• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    靜電自組裝制備納米TiO2/SiO2光催化材料

    2011-11-10 02:08:26施惠生郭曉潞
    無機(jī)化學(xué)學(xué)報 2011年11期
    關(guān)鍵詞:施惠銳鈦礦同濟(jì)大學(xué)

    王 程 施惠生 李 艷 郭曉潞

    (1同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室,上海 201804)(2石家莊經(jīng)濟(jì)學(xué)院材料科學(xué)與工程研究所,石家莊 050031)

    靜電自組裝制備納米TiO2/SiO2光催化材料

    王 程1,2施惠生*,1李 艷2郭曉潞1

    (1同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室,上海 201804)(2石家莊經(jīng)濟(jì)學(xué)院材料科學(xué)與工程研究所,石家莊 050031)

    采用靜電自組裝方法制備了納米TiO2/SiO2光催化材料。采用巰丙基三甲氧基硅烷偶聯(lián)劑對SiO2進(jìn)行干法改性,采用雙氧水/冰醋酸將偶聯(lián)劑巰基基團(tuán)氧化為磺酸基基團(tuán)。在正負(fù)電荷的吸引下,帶負(fù)電荷的SiO2與帶正電荷的鈦聚合陽離子自發(fā)地組裝在一起,經(jīng)一定溫度熱處理得到納米TiO2/SiO2光催化材料。采用XRD、FTIR、PL、UV-Vis DRS、SEM和ICP等對材料進(jìn)行了分析和表征。采用甲基橙溶液評價材料的光催化性能。結(jié)果表明:SiO2促使銳鈦礦的形成,抑制銳鈦礦向金紅石的轉(zhuǎn)變,減小TiO2的晶粒尺寸,使得TiO2光吸收波長發(fā)生藍(lán)移。TiO2與SiO2通過Si-O-Ti鍵發(fā)生結(jié)合。采用靜電自組裝方法制備的材料中TiO2的含量高于傳統(tǒng)方法,導(dǎo)致材料的光催化性能有所提高。

    靜電自組裝;TiO2;SiO2;光催化材料;甲基橙

    Nano-sized TiO2as one of the most promising photocatalysts has attracted much attention owing to its photocatalytic degradation of organic pollutants,photocatalytic dissociation ofwater,solarenergyconversion,and disinfection[1-4].However,it is difficult and expensive to recycle TiO2nanopowders in the practical utilization due to the formation of milky dispersion after mixing the nanopowders into the wastewater.

    TiO2/SiO2oxides were found to be a good candidate material to overcome the above problem.Further more,it was demonstrated that SiO2could improve the thermal stability,decrease TiO2particle size and thus improve the UV photocatalytic activity of TiO2[5-8].So far,the TiO2/SiO2photocatalysts have been prepared by several approaches including impregnation[9],precipitation[10]and sol-gel techniques[5-8].However,during the preparation procedures mentioned above,the surface of SiO2is positively charged in acid aqueous environments,thus resulting in the mutual exclusion of SiO2and titanium polycation.This phenomenon may further lead to a low composite efficiency of SiO2with TiO2and furtherreduce the photocatalytic activity ofthe photocatalysts.Recently,researchers have adopted different methods to solve the above problems,for example,using liquid-phase deposition (LPD)method from a (NH4)2TiF6aqueous solution upon addition of boric acid (H3BO3)[11],using hydroxypropyl cellulose(HPC)as a surface esterification agent to modify the substrate[12].Decher et al.[13]reported in 1991 a novel method called electrostatic self-assembly method(ESAM).According to the ESAM,the opposite electric charge elements self-assemble with each other by electrostatic interaction.Related to that,Shin et al.[14]found that TiO2films on silicon prepared by ESAM showed densely packed anatase crystallites.Chen et al.[15]used ESAM to prepare Iron (Ⅲ)-doped TiO2/SiO2particles and the results showed that TiO2nanopowders were well distributed on the surface of SiO2.

    In this paper,ESAM method was used to prepare nano TiO2/SiO2photocatalysts.The aim of this work was to investigate the photocatalytic property ofthe prepared photocatalysts and the interrelationship of SiO2with TiO2.Based on the above goals,XRD,FTIR,PL,UV-Vis DRS,ICP and SEM were employed to characterize the microstructure and morphology of the photocatalysts.The photocatalytic activtiy of nano TiO2/SiO2photocatalysts for the degradation of methyl orange was also evaluated.

    1 Experimental

    1.1 Photocatalysts preparation

    Silane coupling agent of (OCH3)3Si(CH2)3SH(Wuhan University Silicone New Material Co.,Ltd.,China)was used to modify the SiO2powders(Zhoushan Mingri Nano-material Ltd.,China,average grain size of 10 nm).In a typical preparation,2wt%silane (it was diluted by the same volume of ethanol)was mixed with SiO2powders and then the mixture was stirred at 120℃for 30 min.The modified SiO2powders were oxidized by 30%H2O2/HOAc(hydrogen peroxide/glacial acetic acid)at 50℃ for 2 h.

    The modified and oxidized SiO2powders were mixed up with decuple distilled water and heated up to 70℃.Subsequently,TiCl4solution (the theoretical proportion of TiO2in the photocatalyst was 30wt%)was added drop wise into the above mortar and the pH value of the dispersion was adjusted to about 2.0.The system was vigorously stirred at 70 ℃ for 4 h.After aging for 12 h,the product was filtrated and washed repeatedly three times with distilled water,and then dried at 80℃for 2 h.The above samples were finally calcined at 200~700℃ for 2 h in a muffle furnace to obtain the TiO2/SiO2photocatalysts.

    Unmodified SiO2powders were used to prepare TiO2/SiO2photocatalyst(referring to as conventional method here after)in order to compare with the photocatalyst prepared by ESAM.Pure TiO2powders were also prepared by the conventional method too.

    1.2 Characterization

    The structure of samples was characterized by XRD (D/max 2550VB3+/PC,Rigaku International Corporation,Japan)under the following conditions:graphite monochromatic copper radiation (Cu Kα,λ=0.154 18 nm);40 kV as accelerating voltage;40 mA as emission current;and the 2θ range of 3°~70°at a scan rate of 4°·min-1.The sizes of TiO2were estimated using the Scherrer equation.FTIR spectra, for the determination of Si-O-Ti bond of the photocatalysts,were recorded by a spectrometer (Nexus,Thermo Nicolet Corporation,America)using KBr pellets at room temperature in the region of 400~4 000 cm-1.The photoluminescence (PL)spectra of the samples were recorded with RF-540 spectrofluorophotometer(RF-540,Shimadzu Instruments,Japan),using the 280 nm excitation line of a Xe lamp.UV-Vis absorption spectra(UV-Vis DRS)of the samples were obtained for the drypressed disk samples using a UV-Visible spectrophotometer with an integrating sphere(UV-3010,HITA-CHI,Japan).The morphology of the photocatalyst was examined by field-emission scanning electron microscope (FESEM)(Quanta 200 FEG,FEI Company,America)with an accelerating voltage of 10 kV.The content of TiO2in the photocatalyst was examined by ICP(Optima 4300DV,Perkin Elmer Ltd.,America).

    1.3 Photocatalytic activity tests

    The photocatalytic activity of the sample was evaluated by the degradation of methyl orange(MO)in an aqueous solution.The photocatalytic reactor system consisted of a 40 W UV lamp centered at 253.7 nm and a magnetic stirrer for obtaining dispersion.In a typical test for MO degradation,the photocatalyst(1 g)was suspended in a 100 mL MO solution (10 mg·L-1)and then treated under UV light for different times.The concentration of the MO solution was monitored at regular time intervals by measuring the maximum absorbance of MO (464 nm),using 722S spectrometer(722S,Shanghai Precision&Scientific Instrument Co.,Ltd.,China).The decoloration rate of the MO solution was calculated according to P=(A0-At)/A0×100%,where P is the decoloration rate of the solution;A0is the absorbency of the original solution;Atis the absorbency of the MO solution after treating for t h.

    2 Results and discussion

    2.1 XRD analysis

    Fig.1 shows the XRD patterns of nano TiO2/SiO2photocatalysts calcined at 200~700 ℃.The patterns reveal that all the samples are composed of anatase phase without any rutile phase even at 700℃.With the ascent in calcination temperature,the peak intensity of anatase phase increases significantly,indicating the decrease in crystallite oxygen vacancies and intrinsic defects of anatase phase.Simultaneously,the width of the(101)peak becomes narrower,suggesting the growth of anatase crystallites.The crystallite sizes of TiO2calculated by the Scherrer equation are about 2.5 nm,3.8,4.7,5.1,8.6 and 9.3 nm,respec-tively,as the calcination temperature increases from 200℃to 700℃.

    Fig.2 shows the XRD patterns of pure TiO2calcined at 200~700 ℃.The obtained TiO2are anatase and plenty of brookite,anatase,anatase and little rutile,anatase and rutile,anatase and plenty of rutile,rutile,respectively,as the calcined temperature increases from 200℃ to 700℃.The crystallite size of TiO2calcined from 200℃to 700℃calculated by the Scherrer equation are about 4.5,5.2,8.2,11.7,16.5 and 25.6 nm,respectively.Contrasting with the crystal forms and crystallite size of TiO2in the TiO2/SiO2photocatalysts,it can be suggested that the SiO2facilitates the formation of anatase,restrains the transformation of anatase to rutile and decreases the crystallite size of TiO2.

    2.2 PL analysis

    Fig.3 shows the PL spectra of TiO2/SiO2calcined at 200,300 and 400 ℃,respectively.A 280 nm He-Cd laser was used as the excitation source for the PL measurements.It can be found that all of the samples can exhibit obvious PL signal centered at approximately 468 nm and the PL intensity increases with the increase of calcination temperature.These PL signals result from the surface oxygen vacancies and defects of TiO2[16].Generally speaking,a lower PL intensity indicates a lower recombination rate of electron-hole pairs, higher separation efficiency and higher photocatalytic activity[17].These results suggest that TiO2/SiO2calcined at 200℃may have the higher photocatalytic activity than that of the other photocatalysts.

    2.3 FTIR analysis

    Fig.4 shows the FTIR spectra of SiO2and TiO2/SiO2in the range of 400~4 000 cm-1.As shown in the spectrum of SiO2,the board peak around 3430 cm-1and 1 630 cm-1can be assigned to the O-H stretching and flexural vibration of adsorbed water,respectively.The peak at 1088 cm-1corresponds to the Si-O-Si stretching vibration[18].Compared with the spectrum of SiO2,the spectrum of TiO2/SiO2photocatalyst calcined at 200℃obviously changes.The peak of Si-O-Si stretching vibration shift to 1 094 cm-1.The peak at 960 cm-1corresponds to the Si-O-Ti bond which suggests that the TiO2combines with SiO2by the formation of Si-O-Ti chemical bond[8,18].

    2.4 UV-Vis DRS anaylsis

    Fig.5 shows the UV-Vis DRS spectra of 200 ℃calcined pure TiO2and TiO2/SiO2.The absorption edge of TiO2/SiO2shifts to 395 nm in comparison with that of pure TiO2at about 414 nm.It shows that SiO2causes the absorption edge of TiO2to shift to higher energy region.

    2.5 Morphology analysis

    The SEM images of TiO2/SiO2calcined at 200℃are displayed in Fig.6.It can be seen that the samples are composed of well-defined micro-size particles which can be relatively easy to separate from the aqueous solution.

    2.6 Photocatalytic activity

    Fig.7a shows the degradation curves of MO solution catalyzed by the TiO2/SiO2photocatalysts calcined at 200~700 ℃.It can be observed that all of the decoloration rates of MO solution are relatively low due to the weak UV light intensity employed in this experiment.With the increase in illumination time,the decoloration rateofMO solution increases.The decoloration rate of MO solution catalyzed by the sample calcined at 200 ℃ reaches to 70.96%after illumination for 7 h which is slightly higher than that of 300℃.On the other hand,the photocatalytic activities of the samples calcined from 400℃to 700℃are obviously lower than that of 200℃.This can be attributed to the smallercrystallite size,lower recombination rate of electron-hole pairs and higher photocatalytic activity of TiO2contained in the sample calcined at 200℃.

    The photocatalytic activity of photocatalyst prepared by ESAM compared with that of conventional method was further evaluated,and the results are shown in Fig.7b.The decoloration rate of MO solution catalyzed by photocatalyst prepared by conventional method is 39.71%after illumination for 7 h,which is significantly lower than that of the former.

    The content of the TiO2in the two photocatalysts were examined by ICP.The results show that the content of TiO2in the sample prepared by ESAM and conventional method is 43.7%and 29.9%,respectively.This result may be the main reason for the higher photocatalytic activity of sample prepared by ESAM method.The content of TiO2in the sample prepared by ESAM method was higher than the theoretical value due to the unique formation mechanisms of TiO2/SiO2photocatalysts.

    During the treatmentofSiO2surfaceswith sulfhydryl silane coupling agent,the alkoxy groups hydrolyzein an aqueousenvironment,producing hydroxyl groups,one or more of which condense with the hydroxyl groups commonly found on SiO2surfaces as well as with one another.Subsequent drying leads to the formation of both covalent bond linkages with the surface and development of a cross-linked silane film[19].30%H2O2/HOAc solution was used to oxidize the sulfhydryl group of the silane to sulfonic acid group,which is proved in our early study[20].TiCl4hydrolysis products of titanium polycation can self-assemble with the electronegative SiO2particles to form microparticles by electrostatic attraction.The nano TiO2/SiO2photocatalysts can be obtained after the above samples calcining at a certain temperature.

    In this preparation procedure of ESAM method,the content of electronegative SiO2nanoparticles is much more than titanium polycation which may result in the excess and accumulation of electronegative SiO2nanoparticles,and further,partly excessive and accumulated SiO2nanoparticles may probably lose during the preparation procedure.This may be the reason why the content of TiO2is higher than the theoretical value.A further study in this aspect is required.

    3 Conclusions

    Nano TiO2/SiO2photocatalysts were prepared by ESAM method.Photocatalysts calcined from 200 ℃ to 700℃are composed of anatase phase without any rutile phase.Contrasting with the crystal forms and crystallite sizes of pure TiO2,it can be suggested that the SiO2facilitates the formation of anatase,restrains the transformation of anatase to rutile and decreases the crystallite size of TiO2.TiO2combines with SiO2by formation of Si-O-Ti chemical bond.SiO2causes the absorption edge of TiO2to shift to 395 nm in comparison with that of pure TiO2at about 414 nm.The photocatalysts are composed of well-defined microsized particles which can be relatively easy to separate from the aqueous solution.The decoloration rate of MO solution catalyzed by the sample calcined at 200℃reaches to 70.96%after illumination for 7 h which is higher than that of 300~700 ℃.This may be attributed to the smaller crystallite size,lower recombination rate of electron-hole pairs and higher photocatalytic activity of TiO2contained in the photocatalyst calcined at 200℃.The decoloration rate of MO solution catalyzed by photocatalyst prepared by conventional method is 39.71%after illumination for 7 h,which is significantly lower than that of ESAM.The content of TiO2in the sample prepared by ESAM and conventional method was 43.7%and 29.9%,respec-tively.This result can be obviously attributed to the higher photocatalytic activity of the sample prepared by ESAM.

    [1]Fujishima A,Rao T N,Tryk D A.J.Photochem.Photobiol.C,2000,1:1-21

    [2]Dholam R,Patel N,Adami M,et al.Int.J.Hydrogen Energy,2008,33:6896-6903

    [3]Deb S K.Sol.Energ.Mat.Sol.C,2005,88:1-10

    [4]Sichel C,Cara M D,Tello J,et al.Appl.Catal.B:Environ.,2007,74:152-160

    [5]Hong S S,Lee M S,Park S S,et al.Catal.Today,2003,87:99-105

    [6]Kim Y K,Kim E Y,Wang C M,et al.J.Sol-Gel Sci.Technol.,2005,33:87-91

    [7]Ang T P,Toh C S,Han Y F.J.Phys.Chem.C,2009,113:10560-10567

    [8]Qourzal S,Barka N,Tamimi M,et al.Mater.Sci.Eng.,C,2009,29:1616-1620

    [9]Mohamed R M.J.Mater.Process.Tech.,2009,209:577-583

    [10]Fan G Z,Zou B,Cheng S Q,et al.J.Ind.Eng.Chem.,2010,16:220-223

    [11]Yu J G,Yu H G,Cheng B,et al.J.Phys.Chem.B,2003,107:13871-13879

    [12]Zhao L,Yu J G,Cheng B.J.Solid State Chem.,2005,178:1818-1824

    [13]Decher G,Hong J D.Makromol.Chem.Macromol.Symp.,1991,46:321-327

    [14]Shin H,Agarwal M,De Guire M R,et al.Acta Mater.,1998,46:801-815

    [15]Chen R F,Zhang L,Song X Q,et al.Rare Metals,2007,26:565-571

    [16]Wang B Q,Jing L Q,Qu Y C,et al.Appl.Surf.Sci.,2006,252:2817-2825

    [17]Cai H S,Lu G G,Lü W Y,et al.J.Rare Earth,2008,26:71-74

    [18]Yu X X,Liu S W,Yu J G.Appl.Catal.B,2011,104:12-20

    [19]Miller A C,Berg J C.Composites Part A:Appl.S,2003,34:327-332

    [20]WANG Cheng(王程),GONG Wen-Qi(龔文琪),LEI Shao-Min(雷 紹 民 ),et al.Inorganic Chemicals Industry(Wujiyan Gongye),2006,38:35-38

    Preparation of Nano TiO2/SiO2Photocatalysts by Electrostatic Self-assembly Method

    WANG Cheng1,2SHI Hui-Sheng*,1LI Yan2GUO Xiao-Lu1

    (1Key Laboratory of Advanced Civil Engineering Materials(Tongji University),Ministry of Education,Shanghai 201804,China)
    (2Institue of Material Science and Engineering,Shijiazhuang University of Economics,Shijiazhuang 050031,China)

    The nano TiO2/SiO2photocatalysts were prepared by electrostatic self-assembly method (ESAM).Silane coupling agent of(OCH3)3Si(CH2)3SH was used to modify the surface of SiO2powders by dry process.Sulfhydryl group(-SH)of the silane was oxidized to easy ionized sulfonyl(-SO3H)by 30%H2O2/HOAc oxidant.The electronegative SiO2was assembled with titanium polycation by electrostatic attraction.The as-prepared compounds were calcined under certain temperature to obtain the nano TiO2/SiO2photocatalysts.The materials were characterized by XRD,FTIR,photoluminescence (PL),UV-Vis DRS,SEM and ICP.The photocatalytic activity was evaluated by the degradation of methyl orange in aqueous solution.The results show that SiO2facilitates the formation of anatase,restrains the transformation of anatase to rutile,decreases the crystallite size of TiO2and causes the absorption edge of TiO2to shift to higher energy region.TiO2combines with SiO2by the formation of Si-O-Ti chemical bond.Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity than that of traditional method attributed to the higher content of TiO2in the samples.

    electrostatic self-assembly;TiO2;SiO2;photocatalyst;methyl orange

    O614.41+1;O613.72;TB34

    A

    1001-4861(2011)11-2239-06

    2011-06-24。收修改稿日期:2011-07-15。

    河北省自然科學(xué)基金(No.E2008000537)、河北省科學(xué)技術(shù)研究與發(fā)展指導(dǎo)計劃項目(No.07215156)、河北省自然科學(xué)基金-鋼鐵聯(lián)合基金(No.E2009000946)和同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室青年基金(No.2010412)資助項目。

    *通訊聯(lián)系人。 E-mail:shs@#edu.cn

    猜你喜歡
    施惠銳鈦礦同濟(jì)大學(xué)
    《同濟(jì)大學(xué)學(xué)報(醫(yī)學(xué)版)》介紹
    從好意施惠行為探討友善價值觀在民法中的落實(shí)
    貴州水城龍場銳鈦礦礦床地質(zhì)特征及成因
    好意施惠行為的性質(zhì)及責(zé)任承擔(dān)
    法制博覽(2020年27期)2020-11-30 15:47:37
    《同濟(jì)大學(xué)學(xué)報(醫(yī)學(xué)版)》介紹
    基于第一性原理研究Y摻雜銳鈦礦TiO2的磁光性質(zhì)
    論民法中的好意施惠
    法制博覽(2019年27期)2019-12-13 23:37:40
    《同濟(jì)大學(xué)學(xué)報(自然科學(xué)版)》征稿啟事
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    施惠葆 從發(fā)布新品到定義新品
    日日爽夜夜爽网站| 啦啦啦在线免费观看视频4| 精品国产一区二区三区久久久樱花| 成人国产一区最新在线观看| 麻豆乱淫一区二区| 国产亚洲av高清不卡| 美女视频免费永久观看网站| 伊人久久大香线蕉亚洲五| 手机成人av网站| 国产精品99久久99久久久不卡| 日韩欧美国产一区二区入口| 久久久欧美国产精品| 久久人妻熟女aⅴ| 日韩制服骚丝袜av| 美国免费a级毛片| 三上悠亚av全集在线观看| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 国产高清国产精品国产三级| 97精品久久久久久久久久精品| 日韩电影二区| 国产福利在线免费观看视频| 亚洲欧洲日产国产| 国产视频一区二区在线看| tube8黄色片| 精品国产一区二区三区久久久樱花| 热99re8久久精品国产| av在线播放精品| 精品国产超薄肉色丝袜足j| 91麻豆精品激情在线观看国产 | 久久ye,这里只有精品| 老司机在亚洲福利影院| kizo精华| 男人操女人黄网站| 一级毛片精品| 亚洲av成人不卡在线观看播放网 | 又黄又粗又硬又大视频| 亚洲国产看品久久| 亚洲一区二区三区欧美精品| 两个人看的免费小视频| 黄色 视频免费看| 99精品欧美一区二区三区四区| 十八禁人妻一区二区| svipshipincom国产片| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠躁躁| 最近中文字幕2019免费版| 精品久久久久久电影网| 无限看片的www在线观看| 男女午夜视频在线观看| 国产成人精品久久二区二区91| av又黄又爽大尺度在线免费看| 中文字幕精品免费在线观看视频| 国产一区有黄有色的免费视频| 久久中文字幕一级| 老司机福利观看| 一区二区三区乱码不卡18| 亚洲少妇的诱惑av| 亚洲人成77777在线视频| 精品一区二区三区四区五区乱码| 国产成+人综合+亚洲专区| 精品亚洲成国产av| 老鸭窝网址在线观看| 亚洲avbb在线观看| 午夜两性在线视频| 久久中文看片网| 黄片大片在线免费观看| 国产一区二区 视频在线| 免费日韩欧美在线观看| 欧美性长视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 女人高潮潮喷娇喘18禁视频| 女人高潮潮喷娇喘18禁视频| 国产伦理片在线播放av一区| 精品免费久久久久久久清纯 | 午夜91福利影院| 亚洲国产欧美网| 美女福利国产在线| www日本在线高清视频| 久热爱精品视频在线9| 丰满饥渴人妻一区二区三| 日韩制服丝袜自拍偷拍| 丁香六月天网| 午夜免费观看性视频| 日韩,欧美,国产一区二区三区| 成在线人永久免费视频| 久久久久久久久久久久大奶| 日本一区二区免费在线视频| 亚洲专区字幕在线| 另类亚洲欧美激情| 成人手机av| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 91av网站免费观看| 一级毛片电影观看| 国产欧美日韩一区二区三区在线| 国产精品av久久久久免费| 亚洲第一欧美日韩一区二区三区 | 国产无遮挡羞羞视频在线观看| 欧美日本中文国产一区发布| 国产成人免费观看mmmm| 久久国产精品影院| 国产亚洲欧美在线一区二区| 大片电影免费在线观看免费| 亚洲精品第二区| 一本一本久久a久久精品综合妖精| 久久九九热精品免费| 亚洲精品久久午夜乱码| 丝瓜视频免费看黄片| videosex国产| 欧美中文综合在线视频| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美精品自产自拍| 久久久久久久久免费视频了| 亚洲专区中文字幕在线| 满18在线观看网站| 青青草视频在线视频观看| 美女视频免费永久观看网站| 成年美女黄网站色视频大全免费| 制服人妻中文乱码| 99国产极品粉嫩在线观看| 久久亚洲精品不卡| 亚洲av电影在线进入| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久 | 一本—道久久a久久精品蜜桃钙片| 欧美精品啪啪一区二区三区 | 一本—道久久a久久精品蜜桃钙片| 美女国产高潮福利片在线看| 精品少妇黑人巨大在线播放| 国产97色在线日韩免费| 老熟妇乱子伦视频在线观看 | 爱豆传媒免费全集在线观看| 老熟妇乱子伦视频在线观看 | 欧美中文综合在线视频| 91字幕亚洲| 久久人妻福利社区极品人妻图片| 精品第一国产精品| 新久久久久国产一级毛片| 纵有疾风起免费观看全集完整版| 免费在线观看日本一区| 亚洲国产看品久久| 女警被强在线播放| 下体分泌物呈黄色| 国产精品九九99| 在线av久久热| 国产成人欧美| 亚洲九九香蕉| 法律面前人人平等表现在哪些方面 | 亚洲 国产 在线| 日韩欧美免费精品| 黄色怎么调成土黄色| 精品人妻1区二区| 亚洲七黄色美女视频| 欧美精品av麻豆av| 国产亚洲精品第一综合不卡| av网站免费在线观看视频| 国产精品一区二区在线不卡| 精品亚洲成国产av| 波多野结衣一区麻豆| 亚洲av片天天在线观看| 欧美午夜高清在线| 操美女的视频在线观看| 国产日韩欧美视频二区| 大陆偷拍与自拍| 国产成人啪精品午夜网站| 啦啦啦啦在线视频资源| 日韩视频一区二区在线观看| 国产一区二区 视频在线| 老熟女久久久| cao死你这个sao货| 看免费av毛片| 久久久精品免费免费高清| 波多野结衣一区麻豆| 亚洲精品国产av成人精品| 午夜福利一区二区在线看| 男人操女人黄网站| 成年人午夜在线观看视频| 久久av网站| 日本vs欧美在线观看视频| 手机成人av网站| 精品人妻熟女毛片av久久网站| 桃花免费在线播放| 欧美日韩黄片免| 99精国产麻豆久久婷婷| 欧美少妇被猛烈插入视频| 悠悠久久av| 黄频高清免费视频| 日本av手机在线免费观看| 无遮挡黄片免费观看| 久久精品成人免费网站| 亚洲av片天天在线观看| 人妻一区二区av| 精品国产一区二区久久| 精品少妇一区二区三区视频日本电影| 国产成人精品在线电影| √禁漫天堂资源中文www| 丝袜在线中文字幕| 天天操日日干夜夜撸| 91老司机精品| 91成人精品电影| 十八禁人妻一区二区| 久久精品国产综合久久久| 精品一品国产午夜福利视频| 国产麻豆69| 少妇 在线观看| 国产免费现黄频在线看| √禁漫天堂资源中文www| 亚洲全国av大片| 天天操日日干夜夜撸| 亚洲精品av麻豆狂野| 久久狼人影院| 操美女的视频在线观看| 亚洲精品在线美女| 69av精品久久久久久 | 纯流量卡能插随身wifi吗| 亚洲精品中文字幕一二三四区 | 老熟妇仑乱视频hdxx| 国产免费福利视频在线观看| 热re99久久国产66热| 热99久久久久精品小说推荐| 日韩大片免费观看网站| 另类精品久久| av有码第一页| 国产成人一区二区三区免费视频网站| 青青草视频在线视频观看| 中文字幕制服av| 99精国产麻豆久久婷婷| av片东京热男人的天堂| 50天的宝宝边吃奶边哭怎么回事| 99国产精品一区二区三区| 精品亚洲成国产av| 精品国产乱码久久久久久男人| 性少妇av在线| 美女福利国产在线| 老熟妇仑乱视频hdxx| 99国产精品免费福利视频| 亚洲一区二区三区欧美精品| 2018国产大陆天天弄谢| 一区二区三区乱码不卡18| 天天躁夜夜躁狠狠躁躁| 亚洲人成77777在线视频| 国产一区二区在线观看av| 色播在线永久视频| 亚洲伊人色综图| 视频区欧美日本亚洲| 国产欧美日韩综合在线一区二区| 老司机深夜福利视频在线观看 | 精品卡一卡二卡四卡免费| 亚洲视频免费观看视频| 高清av免费在线| 成人国产一区最新在线观看| 制服诱惑二区| 国产精品国产三级国产专区5o| 国内毛片毛片毛片毛片毛片| 精品少妇内射三级| 亚洲精品美女久久久久99蜜臀| 精品欧美一区二区三区在线| 日本91视频免费播放| 欧美人与性动交α欧美精品济南到| 亚洲国产精品成人久久小说| 成年美女黄网站色视频大全免费| 咕卡用的链子| 国产精品.久久久| 制服人妻中文乱码| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 嫩草影视91久久| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| 国产有黄有色有爽视频| 9191精品国产免费久久| av有码第一页| 精品国内亚洲2022精品成人 | 欧美激情久久久久久爽电影 | 老司机午夜十八禁免费视频| 三上悠亚av全集在线观看| 亚洲av国产av综合av卡| 亚洲精品一卡2卡三卡4卡5卡 | 久久久久久久精品精品| 国产又色又爽无遮挡免| 国产精品免费大片| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人免费观看mmmm| 999久久久国产精品视频| 十八禁人妻一区二区| 女性被躁到高潮视频| 性高湖久久久久久久久免费观看| 人人澡人人妻人| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 国产高清视频在线播放一区 | 伊人久久大香线蕉亚洲五| 国产精品偷伦视频观看了| 国产精品久久久久久精品电影小说| 99精国产麻豆久久婷婷| 亚洲国产欧美网| 精品人妻熟女毛片av久久网站| 男女高潮啪啪啪动态图| 一区二区日韩欧美中文字幕| 可以免费在线观看a视频的电影网站| 性色av一级| 亚洲av电影在线进入| 国产av精品麻豆| 亚洲中文av在线| 亚洲人成电影免费在线| 在线观看舔阴道视频| av在线app专区| 亚洲av日韩在线播放| 亚洲国产中文字幕在线视频| 国产精品国产三级国产专区5o| 精品少妇黑人巨大在线播放| 精品国产一区二区久久| 久久精品亚洲熟妇少妇任你| 日韩欧美一区视频在线观看| 丝袜人妻中文字幕| 啦啦啦在线免费观看视频4| 涩涩av久久男人的天堂| 欧美精品一区二区大全| 亚洲情色 制服丝袜| 国产在线一区二区三区精| 男女免费视频国产| 高清av免费在线| 在线观看www视频免费| 午夜福利免费观看在线| 色综合欧美亚洲国产小说| 建设人人有责人人尽责人人享有的| 香蕉丝袜av| 久久影院123| 免费黄频网站在线观看国产| 日本wwww免费看| 老熟妇仑乱视频hdxx| 香蕉国产在线看| 亚洲三区欧美一区| 成人手机av| 午夜两性在线视频| 嫁个100分男人电影在线观看| 一二三四在线观看免费中文在| 亚洲国产精品一区二区三区在线| 99国产精品一区二区三区| 香蕉丝袜av| 91九色精品人成在线观看| 岛国毛片在线播放| 国产成人a∨麻豆精品| 一二三四社区在线视频社区8| 亚洲国产精品一区三区| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看 | 精品少妇内射三级| tube8黄色片| 男女免费视频国产| 成人18禁高潮啪啪吃奶动态图| 自线自在国产av| av福利片在线| 久久久久久久国产电影| 热99re8久久精品国产| 18禁观看日本| 99久久国产精品久久久| 韩国精品一区二区三区| 桃花免费在线播放| 搡老岳熟女国产| 久久久久国产一级毛片高清牌| 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 亚洲专区中文字幕在线| 国产欧美日韩综合在线一区二区| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 自线自在国产av| 三级毛片av免费| 亚洲 国产 在线| 人人妻人人澡人人看| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 午夜精品国产一区二区电影| 视频区图区小说| 亚洲专区中文字幕在线| av片东京热男人的天堂| 免费少妇av软件| 亚洲国产欧美在线一区| 久热这里只有精品99| 丰满人妻熟妇乱又伦精品不卡| 欧美变态另类bdsm刘玥| 亚洲国产精品一区三区| 久久久水蜜桃国产精品网| 一级毛片精品| 最近中文字幕2019免费版| 99九九在线精品视频| 亚洲国产日韩一区二区| 视频区图区小说| 欧美人与性动交α欧美精品济南到| 精品国产国语对白av| 在线永久观看黄色视频| 亚洲精品国产一区二区精华液| 精品人妻一区二区三区麻豆| 最近最新中文字幕大全免费视频| av在线播放精品| 十八禁网站免费在线| 两个人看的免费小视频| 欧美午夜高清在线| 欧美少妇被猛烈插入视频| 国产主播在线观看一区二区| 91麻豆av在线| 一级黄色大片毛片| 肉色欧美久久久久久久蜜桃| 黄色怎么调成土黄色| 国产真人三级小视频在线观看| 精品国产乱码久久久久久小说| 日韩中文字幕欧美一区二区| 人成视频在线观看免费观看| 欧美乱码精品一区二区三区| 亚洲国产精品999| 午夜激情久久久久久久| av线在线观看网站| 中亚洲国语对白在线视频| 又黄又粗又硬又大视频| 亚洲精品一二三| 婷婷丁香在线五月| 韩国精品一区二区三区| 高清黄色对白视频在线免费看| 真人做人爱边吃奶动态| 精品乱码久久久久久99久播| 成人三级做爰电影| 精品国产超薄肉色丝袜足j| 性色av乱码一区二区三区2| 精品少妇久久久久久888优播| 新久久久久国产一级毛片| 国产成人影院久久av| 欧美乱码精品一区二区三区| 亚洲成av片中文字幕在线观看| 777米奇影视久久| 在线亚洲精品国产二区图片欧美| 免费看十八禁软件| 欧美国产精品一级二级三级| 午夜视频精品福利| 亚洲黑人精品在线| 搡老熟女国产l中国老女人| 老汉色av国产亚洲站长工具| 国产精品欧美亚洲77777| 亚洲成人免费av在线播放| 操出白浆在线播放| 日本91视频免费播放| 国产男女内射视频| 精品乱码久久久久久99久播| 亚洲中文日韩欧美视频| 国产成人精品久久二区二区91| 亚洲精品第二区| 一区在线观看完整版| 久久精品国产a三级三级三级| 老司机午夜福利在线观看视频 | 国产又爽黄色视频| 高清在线国产一区| 19禁男女啪啪无遮挡网站| 亚洲av片天天在线观看| 天天操日日干夜夜撸| 一区二区三区激情视频| 午夜老司机福利片| 精品一区二区三卡| 人人澡人人妻人| 国产成人精品在线电影| 久久久精品免费免费高清| 国产精品一区二区在线不卡| 日韩,欧美,国产一区二区三区| 在线观看舔阴道视频| 欧美精品一区二区大全| 久久久精品区二区三区| 欧美日韩福利视频一区二区| 亚洲成人免费av在线播放| 国产精品 欧美亚洲| 亚洲精品美女久久久久99蜜臀| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕一二三四区 | 亚洲精品一二三| 黄色毛片三级朝国网站| 黄频高清免费视频| 久热爱精品视频在线9| 亚洲一卡2卡3卡4卡5卡精品中文| 国产日韩欧美亚洲二区| 国产男女内射视频| 亚洲成av片中文字幕在线观看| 亚洲国产欧美网| 交换朋友夫妻互换小说| 国产无遮挡羞羞视频在线观看| 性少妇av在线| 久久亚洲精品不卡| 精品国产乱子伦一区二区三区 | 黑人巨大精品欧美一区二区mp4| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人免费av在线播放| 国产精品 欧美亚洲| 久久久水蜜桃国产精品网| 夜夜骑夜夜射夜夜干| 1024视频免费在线观看| 12—13女人毛片做爰片一| 久久久久久亚洲精品国产蜜桃av| 久久毛片免费看一区二区三区| 免费一级毛片在线播放高清视频 | 国产男人的电影天堂91| 午夜福利,免费看| 中文字幕高清在线视频| 国产成人精品久久二区二区91| 动漫黄色视频在线观看| 两人在一起打扑克的视频| av视频免费观看在线观看| 久久 成人 亚洲| 国产成人精品无人区| 亚洲精品中文字幕在线视频| 成人国语在线视频| 在线永久观看黄色视频| 中文字幕高清在线视频| 久久久久久久久久久久大奶| 久久久久久久大尺度免费视频| 欧美一级毛片孕妇| 人妻一区二区av| 一区二区三区乱码不卡18| 免费看十八禁软件| 日韩制服丝袜自拍偷拍| 午夜成年电影在线免费观看| 国产在线免费精品| 男人爽女人下面视频在线观看| 免费观看a级毛片全部| 午夜影院在线不卡| 国产成人av激情在线播放| 亚洲九九香蕉| 亚洲欧美激情在线| 操美女的视频在线观看| 国产91精品成人一区二区三区 | 女人被躁到高潮嗷嗷叫费观| 婷婷丁香在线五月| 亚洲精品美女久久av网站| 一本综合久久免费| 亚洲精品自拍成人| 久久精品国产a三级三级三级| 丰满人妻熟妇乱又伦精品不卡| 久久久国产精品麻豆| 超碰成人久久| 欧美日韩视频精品一区| 国产日韩欧美在线精品| 精品国产乱子伦一区二区三区 | 久久久久久免费高清国产稀缺| 18禁裸乳无遮挡动漫免费视频| 高清视频免费观看一区二区| 国产精品久久久久成人av| 成年人黄色毛片网站| 国产精品麻豆人妻色哟哟久久| 黄色a级毛片大全视频| 免费观看av网站的网址| 国产精品免费视频内射| 成年人黄色毛片网站| 亚洲全国av大片| 18禁裸乳无遮挡动漫免费视频| 天天影视国产精品| 国产精品欧美亚洲77777| 宅男免费午夜| 窝窝影院91人妻| 69av精品久久久久久 | videosex国产| 亚洲欧美日韩另类电影网站| 日本撒尿小便嘘嘘汇集6| 宅男免费午夜| 99久久综合免费| 亚洲欧美精品自产自拍| 狂野欧美激情性bbbbbb| 91国产中文字幕| 亚洲专区中文字幕在线| 一本色道久久久久久精品综合| av欧美777| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜一区二区| 久久精品国产综合久久久| 桃红色精品国产亚洲av| 国产一区有黄有色的免费视频| 久久青草综合色| 国产精品久久久久久人妻精品电影 | 老司机靠b影院| 一级片'在线观看视频| 成人免费观看视频高清| 无限看片的www在线观看| 欧美精品一区二区大全| 蜜桃国产av成人99| 中文字幕人妻熟女乱码| 精品亚洲成国产av| 美女扒开内裤让男人捅视频| 一本一本久久a久久精品综合妖精| 天堂8中文在线网| 岛国毛片在线播放| 国产成+人综合+亚洲专区| 男女边摸边吃奶| 欧美日韩黄片免| av片东京热男人的天堂| 精品少妇黑人巨大在线播放| 欧美日韩精品网址| 日本vs欧美在线观看视频| 高清视频免费观看一区二区| 亚洲午夜精品一区,二区,三区| 99热国产这里只有精品6| 欧美97在线视频| 欧美久久黑人一区二区| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 亚洲七黄色美女视频| 999久久久精品免费观看国产| 99久久精品国产亚洲精品| 两个人免费观看高清视频| 天堂8中文在线网| 大陆偷拍与自拍| 久热爱精品视频在线9| 99热国产这里只有精品6| 亚洲欧美色中文字幕在线| av天堂久久9| 亚洲av日韩精品久久久久久密| 国产在视频线精品| 国产精品久久久久久人妻精品电影 | 狂野欧美激情性bbbbbb| 后天国语完整版免费观看|