• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Synthesis Temperature on Structure and Ceramization Process of Polyaluminasilazanes

    2011-11-09 10:43:04LISongZHANGYue
    關(guān)鍵詞:核磁前驅(qū)復(fù)合材料

    LI Song ZHANG Yue

    (1Key Laboratory of Aerospace Materials and Performance,School of Materials Science and Engineering, Beihang University,Beijing 100191,China)

    (2State Key Laboratory of Advanced Fibre Composites,Beijing Composite Materials CO.,Ltd.Beijing 102101,China)

    Effect of Synthesis Temperature on Structure and Ceramization Process of Polyaluminasilazanes

    LI Song1,2ZHANG Yue*,1

    (1Key Laboratory of Aerospace Materials and Performance,School of Materials Science and Engineering, Beihang University,Beijing100191,China)

    (2State Key Laboratory of Advanced Fibre Composites,Beijing Composite Materials CO.,Ltd.Beijing102101,China)

    Polyaluminasilazanes with nominal Si/Al molar ratio of 3 were synthesized by reaction of poly (methylvinyl)silazane with aluminum isopropoxide at 90,100 and 120℃,respectively.The structures of the precursors were characterized by FTIR and NMR.The results indicate that,with the synthesis temperature increasing,the intensities of Al-N FTIR vibration peak (1 450 cm-1)and AlON2(8 ppm)and AlO2N (-1 ppm) groups of27Al NMR increase.The higher the reaction temperature is,the more the Al-N bonds are.The dehydrocoupling process may be a three-stage reaction process and the structure of polyaluminasilazane synthesized at 120℃ is the most complicated one due to the highest synthesis temperature.The pyrolysis processes of the precursors were studied by TG/DTA,FTIR and gas chromatography (GC).The synthesis temperatures have no significant effect on ceramization process and ceramic yield.Based on DTA curve,a further crosslink takes place at 475℃ during pyrolysis process.Besides,the released gases during pyrolysis process are identified by GC analysis as oligosilazane,CH4,C2H4,H2and NH3.According to the XRD and SEM results,the product pyrolyzed at 1200℃under nitrogen atmosphere is a homogenous amorphous phase.

    synthesis;polyaluminasilazane;structure;thermolysis

    The pyrolysis of precursors is an interesting approach to the fabrication of near-net shape products with high purity and homogeneity[1-3].In addition,the process offers a promising route for preparation of ceramic and fiber-reinforced ceramic matrix composites with desirable shapes,as well as fibers and coatings[4-6]. Many precursor-derived ceramics are used in hightemperature oxidization environments,thus property of the oxidation resistance is of importance.Due to their excellent oxidation resistance[7-11],high hot-corrosion resistance[8,10],as well as good thermal stability against crystallization[12],polyaluminasilazanes-derived SiAlCN ceramics are extremely attractive.

    The polyaluminasilazanes(PASZs)were generally synthesized via reaction of silazanes with organo aluminum compounds.Seyferth et al.[12-13]prepared PASZs from reaction of oligosilazanes with various amounts of trimethylalumium or triethylaluminum or dimethylaluminum amide.In other literatures[14-15],the aluminasilazane precursor was formed via reaction between trimethylaluminum and hexamethyldisilazane at room temperature.In addition,aluminasilazanes can also be fabricated by reaction of aluminum isopropoxide[8-11]orotherorganoaluminumcompounds[16-20]or aluminum hydride[7,21-23]with silazanes.Among of those organoaluminum compounds,aluminum isopropoxide is the cheapest and the most stable one in air.

    The SiAlCN ceramics own much better oxidation resistance with aluminum content increasing[9]. However,An and co-workers[7-11]merely prepared PASZs with low aluminum content(nSi∶nAl≥25∶3)via polycondensation reaction between polysilazane and aluminum isopropoxide.To the best of our knowledge, the PASZs with high aluminum content have not been synthesized via reaction of aluminum isopropoxide with silazane. And the relations among synthesis temperature,structureofPASZ and ceramization process remain to be clarified.So the present work is mainly involved in the preparation of PASZ with high aluminum content(nSi∶nAl=3∶1)via reaction of stable and low-cost aluminum isopropoxide with polysilazane,and studies on relations among synthesis temperature, structure and ceramization process of PASZ.The PASZ should own better oxidation resistance than those with low aluminum content.

    Here we report PASZs with high aluminum content (nSi∶nAl=3∶1)prepared via reaction between aluminum isopropoxide and a oligosilazane polymer by ammonolysis of dichloromethylvinylsilane at different temperatures.The structure and ceramization process of PASZsarecharacterizedbyNMR,IR,TG/DTAandGC.

    1 Experimental

    1.1 Synthesis and pyrolysis of PASZs

    Since chlorosilanes,silazanes and aluminasilazane are sensitive to moisture and air,the synthesis of PASZs was performed in protective nitrogen atmosphere to avoid from impurities.

    Ammonia(NH3)was dried by passing it through a column filled with pellets of anhydrous potassium hydroxide (KOH).The oligosilazane polymer was obtained by ammonolysis reaction of commercial dichloromethylvinylsilane(CH3Si(CHCH2)Cl2)(Alfa Aesar) dissolved in toluene with the pure NH3at 0℃.Eq.(1) shows the ammonolysis reaction[24].

    The byproduct of ammonolysis, ammonium chloride,was removed through vacuum filter.According to Eq.(2)[25],the PASZ with nSi/nAlstoichiometric ratio of 3 could been obtained via dehydrocoupling reaction between commercial aluminum isopropoxide (AIP,Al (OCH(CH3)2)3)(Sinopharm Chemical Reagent Co.,Ltd.) and the polysilazane obtained from Eq.(1).After the mixture of the AIP and the polysilazane was stirred at 90,100 and 120℃ for 4 h,the pale yellow liquid PASZ1,PASZ-2 and PASZ-3 wereobtained by removing the solvent under reduced pressure, respectively.

    Then,the liquid precursor was cured at 120℃under nitrogen atmosphere to obtain powder product. Accordingly,the powder product was pressed into disks under 140 MPa at ambient temperature.Subsequently, the disks were placed in a corundum crucible in a corundum tubefurnace filled with nitrogen and thermolyzed at different temperatures for 2 h under flowing nitrogen (80 mL·min-1).The heating and cooling rate was 3℃·min-1.

    1.2 Instrumentation

    Fourier transform Infra-red (FTIR)spectra were recorded on a Thermo Nicolet NEXUS-470 FTIR spectrometer using KBr pellets at room temperature.Nuclear magnetic resonance (NMR)analysis of the precursors was carried out on a BRUKER AVANCEⅢ-400 spectrometer using a 4 mm magic angle spinning (MAS)probe.29Si,27Al,13C,1H NMR experiments were performed at 79.30,104.01,100.37 and 399.16 MHz,respectively.27Al and13C chemical shifts were respectively referenced to hydrated Al ion Al(H2O)63+(1 mol·L-1aluminum nitrate)and adamantine as external standards.

    Thermolysis behavior was investigated by coupled thermogravimetry/differentialthermalanalysis(TG/ DTA)using a Beijing Hengjiu HCT-2 under nitrogen flow (30 mL·min-1)with heating rate of 10℃·min-1up to 1 000℃.The evolved gases during pyrolysis process were identified by gas chromatography (GC)using an Agilent 6890N(N2carrier gas of 30 mL·min-1,splitless injection at 25℃,stainless steel TDX-01 column of 2 mm×2 m in column oven at 80℃,thermal conductivity detector at 180℃).Ammonia among the pyrolysis gas was identified by visible spectrophotometer using 722S visible spectrophotometer.The residues of thermolysis at different temperatures were analyzed by FTIR and xray diffraction (XRD)using a D/max-2200PC (monochromated Cu Kα radiation,λ=0.154 184 nm,at 40 kV and 40 mA,10°~80°,SC-70 scintillation counter).The microstructure and elemental content of the pyrolyzed residues were investigated by using Cam Scan 3400 backscattered electron imaging of scanning electron microscopy (BEI-SEM)(20kV acceleration voltage)with an OXFORD INCAPentaFETX3 energy dispersive spectrometer(EDS).

    2 Results and discussion

    2.1 Characterization of precursors

    The ammonolysis product and PASZs(nominal Si/ Al molar ratio of 3)were characterized by FTIR.Fig.1 demonstrates the FTIR spectra for (a)ammonolysis product and polyaluminasilazanes of(b)PASZ-1,(c) PASZ-2 and(d)PASZ-3.Compared to the spectrum of (a),the relative intensities of the N-H and Si-NH-Si absorption bands at about 3 400 and 959 cm-1decrease in Fig.1(b),1(c)and 1(d).The absorption peak at 1 450 cm-1is characteristic band of Al-N bond[26].These indicate that the reaction (Eq.(2))occurs during the synthesis process and aluminum atom is introduced into the backbone of the polysilazane.

    Fig.1 FTIR spectra of(a)ammonolysis product and polyaluminasilazanes of(b)PASZ-1, (c)PASZ-2,(d)PASZ-3

    With the increase of synthesis temperature,the relative intensities of the CH=CH2bond peak at 1 600 cm-1,Si-CH3groups at 1 260 cm-1,H-C(methyl) bending vibration at 1 400 cm-1and methyl vibration at 2 960 cm-1gradually increase.The reason for this needs a further study.However,the intensity of Al-N groups at 1 450 cm-1increases with increasing synthesis temperature,because the reaction (Eq.(2))could be progressed more completely at higher synthesis temperature.We propose that the dehydrocoupling reaction is a three-stage reaction(Eq.(3))includingⅠ-stage(formation of one Al-N bond),Ⅱ-stage(formation of two Al-N bond)andⅢ-stage(formation of three Al-N bond).While the synthesis process at high temperature can be more likely to occur in theⅡ-stage andⅢ-stage reactions than that at lower temperature.So,the PASZ-3 synthesized at 120℃can possess more complicated network structure than the PASZ-1 and the PASZ-2 prepared at relatively low temperature.

    Above-mentioned FTIR results indicate that aluminum is introduced into the backbone of the polysilazane.Due to the formation of complicated network structure via the Ⅱ-stage and Ⅲ-stage dehydrocoupling reaction, the higher reaction temperature,the stronger intensity of the characteristic peak of Al-N bond.Besides,the FTIR spectra of(b),(c) and (d)are similar to the spectrum of aluminum isopropoxide (AIP)at 3 000~3 600 cm-1.It is possible that the dehydrocoupling reaction occurs partially.Thus,there are still partial groups of AIP remained within the PASZ synthesized at different temperatures (including N2Al(OCH(CH3)2)and NAl(OCH(CH3)2)2).

    Fig.2 shows the29Si NMR spectra of(a)PASZ-1, (b)PASZ-2 and(c)PASZ-3.29Si NMR signals at-21.7 ppm,-34.2 ppm and-65.7 ppm are ascribed to the SiC2O2,SiC2ON and SiC2N2,respectively.With the reaction temperature increasing,theⅡ-stage andⅢ-stage dehydrocoupling reaction (Eq.(3))occurs more easily.Therefore,the signals of SiC2N2(Al)(-56.2 ppm) and SiC2N2(Al2) (-45.5 ppm)is the strongest in spectrum (c)compared to the other two spectra.There are no significant variations for other signals(-21.7 ppm,-34.2 ppm,-65.7 ppm)in the three spectra.

    Fig.2 29Si NMR spectra of(a)PASZ-1,(b)PASZ-2, (c)PASZ-3

    The27Al NMR spectra of(a)PASZ-1,(b)PASZ-2 and (c)PASZ-3 are shown in Fig.3.There is only one broad peak ascribed to the overlapping of AlON2(8 ppm)and AlO2N(-1 ppm)units in the range of 15 ppm~20 ppm.The area of the signal in Fig.3(C)is obviously larger than that in the other two spectra, suggesting that PASZ-3 owns the largest number of Al-N unit among the three PASZs.The intensity of AlON2unit increases slowly with the synthesis temperature increasing.It suggests that the effect of synthesis temperature is not significant on formation of AlON2unit.In contrast,the area of the peak corresponding to AlO2N environmentincreasesobviously with the synthesis temperature increasing.This result suggests that the formation of AlO2N is easier than that of AlON2unit with the synthesis temperature increasing.It is evident that PASZ-3 owns more AlN and AlN2groups as a result of easier formation of Al-N bond in theⅠ-stage andⅡ-stage dehydrocoupling reaction at high reaction temperature.

    Fig.3 27Al NMR spectra of(a)PASZ-1,(b)PASZ-2, (c)PASZ-3

    Fig.4 shows the13C NMR spectra of(a)PASZ-1,(b) PASZ-2 and(c)PASZ-3.13C NMR signals at 136.3 ppm, 28.8 ppm,23.1 ppm and 1.2 ppm are ascribed to the Si-CH=CH2,OCH(CH3)2,OCH(CH3)2and SiCH3groups, respectively.Because of easy occurrence of the I-stage andⅡ-stage dehydrocoupling reaction at 120℃,the intensities of OCH(CH3)2(28.8 ppm)and OCH(CH3)2(23.1 ppm)signals decrease in Fig.4(c).Whereas,there are unreacted Al-OCH(CH3)2groups remaining in the structure of PASZ-3 precursor.

    Fig.4 13C NMR spectra of(a)PASZ-1,(b)PASZ-2, (c)PASZ-3

    Fig.5 1H NMR spectra of(a)PASZ-1,(b)PASZ-2, (c)PASZ-3

    The1H NMR spectra of(a)PASZ-1,(b)PASZ-2, (c)PASZ-3 are shown in Fig.5.The resonances at 6.7 ppm and 5.9 ppm are attributed to the-CH=CH2and -CH =CH2groups, respectively. As synthesis temperature increasing,the two signals intensify and combine lastly into one broad signal in Fig.5(c).1H NMR signals at 2.1 ppm,1.1 ppm and 0.1 ppm are ascribed to the OCH(CH3)2,OCH(CH3)2and SiCH3groups,respectively.The intensities of the signals corresponding to OCH(CH3)2(1.1 ppm)and OCH(CH3)2(2.1 ppm)unit decrease gradually.While the intensity of the signal corresponding to SiCH3(0.1 ppm)unit increases.The three signals combine into one signal in Fig.5(c).These also can be attributed to the more complicated network structure of PASZ-3 in contrast with PASZ-1 and PASZ-2.

    Above-mentioned variationsofintensitiesfor NMR signals indicate that the reaction (Eq.(2)) process is affected by synthesis temperature.The dehydrocoupling reaction is a three-stage reaction, with increase in the synthesis temperature,theⅠ-stage andⅡ-stage(Eq.(3))reactions occur more easily. The reaction (Eq.(2))at 120℃ is more completed as compared to those at other temperature,however,even at 120℃ the occurrence of theⅢ-stage reaction is rare.Thus,there are still many unreacted Al-OCH (CH3)2groups in PASZ-3.

    2.2 Ceramization of PASZs

    Fig.6 shows TG/DTA curves for PASZs up to 1 000℃.The ceramic yield increases with reaction temperature arising,and the mass fraction remaining for PASZ-3(68%)is higher than that of PASZ-1(65%)and PASZ-2(66%).This result can be explained by the more complicated network structure of PASZ-3 due to the higher synthesis temperature.

    Fig.6 TG/DTA curves of PASZs

    The small endothermic peak at 160℃ might be owing to solvent and oligopolymer volatilizing.The mass loss is merely 1%up to 200℃in the TG curve.There is a significant broad exothermic peak at 475 ℃ because of further crosslinking and releasing of CH4,H2and NH3identified by GC analysis.A large mass loss is present at around 200℃(99%)up to 600℃(71%),and there is only 3%mass loss from 600 to 800℃(68%)at which conversion ofprecursor into ceramic is essentially completed.Allbond formations and decompositions in the structure are completed at 800℃as shown in Fig.6.

    Fig.7 FTIR spectra of PASZ-3 at various stage of the thermolysis process

    The thermolysis process of PASZ-3 with the highest ceramic yield will be mainly discussed.Fig.7 demonstrates the FTIR spectra of PASZ-3 pyrolyzed at different temperatures.From 300 to 400℃,the C-H vibration (3 050 cm-1)of vinyl almost vanishes and-CH=CH2(1 600 cm-1)absorption peak obviously diminishes compared to FTIR spectrum of PASZ-3. According to GC,the gases captured from 300 to 400℃include CH4and C2H4.Thus,the results suggest that the following reactions(Eq.(4),(5)and(6))may occur from 300 to 400℃[27].

    At 600℃,the FTIR spectrum is similar to that obtained at 500℃.The vibration peaks for C-H (2950 cm-1)and Si-CH3(1 250 cm-1)disappear and gases including H2,CH4and NH3are identified by GC.From 400 to 600℃,the reaction (Eq.(5))still occurs and other possible reactions associated with the evolution of hydrogen and ammonia can be expressed by Eq.(7)to (9)[26-27].

    The thermolysis process essentially completes up to 800℃as shown in Fig.6,and there are no variations between FTIR spectrum at 1 000℃and at 1 200℃(in Fig.7).As shown in Fig.8,the product of pyrolysis is still amorphous phase up to 1 200℃.

    Fig.8 XRD patterns of the products pyrolyzed at 1 000 and 1 200℃

    Fig.9 BEI-SEM image showing the cross-section of PASZ-3 disk pyrolyzed at 1 200℃

    Fig.9 shows the BEI-SEM image of the crosssection of PASZ-3 disk pyrolyzed at 1 200℃ for 2 h under nitrogen atmosphere.These residual pores could be induced by the escape of gaseous species formed during thermolysis process without auxiliary pressure.It is evident that the PASZ-3 derived ceramic is a homogenously amorphous glass for no differences in contrastfeatures.The semi-quantitative elemental analysis of the residue of PASZ-3 pyrolyzed at 1 200℃was estimated by EDS spectra,while the result is shown in Table 1.The oxygen content of the residue is determined by those unreacted Al-O groups of AIP.The O/Al molar ratio of the residue pyrolyzed at 1 200℃is 1.70.Based on the oxygen content,about 43%Al-O units in AIP occur dehydrocoupling reaction with N-H in poly(methylvinyl)silazane.The Si/Al molar ratio of the residue pyrolyzed at 1 200℃is slightly lower than that of PASZ-3.It can be proposed that silicon is lost by the gaseous oliogsilanes during pyrolysis process.

    Table 1 Composition of the residue of PASZ-3 pyrolyzed at 1 200℃

    3 Conclusions

    The FTIR vibration at 1 450 cm-1is ascribed to characteristic Al-N absorption band,and27Al NMR signals at 8 ppm and-1 ppm are attributed to the AlON2and AlO2N,respectively.According to the results of NMR and FTIR,PASZ (nominal Si/Al molar ratio of 3) can be synthesized via polycondensation between AIP and poly(methylvinyl)silazane at 90,100 and 120℃. The synthesis process is a three-stage dehydrocoupling reaction process. With increase in synthesis temperature,theⅠ-stage andⅡ-stage reactions occur more easily.Thus,the intensities of Al-N FTIR vibration peak and AlON2environment NMR signal of PASZ-3 are the strongest.At the same time,there are unreacted Al-O groups in PASZ precursor.The ceramic yields of PASZ-1,PASZ-2 and PASZ-3 as measured by TG are 65%,66%and 68%,respectively.The synthesis temperatures have no significant effect on ceramization process and ceramic yield.Due to the most complicated network structure of PASZ-3,the yield of it is the highest.Based on the GC result and DTA curve,further crosslinking reactions take place at 475℃.Because of releasing oligosilazane and other gases during pyrolysis process,the Si/Al molar ratio decreases and the residue of PASZ-3 pyrolyzed at 1 200℃ is amorphous phase. The further research about polyaluminasilazane with different Si/Al molar ratios will be focused on how to decrease oxygen content of PAS and increase ceramic yield.

    Acknowledgements:The authors gratefully thank the support of Beijing Composite Materials CO.,Ltd.,Specialized Research Fund for the Doctoral Program of Higher Education(No. 20091102110002)from Chinese Ministry of Education and National natural Science Foundation of China(No.51072010).

    [1]Greil P,Seibold M.J.Mater.Sci.,1992,27(9):1053-1060

    [2]Greil P.J.Eur.Ceram.Soc.,2008,18(13):1905-1914

    [3]Jamet J,Spann J R,Rice R W,et al.Ceram.Eng.Sci.Proc., 1984,5(728):677-694

    [4]Ziegler G,Kleebe H J,Motz G,et al.Mater.Chem.Phys., 1999,61(1):55-63

    [5]Shah S R,Raj R.Acta Mater.,2002,50(16):4093-4103

    [6]Sarkar S,Chunder A,Fei W,et al.J.Am.Ceram.Soc.,2008, 91(8):2751-2755

    [7]Mller A,Gerstel P,Butchereit E,et al.J.Eur.Ceram.Soc., 2004,24(12):3409-3417

    [8]An L,Wang Y,Bharadwaj L,et al.Adv.Eng.Mater.,2004, 5(6):337-340

    [9]Wang Y,An L.J.Am.Ceram.Soc.,2005,88(11):3075-3080

    [10]Wang Y,Fei W,An L.J.Am.Ceram.Soc.,2006,89(3): 1079-1082

    [11]Wang Y,Fan Yi,Zhang L,et al.Scripta Mater.,2006,55(4), 295-297

    [12]Boury B,Seyferth D.Appl.Organomet.Chem.,1999,13(6): 431-440

    [13]Seyferth D,Brodt G,Boury B.J.Mater.Sci.Lett.,1996,15 (4):348-349

    [14]Salles V,Foucaud S,Laborde E,et al.J.Eur.Ceram.Soc., 2007,27(1):357-366

    [15]Salles V,Foucaud S,Goursat P,et al.J.Eur.Ceram.Soc., 2008,28(6):1259-1266

    [16]Koyama S,Takeda H,Saito Y,et al.J.Mater.Chem.,1996, 6(6):1055-1058

    [17]Koyama S,Nakashima H,Sugahara Y,et al.Chem.Lett., 1998,27(2):191-192

    [18]Nakashima H,Koyama S,Kuroda K,et al.J.Am.Ceram. Soc.,2002,85(1):59-64

    [19]Mori Y,Ueda T,Kitaoka S,et al.J.Ceram.Soc.Jpn., 2006,114(6):497-501

    [20]Mori Y,Sugahara Y.Appl.Organomet.Chem.,2006,20(8): 527-534

    [21]Fooken U,Khan M A,Wehmschulte R J.Inorg.Chem., 2001,40(6):1316-1322

    [22]Berger F,Weinmann M,Aldinger F,et al.Chem.Mater., 2004,16(5):919-929

    [23]Toyoda R,Kitaoka S,Sugahara Y.J.Eur.Ceram.Soc., 2008,28(1):271-277

    [24]kricheldorf H R,Burger C,Hertler W R,et al.Silicon in Polymer Synthesis.Berlin Heidelberg:Springer-Verlag,1996: 271.

    [25]Dhamne A,Xu W,Fookes B,et al.J.Am.Ceram.Soc., 2005,88(9):2415-2419

    [26]Chu Z Y,Feng C X,Song Y C,et al.Chinese J.Chem., 2003,21(7):975-978

    [27]Li Y,Kroke E,riedel R,et al.Appl.Organomet.Chem., 2001,15(10):820-32

    合成溫度對(duì)聚鋁硅氮烷的結(jié)構(gòu)和陶瓷化過程的影響

    李 松1,2張 躍*,1

    (1空天材料與服役教育部重點(diǎn)實(shí)驗(yàn)室,北京航空航天大學(xué)材料科學(xué)與工程學(xué)院,北京 100191)
    (2特種纖維復(fù)合材料國家重點(diǎn)實(shí)驗(yàn)室,北京玻鋼院復(fù)合材料有限公司,北京 102101)

    采用聚甲基乙烯基硅氮烷與異丙醇鋁在90、100和120℃下反應(yīng)分別合成出Si/Al物質(zhì)的量的比為3的聚鋁硅氮烷。利用紅外(FTIR)和核磁(NMR)對(duì)前驅(qū)體結(jié)構(gòu)進(jìn)行表征。結(jié)果表明:Al-N鍵的紅外振動(dòng)強(qiáng)度(1 450 cm-1)和核磁鋁譜中的AlON2(8 ppm)及AlO2N(-1 ppm)基團(tuán)的強(qiáng)度隨合成溫度的增加而增加。反應(yīng)溫度越高,形成的Al-N鍵就越多。這個(gè)脫氫耦合合成過程可能是一個(gè)三級(jí)反應(yīng)過程,而在最高溫120℃下所合成的聚鋁硅氮烷的結(jié)構(gòu)最復(fù)雜。前驅(qū)體的裂解過程通過耦合熱重/差熱分析(TG/DTA)、FTIR和氣相色譜(GC)進(jìn)行研究。合成溫度對(duì)陶瓷化過程和陶瓷產(chǎn)率并沒有明顯的影響。根據(jù)DTA曲線可知, 475℃發(fā)生進(jìn)一步的交聯(lián)。另外,GC數(shù)據(jù)表明裂解時(shí)所釋放的氣體為低分子量硅氮烷、CH4、C2H4、H2和NH3。根據(jù)XRD和SEM可知,1200℃裂解后產(chǎn)物為均勻的非晶相。

    合成;聚鋁硅氮烷;結(jié)構(gòu);熱解

    O614.3+1;TQ174.1

    A

    1001-4861(2011)05-0943-08

    2010-11-15。收修改稿日期:2010-12-17。

    國家自然科學(xué)基金(No.51072010)和教育部高校博士點(diǎn)專項(xiàng)科研基金(No.20091102110002)資助項(xiàng)目。*

    。E-mail:zhangy@buaa.edu.cn;Tel/Fax:+86 10 82316976;會(huì)員登記號(hào):E410400016M。

    猜你喜歡
    核磁前驅(qū)復(fù)合材料
    上海某三甲醫(yī)院CT、核磁大型影像設(shè)備的管理、配置和使用分析
    液體核磁管清洗方法進(jìn)展
    民機(jī)復(fù)合材料的適航鑒定
    復(fù)合材料無損檢測(cè)探討
    SiBNC陶瓷纖維前驅(qū)體的結(jié)構(gòu)及流變性能
    X光、CT和核磁如何選
    百姓生活(2016年6期)2016-06-22 14:39:00
    可溶性前驅(qū)體法制備ZrC粉末的研究進(jìn)展
    前驅(qū)體磷酸鐵中磷含量測(cè)定的不確定度評(píng)定
    淺談核磁共振儀自主開放前的準(zhǔn)備工作
    溶膠-凝膠微波加熱合成PbZr0.52Ti0.48O3前驅(qū)體
    大型黄色视频在线免费观看| 麻豆国产97在线/欧美| 久久九九热精品免费| 村上凉子中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩精品亚洲av| 国产成年人精品一区二区| av欧美777| 丰满人妻一区二区三区视频av| 国产不卡一卡二| 日韩欧美三级三区| 亚洲av日韩精品久久久久久密| 天美传媒精品一区二区| 天堂动漫精品| 久久久久久国产a免费观看| 欧美一区二区国产精品久久精品| 美女xxoo啪啪120秒动态图 | 一区二区三区免费毛片| 国产精品美女特级片免费视频播放器| 午夜激情福利司机影院| 国产日本99.免费观看| 欧美中文日本在线观看视频| 久久久久精品国产欧美久久久| 看黄色毛片网站| 欧美乱色亚洲激情| 九九在线视频观看精品| 国产三级在线视频| 久久久成人免费电影| 女生性感内裤真人,穿戴方法视频| 十八禁网站免费在线| 美女xxoo啪啪120秒动态图 | 日本黄色视频三级网站网址| 91久久精品电影网| 12—13女人毛片做爰片一| 国产高潮美女av| 1000部很黄的大片| 久久热精品热| 丁香欧美五月| 国产私拍福利视频在线观看| 久久久久久久午夜电影| 一区二区三区免费毛片| aaaaa片日本免费| 欧美日韩亚洲国产一区二区在线观看| 色尼玛亚洲综合影院| 99热精品在线国产| 真人做人爱边吃奶动态| 免费av观看视频| 欧美日韩国产亚洲二区| 熟妇人妻久久中文字幕3abv| 午夜福利在线观看免费完整高清在 | 欧美日韩福利视频一区二区| 国产视频内射| 国产综合懂色| 搡老熟女国产l中国老女人| 黄色一级大片看看| 欧美三级亚洲精品| 国产精品一区二区性色av| 美女免费视频网站| 高清日韩中文字幕在线| 国产精品精品国产色婷婷| 亚洲精品影视一区二区三区av| 亚洲欧美激情综合另类| 直男gayav资源| 可以在线观看毛片的网站| 老熟妇乱子伦视频在线观看| 欧美日韩黄片免| 国产三级中文精品| www日本黄色视频网| 最新中文字幕久久久久| 亚洲18禁久久av| 观看美女的网站| 欧美成狂野欧美在线观看| 久久精品国产99精品国产亚洲性色| 亚洲av电影不卡..在线观看| 国产色爽女视频免费观看| 中文字幕av在线有码专区| av福利片在线观看| 99视频精品全部免费 在线| 日韩欧美 国产精品| 亚洲精品成人久久久久久| 宅男免费午夜| 极品教师在线免费播放| 男人的好看免费观看在线视频| 中文字幕精品亚洲无线码一区| 美女 人体艺术 gogo| 久久久久精品国产欧美久久久| 日韩精品中文字幕看吧| 变态另类成人亚洲欧美熟女| 99国产极品粉嫩在线观看| 深夜精品福利| 老鸭窝网址在线观看| 欧美色欧美亚洲另类二区| 免费在线观看日本一区| 欧美激情久久久久久爽电影| 国产精品综合久久久久久久免费| 亚洲美女视频黄频| 国产精品爽爽va在线观看网站| 欧美xxxx黑人xx丫x性爽| 亚洲av不卡在线观看| 啦啦啦观看免费观看视频高清| 欧美激情久久久久久爽电影| 久久久久亚洲av毛片大全| 亚洲av电影不卡..在线观看| a级毛片免费高清观看在线播放| 女生性感内裤真人,穿戴方法视频| 成人特级av手机在线观看| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片免费观看直播| www.色视频.com| 欧美一区二区亚洲| 男人的好看免费观看在线视频| 色视频www国产| 精品一区二区三区av网在线观看| 国产伦在线观看视频一区| 亚洲一区二区三区色噜噜| 国产不卡一卡二| 深爱激情五月婷婷| 99在线视频只有这里精品首页| 中出人妻视频一区二区| 国产av麻豆久久久久久久| 又黄又爽又免费观看的视频| 老熟妇仑乱视频hdxx| 久久精品国产清高在天天线| 日本免费a在线| 在现免费观看毛片| 国产av一区在线观看免费| 欧美日韩国产亚洲二区| 97碰自拍视频| 国产精品一区二区三区四区久久| 欧美激情在线99| 美女 人体艺术 gogo| 亚洲av成人精品一区久久| av福利片在线观看| 国产一区二区在线观看日韩| 欧美性猛交╳xxx乱大交人| 国产精华一区二区三区| 欧美高清性xxxxhd video| 熟妇人妻久久中文字幕3abv| 精品人妻偷拍中文字幕| 美女高潮喷水抽搐中文字幕| 啪啪无遮挡十八禁网站| aaaaa片日本免费| 男女那种视频在线观看| 国产免费男女视频| 欧美一区二区精品小视频在线| 色综合亚洲欧美另类图片| 51午夜福利影视在线观看| 51国产日韩欧美| 夜夜躁狠狠躁天天躁| 一个人看的www免费观看视频| 国产乱人视频| 国产成年人精品一区二区| 嫩草影院入口| 又爽又黄无遮挡网站| 小蜜桃在线观看免费完整版高清| 全区人妻精品视频| 午夜a级毛片| 欧美性感艳星| 欧美日韩福利视频一区二区| 国产综合懂色| av福利片在线观看| 久久国产乱子伦精品免费另类| 麻豆国产97在线/欧美| 性色avwww在线观看| 国产成人欧美在线观看| 午夜免费男女啪啪视频观看 | 亚洲欧美清纯卡通| 国产单亲对白刺激| 久久久久久久久中文| 中文亚洲av片在线观看爽| 久久99热这里只有精品18| 欧美性感艳星| 国产成人av教育| 日日夜夜操网爽| 免费av不卡在线播放| 国产伦精品一区二区三区视频9| 亚洲av日韩精品久久久久久密| 精品熟女少妇八av免费久了| 国产精品一区二区免费欧美| 三级男女做爰猛烈吃奶摸视频| 少妇丰满av| 日日干狠狠操夜夜爽| 蜜桃久久精品国产亚洲av| 亚洲经典国产精华液单 | 97超级碰碰碰精品色视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 99国产精品一区二区三区| av国产免费在线观看| 免费观看人在逋| 欧美3d第一页| 欧美精品啪啪一区二区三区| 好男人电影高清在线观看| 国产国拍精品亚洲av在线观看| 亚洲五月婷婷丁香| 午夜久久久久精精品| 国产毛片a区久久久久| av天堂在线播放| 成年女人永久免费观看视频| 欧美xxxx黑人xx丫x性爽| 级片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 最好的美女福利视频网| 久久精品久久久久久噜噜老黄 | 97人妻精品一区二区三区麻豆| 我要看日韩黄色一级片| 夜夜夜夜夜久久久久| 国产伦在线观看视频一区| 亚洲自拍偷在线| 亚洲七黄色美女视频| 又爽又黄无遮挡网站| 国产探花极品一区二区| av在线观看视频网站免费| 日本免费a在线| 久久草成人影院| 国产精品一区二区三区四区免费观看 | 午夜日韩欧美国产| 91久久精品电影网| www.999成人在线观看| 午夜精品久久久久久毛片777| 人妻丰满熟妇av一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲激情在线av| 国产精华一区二区三区| 午夜精品一区二区三区免费看| 一区二区三区激情视频| 国产精品,欧美在线| 俺也久久电影网| 老女人水多毛片| 日本黄大片高清| 国产一区二区在线av高清观看| 欧美日韩福利视频一区二区| 亚洲午夜理论影院| 91午夜精品亚洲一区二区三区 | 亚洲精华国产精华精| 亚洲天堂国产精品一区在线| 国产极品精品免费视频能看的| 亚洲18禁久久av| 国产成人aa在线观看| 91在线观看av| av中文乱码字幕在线| 久久精品综合一区二区三区| 国内精品久久久久久久电影| 国产精品99久久久久久久久| 3wmmmm亚洲av在线观看| 日本 欧美在线| 亚洲不卡免费看| 久久香蕉精品热| 久久久久久久久久黄片| 国产亚洲精品久久久com| 色av中文字幕| 在线观看66精品国产| 国产精品免费一区二区三区在线| 午夜精品在线福利| 天堂av国产一区二区熟女人妻| 亚洲专区中文字幕在线| 欧美性感艳星| 91麻豆av在线| 国产乱人伦免费视频| 国产精品,欧美在线| 禁无遮挡网站| 精品久久久久久久人妻蜜臀av| 一区二区三区高清视频在线| 久久人人爽人人爽人人片va | 亚洲无线观看免费| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 91久久精品电影网| 一夜夜www| 国产久久久一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚州av有码| 久久久国产成人免费| 国产精品野战在线观看| 久久国产乱子伦精品免费另类| 色播亚洲综合网| 中文在线观看免费www的网站| 91久久精品电影网| 黄色视频,在线免费观看| 国产v大片淫在线免费观看| 亚洲成人免费电影在线观看| 国产一区二区在线av高清观看| 国产v大片淫在线免费观看| 亚洲人成网站在线播放欧美日韩| 一二三四社区在线视频社区8| 99久久精品国产亚洲精品| 国产精品98久久久久久宅男小说| 亚洲综合色惰| 美女 人体艺术 gogo| 成年版毛片免费区| 男女床上黄色一级片免费看| 国产视频内射| 一个人看的www免费观看视频| 精品午夜福利在线看| 午夜亚洲福利在线播放| 国产成人aa在线观看| 免费在线观看日本一区| 免费在线观看影片大全网站| 亚洲自偷自拍三级| 俺也久久电影网| 久久人妻av系列| 国产老妇女一区| 亚洲激情在线av| 天天躁日日操中文字幕| 内地一区二区视频在线| 伦理电影大哥的女人| 亚洲精品成人久久久久久| 91在线精品国自产拍蜜月| 久久久久性生活片| 9191精品国产免费久久| 日韩精品青青久久久久久| 亚洲av日韩精品久久久久久密| 最近在线观看免费完整版| 波多野结衣巨乳人妻| 欧美最新免费一区二区三区 | 麻豆国产av国片精品| 久久久精品大字幕| 久久热精品热| 亚洲av第一区精品v没综合| 国产成人啪精品午夜网站| 欧美三级亚洲精品| 亚洲国产欧美人成| 国产视频内射| 老熟妇乱子伦视频在线观看| 国产精品免费一区二区三区在线| 1024手机看黄色片| 国产午夜精品论理片| 欧美午夜高清在线| 可以在线观看的亚洲视频| 日韩国内少妇激情av| 国内揄拍国产精品人妻在线| 男人的好看免费观看在线视频| 日日夜夜操网爽| 村上凉子中文字幕在线| 少妇裸体淫交视频免费看高清| 内地一区二区视频在线| 成年女人看的毛片在线观看| 变态另类丝袜制服| 在线看三级毛片| 黄色配什么色好看| 精品乱码久久久久久99久播| 久99久视频精品免费| 亚洲,欧美,日韩| 色吧在线观看| 在线免费观看不下载黄p国产 | 伦理电影大哥的女人| 国产高清视频在线观看网站| 欧美xxxx性猛交bbbb| www.www免费av| 久久久精品大字幕| av中文乱码字幕在线| 午夜福利在线观看吧| 免费在线观看日本一区| 成人三级黄色视频| a在线观看视频网站| 中文字幕高清在线视频| 亚洲国产精品999在线| 久久天躁狠狠躁夜夜2o2o| 国产在线男女| 久久亚洲精品不卡| 在现免费观看毛片| 韩国av一区二区三区四区| 男女下面进入的视频免费午夜| 午夜精品在线福利| 搞女人的毛片| 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 老司机深夜福利视频在线观看| 91麻豆精品激情在线观看国产| 国产日本99.免费观看| 亚洲经典国产精华液单 | 国产激情偷乱视频一区二区| 久久精品国产自在天天线| 一区二区三区免费毛片| 成人精品一区二区免费| avwww免费| 亚洲人与动物交配视频| 熟妇人妻久久中文字幕3abv| 国产免费av片在线观看野外av| 国产精品美女特级片免费视频播放器| 特级一级黄色大片| 国产主播在线观看一区二区| 国产成人av教育| 黄色日韩在线| 午夜福利免费观看在线| 国产又黄又爽又无遮挡在线| 欧美日本亚洲视频在线播放| 十八禁人妻一区二区| 国产亚洲精品综合一区在线观看| 婷婷六月久久综合丁香| 51国产日韩欧美| 亚洲经典国产精华液单 | 观看免费一级毛片| 国产三级在线视频| 高清毛片免费观看视频网站| 18+在线观看网站| 久久久成人免费电影| 成人av在线播放网站| 伦理电影大哥的女人| 国产成人福利小说| 精品久久久久久成人av| 每晚都被弄得嗷嗷叫到高潮| 美女xxoo啪啪120秒动态图 | 欧美bdsm另类| 麻豆成人午夜福利视频| 亚洲最大成人中文| 一二三四社区在线视频社区8| 首页视频小说图片口味搜索| 不卡一级毛片| 亚洲av第一区精品v没综合| 亚洲av成人精品一区久久| 亚洲精品日韩av片在线观看| 1024手机看黄色片| 成人国产综合亚洲| 亚洲精品色激情综合| 99久国产av精品| 好男人电影高清在线观看| 久久天躁狠狠躁夜夜2o2o| 91狼人影院| 在线免费观看的www视频| 亚洲第一欧美日韩一区二区三区| ponron亚洲| 欧美黑人巨大hd| 99久久精品一区二区三区| 亚洲综合色惰| 欧美中文日本在线观看视频| av在线蜜桃| 中亚洲国语对白在线视频| 午夜免费男女啪啪视频观看 | 免费观看精品视频网站| 午夜福利欧美成人| 51国产日韩欧美| 麻豆久久精品国产亚洲av| 日本 欧美在线| 日日摸夜夜添夜夜添av毛片 | 免费看美女性在线毛片视频| 赤兔流量卡办理| 精品午夜福利在线看| 高清在线国产一区| 3wmmmm亚洲av在线观看| 亚洲成a人片在线一区二区| 女同久久另类99精品国产91| 欧美zozozo另类| 熟妇人妻久久中文字幕3abv| 免费高清视频大片| 国产大屁股一区二区在线视频| 久久人人精品亚洲av| 国产麻豆成人av免费视频| 色哟哟哟哟哟哟| 欧美xxxx黑人xx丫x性爽| 久久久久免费精品人妻一区二区| 一二三四社区在线视频社区8| 观看免费一级毛片| 脱女人内裤的视频| 亚洲,欧美精品.| 国产高清三级在线| 深夜a级毛片| 国产精品伦人一区二区| 男人舔奶头视频| 成人性生交大片免费视频hd| 日本黄色视频三级网站网址| 天天躁日日操中文字幕| 亚洲国产精品合色在线| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 国产精品一区二区三区四区久久| 亚洲天堂国产精品一区在线| 国产一区二区在线观看日韩| 午夜福利成人在线免费观看| 午夜福利18| 精品熟女少妇八av免费久了| 国产精品久久久久久久电影| 18美女黄网站色大片免费观看| 伦理电影大哥的女人| 亚洲七黄色美女视频| 久久精品国产亚洲av涩爱 | 亚洲成av人片免费观看| 亚洲中文字幕日韩| 嫩草影院入口| 精品福利观看| 啪啪无遮挡十八禁网站| 欧美黑人欧美精品刺激| 91麻豆av在线| 中文字幕人成人乱码亚洲影| 成年免费大片在线观看| 国产三级中文精品| 18禁黄网站禁片午夜丰满| 人妻夜夜爽99麻豆av| 欧美乱妇无乱码| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 中文亚洲av片在线观看爽| 中亚洲国语对白在线视频| 国产午夜精品论理片| 乱人视频在线观看| 99久久99久久久精品蜜桃| 午夜福利免费观看在线| 国产激情偷乱视频一区二区| 变态另类丝袜制服| 啦啦啦韩国在线观看视频| 久久人人爽人人爽人人片va | 日本免费一区二区三区高清不卡| 给我免费播放毛片高清在线观看| 全区人妻精品视频| 一边摸一边抽搐一进一小说| 亚洲色图av天堂| 99久久无色码亚洲精品果冻| 激情在线观看视频在线高清| 91在线精品国自产拍蜜月| 成人国产综合亚洲| 久久久久久久精品吃奶| 成人国产综合亚洲| 亚洲黑人精品在线| 伊人久久精品亚洲午夜| 少妇裸体淫交视频免费看高清| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 欧美高清成人免费视频www| 舔av片在线| 国产午夜精品论理片| 国产高清有码在线观看视频| 免费看光身美女| 69av精品久久久久久| 日韩国内少妇激情av| 99国产精品一区二区蜜桃av| 黄色日韩在线| 日本一二三区视频观看| 国内精品美女久久久久久| 欧美xxxx性猛交bbbb| 人人妻人人澡欧美一区二区| 两人在一起打扑克的视频| 美女免费视频网站| 欧美丝袜亚洲另类 | 搡女人真爽免费视频火全软件 | 精品久久久久久久久亚洲 | 国产精品电影一区二区三区| 国产三级黄色录像| 9191精品国产免费久久| 在线观看美女被高潮喷水网站 | 国产精品,欧美在线| 欧美最黄视频在线播放免费| 亚洲最大成人av| 国产成+人综合+亚洲专区| 亚洲国产精品成人综合色| 一级黄色大片毛片| 国产精品久久久久久人妻精品电影| 亚洲av成人精品一区久久| 国产高清视频在线观看网站| 少妇的逼水好多| 69人妻影院| 女同久久另类99精品国产91| 亚洲最大成人手机在线| 两个人的视频大全免费| 欧美日韩福利视频一区二区| av天堂在线播放| 色av中文字幕| 国产蜜桃级精品一区二区三区| 国产色爽女视频免费观看| 成年女人永久免费观看视频| 亚洲欧美精品综合久久99| 久久久久精品国产欧美久久久| 亚州av有码| 亚洲人成网站高清观看| 国产精品三级大全| 成人永久免费在线观看视频| 免费搜索国产男女视频| 性色avwww在线观看| 亚洲av成人精品一区久久| 噜噜噜噜噜久久久久久91| 网址你懂的国产日韩在线| 久久性视频一级片| 日本黄大片高清| 亚洲成a人片在线一区二区| 亚洲片人在线观看| 免费在线观看日本一区| 观看美女的网站| 国产免费男女视频| 欧美成人一区二区免费高清观看| 好男人电影高清在线观看| 成年免费大片在线观看| 免费av毛片视频| 天堂av国产一区二区熟女人妻| 一区二区三区四区激情视频 | 成人av一区二区三区在线看| 午夜激情福利司机影院| 我的老师免费观看完整版| 很黄的视频免费| 少妇丰满av| 亚洲av成人精品一区久久| 国产精品日韩av在线免费观看| 国产免费男女视频| 亚洲精品久久国产高清桃花| 12—13女人毛片做爰片一| 亚洲一区高清亚洲精品| 久久久成人免费电影| 成人一区二区视频在线观看| 黄色视频,在线免费观看| 免费无遮挡裸体视频| 久久性视频一级片| av天堂在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩精品亚洲av| 色5月婷婷丁香| 97热精品久久久久久| 精品人妻偷拍中文字幕| 91麻豆av在线| 男女床上黄色一级片免费看| 韩国av一区二区三区四区| 中亚洲国语对白在线视频| 91久久精品电影网| 亚洲第一欧美日韩一区二区三区| 我的女老师完整版在线观看| 免费一级毛片在线播放高清视频| 午夜亚洲福利在线播放| 日韩中文字幕欧美一区二区|