Co.,Ltd.,China).The decoloration rate of the MO solution was calculated according to P=(A0-At)/A0×100%,where P is the decoloration rate of the solution;A0is the absorbency of the original solution;Atis the absorbency of the MO solution after treating for t h.

    2 Results and discussion

    2.1 XRD analysis

    Fig.1 shows the XRD patterns of nano TiO2/SiO2photocatalysts calcined at 200~700 ℃.The patterns reveal that all the samples are composed of anatase phase without any rutile phase even at 700℃.With the ascent in calcination temperature,the peak intensity of anatase phase increases significantly,indicating the decrease in crystallite oxygen vacancies and intrinsic defects of anatase phase.Simultaneously,the width of the(101)peak becomes narrower,suggesting the growth of anatase crystallites.The crystallite sizes of TiO2calculated by the Scherrer equation are about 2.5 nm,3.8,4.7,5.1,8.6 and 9.3 nm,respec-tively,as the calcination temperature increases from 200℃to 700℃.

    Fig.2 shows the XRD patterns of pure TiO2calcined at 200~700 ℃.The obtained TiO2are anatase and plenty of brookite,anatase,anatase and little rutile,anatase and rutile,anatase and plenty of rutile,rutile,respectively,as the calcined temperature increases from 200℃ to 700℃.The crystallite size of TiO2calcined from 200℃to 700℃calculated by the Scherrer equation are about 4.5,5.2,8.2,11.7,16.5 and 25.6 nm,respectively.Contrasting with the crystal forms and crystallite size of TiO2in the TiO2/SiO2photocatalysts,it can be suggested that the SiO2facilitates the formation of anatase,restrains the transformation of anatase to rutile and decreases the crystallite size of TiO2.

    2.2 PL analysis

    Fig.3 shows the PL spectra of TiO2/SiO2calcined at 200,300 and 400 ℃,respectively.A 280 nm He-Cd laser was used as the excitation source for the PL measurements.It can be found that all of the samples can exhibit obvious PL signal centered at approximately 468 nm and the PL intensity increases with the increase of calcination temperature.These PL signals result from the surface oxygen vacancies and defects of TiO2[16].Generally speaking,a lower PL intensity indicates a lower recombination rate of electron-hole pairs, higher separation efficiency and higher photocatalytic activity[17].These results suggest that TiO2/SiO2calcined at 200℃may have the higher photocatalytic activity than that of the other photocatalysts.

    2.3 FTIR analysis

    Fig.4 shows the FTIR spectra of SiO2and TiO2/SiO2in the range of 400~4 000 cm-1.As shown in the spectrum of SiO2,the board peak around 3430 cm-1and 1 630 cm-1can be assigned to the O-H stretching and flexural vibration of adsorbed water,respectively.The peak at 1088 cm-1corresponds to the Si-O-Si stretching vibration[18].Compared with the spectrum of SiO2,the spectrum of TiO2/SiO2photocatalyst calcined at 200℃obviously changes.The peak of Si-O-Si stretching vibration shift to 1 094 cm-1.The peak at 960 cm-1corresponds to the Si-O-Ti bond which suggests that the TiO2combines with SiO2by the formation of Si-O-Ti chemical bond[8,18].

    2.4 UV-Vis DRS anaylsis

    Fig.5 shows the UV-Vis DRS spectra of 200 ℃calcined pure TiO2and TiO2/SiO2.The absorption edge of TiO2/SiO2shifts to 395 nm in comparison with that of pure TiO2at about 414 nm.It shows that SiO2causes the absorption edge of TiO2to shift to higher energy region.

    2.5 Morphology analysis

    The SEM images of TiO2/SiO2calcined at 200℃are displayed in Fig.6.It can be seen that the samples are composed of well-defined micro-size particles which can be relatively easy to separate from the aqueous solution.

    2.6 Photocatalytic activity

    Fig.7a shows the degradation curves of MO solution catalyzed by the TiO2/SiO2photocatalysts calcined at 200~700 ℃.It can be observed that all of the decoloration rates of MO solution are relatively low due to the weak UV light intensity employed in this experiment.With the increase in illumination time,the decoloration rateofMO solution increases.The decoloration rate of MO solution catalyzed by the sample calcined at 200 ℃ reaches to 70.96%after illumination for 7 h which is slightly higher than that of 300℃.On the other hand,the photocatalytic activities of the samples calcined from 400℃to 700℃are obviously lower than that of 200℃.This can be attributed to the smallercrystallite size,lower recombination rate of electron-hole pairs and higher photocatalytic activity of TiO2contained in the sample calcined at 200℃.

    The photocatalytic activity of photocatalyst prepared by ESAM compared with that of conventional method was further evaluated,and the results are shown in Fig.7b.The decoloration rate of MO solution catalyzed by photocatalyst prepared by conventional method is 39.71%after illumination for 7 h,which is significantly lower than that of the former.

    The content of the TiO2in the two photocatalysts were examined by ICP.The results show that the content of TiO2in the sample prepared by ESAM and conventional method is 43.7%and 29.9%,respectively.This result may be the main reason for the higher photocatalytic activity of sample prepared by ESAM method.The content of TiO2in the sample prepared by ESAM method was higher than the theoretical value due to the unique formation mechanisms of TiO2/SiO2photocatalysts.

    During the treatmentofSiO2surfaceswith sulfhydryl silane coupling agent,the alkoxy groups hydrolyzein an aqueousenvironment,producing hydroxyl groups,one or more of which condense with the hydroxyl groups commonly found on SiO2surfaces as well as with one another.Subsequent drying leads to the formation of both covalent bond linkages with the surface and development of a cross-linked silane film[19].30%H2O2/HOAc solution was used to oxidize the sulfhydryl group of the silane to sulfonic acid group,which is proved in our early study[20].TiCl4hydrolysis products of titanium polycation can self-assemble with the electronegative SiO2particles to form microparticles by electrostatic attraction.The nano TiO2/SiO2photocatalysts can be obtained after the above samples calcining at a certain temperature.

    In this preparation procedure of ESAM method,the content of electronegative SiO2nanoparticles is much more than titanium polycation which may result in the excess and accumulation of electronegative SiO2nanoparticles,and further,partly excessive and accumulated SiO2nanoparticles may probably lose during the preparation procedure.This may be the reason why the content of TiO2is higher than the theoretical value.A further study in this aspect is required.

    3 Conclusions

    Nano TiO2/SiO2photocatalysts were prepared by ESAM method.Photocatalysts calcined from 200 ℃ to 700℃are composed of anatase phase without any rutile phase.Contrasting with the crystal forms and crystallite sizes of pure TiO2,it can be suggested that the SiO2facilitates the formation of anatase,restrains the transformation of anatase to rutile and decreases the crystallite size of TiO2.TiO2combines with SiO2by formation of Si-O-Ti chemical bond.SiO2causes the absorption edge of TiO2to shift to 395 nm in comparison with that of pure TiO2at about 414 nm.The photocatalysts are composed of well-defined microsized particles which can be relatively easy to separate from the aqueous solution.The decoloration rate of MO solution catalyzed by the sample calcined at 200℃reaches to 70.96%after illumination for 7 h which is higher than that of 300~700 ℃.This may be attributed to the smaller crystallite size,lower recombination rate of electron-hole pairs and higher photocatalytic activity of TiO2contained in the photocatalyst calcined at 200℃.The decoloration rate of MO solution catalyzed by photocatalyst prepared by conventional method is 39.71%after illumination for 7 h,which is significantly lower than that of ESAM.The content of TiO2in the sample prepared by ESAM and conventional method was 43.7%and 29.9%,respec-tively.This result can be obviously attributed to the higher photocatalytic activity of the sample prepared by ESAM.

    [1]Fujishima A,Rao T N,Tryk D A.J.Photochem.Photobiol.C,2000,1:1-21

    [2]Dholam R,Patel N,Adami M,et al.Int.J.Hydrogen Energy,2008,33:6896-6903

    [3]Deb S K.Sol.Energ.Mat.Sol.C,2005,88:1-10

    [4]Sichel C,Cara M D,Tello J,et al.Appl.Catal.B:Environ.,2007,74:152-160

    [5]Hong S S,Lee M S,Park S S,et al.Catal.Today,2003,87:99-105

    [6]Kim Y K,Kim E Y,Wang C M,et al.J.Sol-Gel Sci.Technol.,2005,33:87-91

    [7]Ang T P,Toh C S,Han Y F.J.Phys.Chem.C,2009,113:10560-10567

    [8]Qourzal S,Barka N,Tamimi M,et al.Mater.Sci.Eng.,C,2009,29:1616-1620

    [9]Mohamed R M.J.Mater.Process.Tech.,2009,209:577-583

    [10]Fan G Z,Zou B,Cheng S Q,et al.J.Ind.Eng.Chem.,2010,16:220-223

    [11]Yu J G,Yu H G,Cheng B,et al.J.Phys.Chem.B,2003,107:13871-13879

    [12]Zhao L,Yu J G,Cheng B.J.Solid State Chem.,2005,178:1818-1824

    [13]Decher G,Hong J D.Makromol.Chem.Macromol.Symp.,1991,46:321-327

    [14]Shin H,Agarwal M,De Guire M R,et al.Acta Mater.,1998,46:801-815

    [15]Chen R F,Zhang L,Song X Q,et al.Rare Metals,2007,26:565-571

    [16]Wang B Q,Jing L Q,Qu Y C,et al.Appl.Surf.Sci.,2006,252:2817-2825

    [17]Cai H S,Lu G G,Lü W Y,et al.J.Rare Earth,2008,26:71-74

    [18]Yu X X,Liu S W,Yu J G.Appl.Catal.B,2011,104:12-20

    [19]Miller A C,Berg J C.Composites Part A:Appl.S,2003,34:327-332

    [20]WANG Cheng(王程),GONG Wen-Qi(龔文琪),LEI Shao-Min(雷 紹 民 ),et al.Inorganic Chemicals Industry(Wujiyan Gongye),2006,38:35-38

    Preparation of Nano TiO2/SiO2Photocatalysts by Electrostatic Self-assembly Method

    WANG Cheng1,2SHI Hui-Sheng*,1LI Yan2GUO Xiao-Lu1

    (1Key Laboratory of Advanced Civil Engineering Materials(Tongji University),Ministry of Education,Shanghai 201804,China)
    (2Institue of Material Science and Engineering,Shijiazhuang University of Economics,Shijiazhuang 050031,China)

    The nano TiO2/SiO2photocatalysts were prepared by electrostatic self-assembly method (ESAM).Silane coupling agent of(OCH3)3Si(CH2)3SH was used to modify the surface of SiO2powders by dry process.Sulfhydryl group(-SH)of the silane was oxidized to easy ionized sulfonyl(-SO3H)by 30%H2O2/HOAc oxidant.The electronegative SiO2was assembled with titanium polycation by electrostatic attraction.The as-prepared compounds were calcined under certain temperature to obtain the nano TiO2/SiO2photocatalysts.The materials were characterized by XRD,FTIR,photoluminescence (PL),UV-Vis DRS,SEM and ICP.The photocatalytic activity was evaluated by the degradation of methyl orange in aqueous solution.The results show that SiO2facilitates the formation of anatase,restrains the transformation of anatase to rutile,decreases the crystallite size of TiO2and causes the absorption edge of TiO2to shift to higher energy region.TiO2combines with SiO2by the formation of Si-O-Ti chemical bond.Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity than that of traditional method attributed to the higher content of TiO2in the samples.

    electrostatic self-assembly;TiO2;SiO2;photocatalyst;methyl orange

    O614.41+1;O613.72;TB34

    A

    1001-4861(2011)11-2239-06

    2011-06-24。收修改稿日期:2011-07-15。

    河北省自然科學(xué)基金(No.E2008000537)、河北省科學(xué)技術(shù)研究與發(fā)展指導(dǎo)計劃項目(No.07215156)、河北省自然科學(xué)基金-鋼鐵聯(lián)合基金(No.E2009000946)和同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室青年基金(No.2010412)資助項目。

    *通訊聯(lián)系人。 E-mail:shs@#edu.cn

    猜你喜歡
    施惠銳鈦礦同濟(jì)大學(xué)
    《同濟(jì)大學(xué)學(xué)報(醫(yī)學(xué)版)》介紹
    從好意施惠行為探討友善價值觀在民法中的落實(shí)
    貴州水城龍場銳鈦礦礦床地質(zhì)特征及成因
    好意施惠行為的性質(zhì)及責(zé)任承擔(dān)
    法制博覽(2020年27期)2020-11-30 15:47:37
    《同濟(jì)大學(xué)學(xué)報(醫(yī)學(xué)版)》介紹
    基于第一性原理研究Y摻雜銳鈦礦TiO2的磁光性質(zhì)
    論民法中的好意施惠
    法制博覽(2019年27期)2019-12-13 23:37:40
    《同濟(jì)大學(xué)學(xué)報(自然科學(xué)版)》征稿啟事
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    施惠葆 從發(fā)布新品到定義新品
    日韩欧美三级三区| 三级毛片av免费| 免费av中文字幕在线| 丰满迷人的少妇在线观看| av电影中文网址| 久久人人精品亚洲av| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 狂野欧美激情性xxxx| 成人精品一区二区免费| 国产深夜福利视频在线观看| 成人免费观看视频高清| 久久这里只有精品19| 看免费av毛片| 丝袜在线中文字幕| 午夜福利,免费看| 久久亚洲真实| 一级片'在线观看视频| 一本综合久久免费| 国产在线观看jvid| 免费观看人在逋| 色婷婷av一区二区三区视频| 黑人欧美特级aaaaaa片| 超碰97精品在线观看| 亚洲精品久久成人aⅴ小说| 国产av精品麻豆| 久久中文字幕一级| 女人精品久久久久毛片| 中文字幕最新亚洲高清| 一边摸一边抽搐一进一出视频| 91成人精品电影| 国产免费现黄频在线看| 无人区码免费观看不卡| 91在线观看av| 亚洲国产精品sss在线观看 | 一级毛片精品| 麻豆久久精品国产亚洲av | 在线观看免费高清a一片| 久久久久久免费高清国产稀缺| 亚洲成人精品中文字幕电影 | 久久久久久久久免费视频了| 亚洲三区欧美一区| 一二三四社区在线视频社区8| 午夜免费激情av| 国产精品永久免费网站| 久久精品国产综合久久久| 久久人人97超碰香蕉20202| 成年人免费黄色播放视频| 中文欧美无线码| 丰满迷人的少妇在线观看| 国产视频一区二区在线看| 久久精品国产亚洲av香蕉五月| 高清黄色对白视频在线免费看| 大码成人一级视频| 国产精品1区2区在线观看.| 久久狼人影院| 满18在线观看网站| 成人18禁在线播放| 少妇 在线观看| 婷婷六月久久综合丁香| 久久精品亚洲av国产电影网| 精品国内亚洲2022精品成人| 日韩精品青青久久久久久| av有码第一页| 精品欧美一区二区三区在线| 午夜激情av网站| 在线观看一区二区三区| 一边摸一边抽搐一进一小说| 怎么达到女性高潮| 乱人伦中国视频| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码| 老司机深夜福利视频在线观看| 亚洲美女黄片视频| 国内毛片毛片毛片毛片毛片| 欧美黄色淫秽网站| 国产精品一区二区精品视频观看| 在线免费观看的www视频| 桃红色精品国产亚洲av| 精品久久久久久久久久免费视频 | 久久精品成人免费网站| 国产高清国产精品国产三级| 精品国产超薄肉色丝袜足j| 欧美黄色片欧美黄色片| 99久久国产精品久久久| 欧美人与性动交α欧美软件| 亚洲国产毛片av蜜桃av| 中国美女看黄片| 国产精品一区二区在线不卡| 老汉色∧v一级毛片| 亚洲精品美女久久av网站| 99在线视频只有这里精品首页| 脱女人内裤的视频| 国产成人系列免费观看| 又大又爽又粗| 免费观看精品视频网站| 99国产极品粉嫩在线观看| 大陆偷拍与自拍| 国产亚洲欧美98| 免费在线观看视频国产中文字幕亚洲| 天天影视国产精品| 高清毛片免费观看视频网站 | 另类亚洲欧美激情| 精品熟女少妇八av免费久了| 亚洲一区二区三区不卡视频| 80岁老熟妇乱子伦牲交| 日韩大码丰满熟妇| 一区二区三区国产精品乱码| 亚洲精品久久成人aⅴ小说| 视频在线观看一区二区三区| 免费一级毛片在线播放高清视频 | 极品教师在线免费播放| svipshipincom国产片| 麻豆成人av在线观看| 黄片小视频在线播放| 久久午夜亚洲精品久久| 成人精品一区二区免费| 日本 av在线| 大香蕉久久成人网| 91九色精品人成在线观看| 啦啦啦免费观看视频1| 一个人观看的视频www高清免费观看 | 日韩有码中文字幕| 国产精品乱码一区二三区的特点 | 99riav亚洲国产免费| 亚洲情色 制服丝袜| 午夜精品国产一区二区电影| 成在线人永久免费视频| 最新美女视频免费是黄的| 午夜视频精品福利| 亚洲七黄色美女视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧美日韩在线播放| 国产精品av久久久久免费| 免费女性裸体啪啪无遮挡网站| 成人三级做爰电影| 亚洲欧美日韩另类电影网站| 亚洲人成77777在线视频| 中出人妻视频一区二区| 少妇 在线观看| 国产一区二区三区综合在线观看| 人妻久久中文字幕网| 久久国产精品影院| 十八禁网站免费在线| 老司机午夜十八禁免费视频| 一级黄色大片毛片| 亚洲精品粉嫩美女一区| 欧美日韩亚洲国产一区二区在线观看| 亚洲三区欧美一区| 视频区欧美日本亚洲| 在线av久久热| 精品国产超薄肉色丝袜足j| 久久久久久大精品| 成人18禁在线播放| 欧美日本亚洲视频在线播放| 高清黄色对白视频在线免费看| 制服人妻中文乱码| 人人妻,人人澡人人爽秒播| 久久久久久久精品吃奶| 成年女人毛片免费观看观看9| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 女性生殖器流出的白浆| 国产精品久久电影中文字幕| 国产深夜福利视频在线观看| 国产成人影院久久av| 久久青草综合色| av中文乱码字幕在线| 亚洲av熟女| 制服人妻中文乱码| 国产亚洲精品第一综合不卡| 真人一进一出gif抽搐免费| 欧美日韩国产mv在线观看视频| 国产高清激情床上av| 欧美成狂野欧美在线观看| 中文字幕高清在线视频| 在线永久观看黄色视频| 亚洲欧美激情综合另类| 中文亚洲av片在线观看爽| 久久香蕉国产精品| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| 黑丝袜美女国产一区| 精品久久久久久成人av| 大型黄色视频在线免费观看| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 久久精品影院6| www国产在线视频色| 侵犯人妻中文字幕一二三四区| 亚洲熟妇熟女久久| 91麻豆av在线| 亚洲精品国产区一区二| 99国产精品一区二区蜜桃av| 国产99久久九九免费精品| 天天影视国产精品| 久久久精品国产亚洲av高清涩受| 一边摸一边做爽爽视频免费| 性色av乱码一区二区三区2| 9色porny在线观看| 最好的美女福利视频网| 久久午夜亚洲精品久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 亚洲欧美精品综合久久99| 天堂俺去俺来也www色官网| 一个人免费在线观看的高清视频| 国产日韩一区二区三区精品不卡| 91成人精品电影| 久久人妻熟女aⅴ| 久久热在线av| 精品一区二区三卡| 美女 人体艺术 gogo| 岛国在线观看网站| 90打野战视频偷拍视频| 淫妇啪啪啪对白视频| 亚洲国产毛片av蜜桃av| 久久香蕉激情| 午夜两性在线视频| 极品教师在线免费播放| 日本三级黄在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品 国内视频| 日日爽夜夜爽网站| 少妇被粗大的猛进出69影院| 三级毛片av免费| 又紧又爽又黄一区二区| 男女之事视频高清在线观看| 国产精品野战在线观看 | 中文字幕av电影在线播放| 精品一品国产午夜福利视频| 中文字幕人妻熟女乱码| 手机成人av网站| 国产精品九九99| 色综合欧美亚洲国产小说| 国产精品一区二区精品视频观看| 精品免费久久久久久久清纯| 日日夜夜操网爽| 国产又爽黄色视频| 99香蕉大伊视频| 黄色成人免费大全| 中文字幕另类日韩欧美亚洲嫩草| 丁香六月欧美| 国产精品国产av在线观看| 久久这里只有精品19| 中文亚洲av片在线观看爽| 精品免费久久久久久久清纯| 91在线观看av| 色综合站精品国产| 国产成人av激情在线播放| 在线观看一区二区三区激情| 人人妻人人澡人人看| 中文亚洲av片在线观看爽| 18禁美女被吸乳视频| 人妻丰满熟妇av一区二区三区| 在线观看一区二区三区激情| av片东京热男人的天堂| 97碰自拍视频| 一区在线观看完整版| 亚洲午夜精品一区,二区,三区| 五月开心婷婷网| 搡老乐熟女国产| 久久国产乱子伦精品免费另类| 久久香蕉激情| 一级黄色大片毛片| 久久人妻熟女aⅴ| 真人做人爱边吃奶动态| 欧美日本中文国产一区发布| 国产aⅴ精品一区二区三区波| 亚洲自拍偷在线| 亚洲色图 男人天堂 中文字幕| 岛国在线观看网站| 免费女性裸体啪啪无遮挡网站| 日日爽夜夜爽网站| 国产一区二区三区综合在线观看| 精品久久久久久久久久免费视频 | 性欧美人与动物交配| 午夜视频精品福利| 18禁裸乳无遮挡免费网站照片 | √禁漫天堂资源中文www| 日韩精品青青久久久久久| 久久性视频一级片| 在线观看66精品国产| 国内毛片毛片毛片毛片毛片| 窝窝影院91人妻| 宅男免费午夜| 国产人伦9x9x在线观看| 国产主播在线观看一区二区| 亚洲avbb在线观看| 精品一区二区三卡| 亚洲免费av在线视频| 老司机靠b影院| 日韩大码丰满熟妇| 国产视频一区二区在线看| 久久99一区二区三区| 久久国产精品影院| 免费女性裸体啪啪无遮挡网站| 美女福利国产在线| 色综合站精品国产| 美女福利国产在线| av有码第一页| 久久国产亚洲av麻豆专区| 国产成年人精品一区二区 | 黄色视频不卡| 窝窝影院91人妻| 岛国视频午夜一区免费看| 多毛熟女@视频| 无遮挡黄片免费观看| 精品熟女少妇八av免费久了| 久久久久久人人人人人| 日韩有码中文字幕| 三上悠亚av全集在线观看| 高清毛片免费观看视频网站 | 中文字幕人妻丝袜制服| 韩国av一区二区三区四区| 久久中文看片网| 免费av中文字幕在线| 久久国产精品男人的天堂亚洲| 97超级碰碰碰精品色视频在线观看| 纯流量卡能插随身wifi吗| 久久性视频一级片| 热re99久久精品国产66热6| 亚洲国产欧美一区二区综合| 国产精品国产高清国产av| 中文字幕人妻丝袜制服| 中文字幕高清在线视频| 在线永久观看黄色视频| 老司机福利观看| www.自偷自拍.com| 亚洲精华国产精华精| 男男h啪啪无遮挡| 19禁男女啪啪无遮挡网站| 夜夜躁狠狠躁天天躁| a级片在线免费高清观看视频| 久久久国产一区二区| 亚洲成人精品中文字幕电影 | 午夜视频精品福利| 18禁黄网站禁片午夜丰满| 每晚都被弄得嗷嗷叫到高潮| 欧美色视频一区免费| 久久久久久免费高清国产稀缺| 桃红色精品国产亚洲av| 国产无遮挡羞羞视频在线观看| 色精品久久人妻99蜜桃| 国产精品一区二区精品视频观看| 中国美女看黄片| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 热99国产精品久久久久久7| 免费高清在线观看日韩| 久久精品亚洲精品国产色婷小说| 国产有黄有色有爽视频| www日本在线高清视频| 欧美日韩亚洲综合一区二区三区_| 91精品国产国语对白视频| 黄色视频不卡| 淫秽高清视频在线观看| 露出奶头的视频| 日本五十路高清| 精品国内亚洲2022精品成人| 丰满人妻熟妇乱又伦精品不卡| 麻豆av在线久日| 黄片大片在线免费观看| 可以免费在线观看a视频的电影网站| 精品无人区乱码1区二区| 性少妇av在线| 日日爽夜夜爽网站| 成年版毛片免费区| 精品福利观看| 久久这里只有精品19| 黄色视频,在线免费观看| 久久久久国内视频| 男女高潮啪啪啪动态图| 欧美日韩国产mv在线观看视频| 在线观看66精品国产| 12—13女人毛片做爰片一| 国产91精品成人一区二区三区| 国产成人精品无人区| 91麻豆av在线| 女性被躁到高潮视频| 午夜视频精品福利| 亚洲精品美女久久久久99蜜臀| 久久精品国产亚洲av高清一级| 视频区图区小说| 一区二区三区国产精品乱码| 国产成人欧美| 国产一区二区在线av高清观看| 又大又爽又粗| 人人澡人人妻人| 老熟妇乱子伦视频在线观看| 久久亚洲精品不卡| 日本a在线网址| 欧洲精品卡2卡3卡4卡5卡区| 久热爱精品视频在线9| 午夜免费观看网址| 亚洲人成电影观看| 国产av一区在线观看免费| 亚洲欧美激情在线| 成年人免费黄色播放视频| 无人区码免费观看不卡| 亚洲色图综合在线观看| 午夜视频精品福利| 99国产综合亚洲精品| 亚洲成国产人片在线观看| 亚洲一区中文字幕在线| 99re在线观看精品视频| 国产成人精品无人区| 黄色丝袜av网址大全| 国产高清视频在线播放一区| 亚洲精品美女久久av网站| 欧美成狂野欧美在线观看| 亚洲 欧美一区二区三区| 人人妻,人人澡人人爽秒播| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 在线观看66精品国产| 国产精品一区二区三区四区久久 | 青草久久国产| xxx96com| 成人国产一区最新在线观看| 国产免费现黄频在线看| 操美女的视频在线观看| 美女国产高潮福利片在线看| 精品一品国产午夜福利视频| 一边摸一边抽搐一进一小说| 欧美久久黑人一区二区| av中文乱码字幕在线| 18美女黄网站色大片免费观看| av天堂久久9| 久久人人97超碰香蕉20202| 一个人免费在线观看的高清视频| 国产色视频综合| 成人精品一区二区免费| 热re99久久精品国产66热6| 国产精品久久久人人做人人爽| 麻豆av在线久日| 91老司机精品| 欧美日韩av久久| 搡老岳熟女国产| 国产有黄有色有爽视频| 亚洲欧美激情综合另类| 午夜免费鲁丝| 999久久久精品免费观看国产| 欧美激情 高清一区二区三区| 久99久视频精品免费| 亚洲自偷自拍图片 自拍| 91成人精品电影| 精品国产乱码久久久久久男人| 国产亚洲欧美98| 99国产精品99久久久久| 色在线成人网| 日韩大码丰满熟妇| 日韩大尺度精品在线看网址 | 国产精品99久久99久久久不卡| 午夜a级毛片| 国产欧美日韩一区二区精品| 两性夫妻黄色片| 亚洲国产精品一区二区三区在线| 亚洲第一欧美日韩一区二区三区| a级毛片黄视频| 国产一区二区三区综合在线观看| 性少妇av在线| 9热在线视频观看99| 亚洲激情在线av| 国产欧美日韩一区二区精品| 中文欧美无线码| 国产精品电影一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲av熟女| 免费av中文字幕在线| 亚洲成人久久性| 久久精品影院6| 最新在线观看一区二区三区| 国产精品1区2区在线观看.| 日韩三级视频一区二区三区| e午夜精品久久久久久久| 久久国产精品影院| 免费高清在线观看日韩| 久久伊人香网站| ponron亚洲| 啪啪无遮挡十八禁网站| 丰满迷人的少妇在线观看| 黑人巨大精品欧美一区二区蜜桃| 18禁美女被吸乳视频| av天堂久久9| 久久久久亚洲av毛片大全| a级毛片在线看网站| 国产成人免费无遮挡视频| 欧美午夜高清在线| 久久久精品国产亚洲av高清涩受| 777久久人妻少妇嫩草av网站| 亚洲精品一二三| 日本wwww免费看| 动漫黄色视频在线观看| 琪琪午夜伦伦电影理论片6080| 91大片在线观看| 亚洲全国av大片| 1024视频免费在线观看| 国产1区2区3区精品| 丰满的人妻完整版| 免费不卡黄色视频| 亚洲中文字幕日韩| 少妇裸体淫交视频免费看高清 | 亚洲一码二码三码区别大吗| 一级毛片精品| 免费在线观看完整版高清| 国产片内射在线| 国产xxxxx性猛交| 99在线视频只有这里精品首页| 亚洲欧美精品综合一区二区三区| 99精国产麻豆久久婷婷| 午夜免费鲁丝| 久久天堂一区二区三区四区| 十分钟在线观看高清视频www| 91字幕亚洲| 免费不卡黄色视频| 韩国精品一区二区三区| 国产成人影院久久av| 香蕉久久夜色| 色综合站精品国产| 国产精品野战在线观看 | 丰满迷人的少妇在线观看| 亚洲美女黄片视频| 国产麻豆69| 超碰97精品在线观看| 视频在线观看一区二区三区| 成人永久免费在线观看视频| 天堂√8在线中文| 两个人看的免费小视频| 国产蜜桃级精品一区二区三区| 亚洲第一欧美日韩一区二区三区| av中文乱码字幕在线| 很黄的视频免费| 韩国精品一区二区三区| 18禁黄网站禁片午夜丰满| 免费在线观看影片大全网站| 麻豆av在线久日| 变态另类成人亚洲欧美熟女 | 久久精品国产亚洲av高清一级| 欧美人与性动交α欧美软件| 99精国产麻豆久久婷婷| 看片在线看免费视频| 久久久水蜜桃国产精品网| 国产精品电影一区二区三区| 亚洲久久久国产精品| 最近最新中文字幕大全电影3 | 亚洲一区二区三区欧美精品| 水蜜桃什么品种好| 久久久久久久精品吃奶| 老司机亚洲免费影院| 俄罗斯特黄特色一大片| 99国产精品99久久久久| 国产一区二区激情短视频| 我的亚洲天堂| 欧美激情 高清一区二区三区| 多毛熟女@视频| 精品人妻在线不人妻| 日韩欧美在线二视频| 国产又色又爽无遮挡免费看| 免费在线观看亚洲国产| ponron亚洲| 日本wwww免费看| 最好的美女福利视频网| 精品国产一区二区久久| 国产精品综合久久久久久久免费 | 亚洲成人免费av在线播放| 女人被狂操c到高潮| 亚洲国产精品sss在线观看 | 久久 成人 亚洲| 一二三四社区在线视频社区8| 黄色a级毛片大全视频| 日本黄色日本黄色录像| 亚洲 欧美一区二区三区| 99在线人妻在线中文字幕| 日韩大尺度精品在线看网址 | 黄色视频不卡| 脱女人内裤的视频| 亚洲中文av在线| 亚洲国产欧美网| 91成年电影在线观看| 欧美日韩国产mv在线观看视频| 国产精品av久久久久免费| 韩国av一区二区三区四区| 极品教师在线免费播放| 亚洲一区二区三区不卡视频| 欧美激情高清一区二区三区| 不卡av一区二区三区| 高清黄色对白视频在线免费看| 日韩国内少妇激情av| 免费女性裸体啪啪无遮挡网站| 超碰成人久久| 亚洲aⅴ乱码一区二区在线播放 | 久久国产精品男人的天堂亚洲| 最新在线观看一区二区三区| 欧美av亚洲av综合av国产av| 亚洲一区高清亚洲精品| 一a级毛片在线观看| 法律面前人人平等表现在哪些方面| 婷婷六月久久综合丁香| 久久午夜综合久久蜜桃| 99热只有精品国产| 免费在线观看日本一区| 欧美激情极品国产一区二区三区| 精品国产乱子伦一区二区三区| 国产精品二区激情视频| 高潮久久久久久久久久久不卡| 在线天堂中文资源库| 热re99久久国产66热| av在线天堂中文字幕 | 人人妻,人人澡人人爽秒播| 99热只有精品国产| 两人在一起打扑克的视频| 新久久久久国产一级毛片| 狂野欧美激情性xxxx| 日韩欧美一区二区三区在线观看|