• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HYBRID SCHEME FOR COMPRESSIBLE TURBULENT FLOW AROUND CURVED SURFACE BODY

    2011-10-08 12:10:00XuChangyueRanQianSunJianhong
    關(guān)鍵詞:分工經(jīng)濟(jì)效益項(xiàng)目管理

    Xu Changyue,Ran Qian,Sun Jianhong

    (College of Aerospace Engineering,NUAA,29 Yudao Street,210016,Nanjing,P.R.China)

    INTRODUCTION

    The prediction of compressible turbulent flow around a body with curved surface plays an important role in applications and fundamentals,especially theflow involving shock wave.To capture the discontinuity caused by shock wave,a dissipative shock-capturing scheme is applied,such as the total variation diminishing(TVD)schemes.For computing fine-scale feature,such as turbulence,away from shock wave,a non-dissipative numerical scheme must be used.These characteristics can prevent smearing of flow features and non-physical oscillations near the high gradient regions of flow variables.

    A great effort has been made in the past decades to study high-order accurate shock-capturing scheme,e.g.,essentially nonoscillatory(ENO), weighted essentially nonoscillatory(WENO)and compact schemes[1-5].Recently,the high-order accurate hybrid schemes composed of central difference and high-order accurate shock-capturing sub-schemes have been investigated. A high-order accurate hybrid central-WENO scheme has been proposed in Ref.[6].The fifth order WENO scheme was divided into two parts,a central flux part and a numerical dissipation part,which were hybridized by means of a weighting function indicated the local smoothness of flow fields.Five flow problems were chosen for validation including interaction of a moving shock with a density wave,advection of an isentropic vortex,double Mach reflection of a strong shock,mixing-layer/shock interaction and weak-shock/vortex interaction.Shen and Yang[7]proposed a hybrid compact-WENO schemes,which were hybridized with compact difference and WENO scheme to draw lessons from the ENO scheme.Several typical cases,similar as those calculated by Kim and Kwon[6],were chosen for validating the proposed hybrid scheme.Large-eddy simulations of the Richtmyer-Meshkov instability with reshock have been performed in Ref.[8]using an improved version of the tuned centre-difference and WENO hybrid method.

    Many researches on the high-order accurate hybrid scheme are applied to the compressible turbulent flow problems with simple geometries.However,many practical flows commonly take place on a curved surface. The finite volume method is widely used for compressible turbulent flow problems with curved surface and non-linear phenomena,such as compressible flow swirling flows injected into a coaxial dump chamber[9],transonic flows around an aerofoil[10]and a cylinder[11-12],etc.In this paper,a second-order accuracy Roe′s flux difference splitting scheme in the finite volume method is hybridized with the central scheme by means of a binary sensor function.Three typical cases arecalculated using detachededdy simulation(DES)technique,including the transonic turbulent flow over an axisymmetric bump,supersonic turbulent flow around an axisymmetric slender pointed body,and transonic turbulent flow past an aerofoil.

    1 MATHEMATICAL FORMULATION AND NUMERICAL METHODS

    1.1 Governing equations and boundary conditions

    To investigate the compressible turbulent flow around a curved surface body,the 3-D Favre-averaged compressible Navier-Stokes equations in generalized coordinates are used.To nondimensionalize the equations,we use the freestream variables,including density d∞,temperature T∞ ,velocity U∞ and diameter of the body D for bump and slender body or cord length c for aerofoil as the characteristic scales.The governing equations in flux form can be written as

    where Q=[d,d u,d v,d w,E]Tis the conservative flow variables with density d,velocity component ui,pressure p,and specific total energy E.J=?(a,Z,Y)/?(x,y,z)represents Jacobian of the transformation, (F,G,H)the inviscid flux terms,and(Fν,Gν,Hν)the viscous flux terms.

    The diffusive fluxes are given by

    where Re is the Reynolds number,_the molecular viscosity,Pr the Prandtl number and S ij the strain-rate tensor defined as Sij=(?ui/?xj+ ?uj/?xi)/2.Perfect gas relationship and Sutherland law for molecular viscosity coefficient_are employed.

    In this study,the initial condition is set as the free-stream quantities.The far field boundary conditions are treated by local 1-D Riemann-invariants.No-slip and adiabatic conditions are applied to the body surface.

    1.2 Turbulencemodeling

    Three typical cases are calculated,including transonic turbulent flow over an axisymmetric bump,supersonic turbulent flow around an ax-isymmetric slender pointed body,and transonic turbulent flow past an aerofoil. As the high Reynolds number flows are considered,say about 106,the methodology used in this paper is DES introduced by Spalart[13].The model is derived from Spalart-Allmaras turbulence model[14],which is aone-equation model for theeddy viscos-solving a transport equation.The reader may refer to Ref.[14]for details on theconstants and the quantities involved.

    The model is provided with a destruction term for the eddy viscosity that depends on the distance to the nearest solid wall d.This term adjusts the eddyscale with local deformation rateproducing an eddy viscosity givenSpalart[13]proposed to replace d to the closest wall withdefined by

    whereΔrepresents a characteristic mesh length and is defined as the largest of grid spacing in all three directions,i.e., Δ=max(Δx,Δy,Δz),and the constant C DES is taken as 0.65 from a calibration of the model for isotropic turbulence[15].When d < C DESΔ,themodel acts in a Reynolds averaged Navier-Stokes(RANS)mode and when d> CDESΔ the model acts in a Smagorinsky largeeddy simulation(LES)mode.

    1.3 Numerical procedure

    The governing equations are numerically solved by the finite-volume method.Both the convective and diffusive terms arediscretized with a second-order central schemes,and a fourth-order low artificial numerical dissipation is employed to prevent the numerical oscillations at high wavenumbers[11,16]. The temporal integration is performed using an implicit approximatefactorization method with sub-iterations to ensure the second-order accuracy.

    綜上所述,建筑工程造價(jià)合理預(yù)算對(duì)建筑工程項(xiàng)目管理和質(zhì)量安全有重要作用,建筑企業(yè)應(yīng)該高度重視工程造價(jià)預(yù)算環(huán)節(jié),分析在工作過程中出現(xiàn)超預(yù)算現(xiàn)象的原因,并制定行之有效的解決措施。培養(yǎng)專業(yè)的預(yù)算管理人員,分工明確,避免出現(xiàn)工程造價(jià)超預(yù)算現(xiàn)象,從而提高建筑企業(yè)的經(jīng)濟(jì)效益和市場(chǎng)中的競(jìng)爭(zhēng)力。

    To capture the discontinuity caused by a shock wave,a second-order upwind scheme with Roe′s flux difference splitting is introduced into theinviscid flux.The spatial discretization is constructed explicitly to be shock capturing with the upwind scheme and to revert to a central stencil with low numerical dissipation in turbulent flow regions away from shock wave.The artificial dissipation is also turned off in the region in which the upwind scheme works.A binary sensor function H i+1/2 at cell interface i+ 1/2 is used for the detection of shock waves.H i+1/2 is determined by the pressure and density curvature criteria proposed in Ref.[8].wheredenotes the complement of l,Ti+p1/2and Td i+1/2represent the pressure and density relative curvatures at cell interface i+1/2.

    The 3-D version of this detection is used in the simulations.Similar to the treatment[8],the value of c1 and c2 that proved to give the best results arechosen as 0.01.Based on this detection,Roe′s second-order upwind flux only operates at the cells in the vicinity of shock waves.

    To illustrate the hybrid technique,the flux difference in the i direction(?a F)i can be written as

    whereκ(4)andλi+1/2 are the coefficient and spectral radius of 4th Jameson′s artificial numerical dissipation[16],respectively. Δ(? )=(? )i+1-(? )iis the forward difference operator,▽ (? )=(? )i-(?)i-1 the backward difference operator,q=[d,u,v,w,p]Tthe non-conservative flow variable.q L and q R are theinterpolated values in the cell-interface position.And A conv denotes the inviscid ma-trix in Roe′s flux-difference splitting scheme[17].

    where the diagonal matrixΛis the matrix of eigenvalues of A conv,T the matrix of right eigenvectors as columns,and T-1the matrix of left eigenvectors as rows.

    When H i+1/2 is 1,thehybrid scheme Eq.(11)reverts to a Roe′s FDSscheme

    However,when H i+1/2 equals zero,the hybrid scheme reverts to a central scheme with 4th Jameson′s artificial numerical dissipation

    2 RESULTSAND DISCUSSION

    2.1 Transonic turbulent flow over axisymmetric bump

    Transonic flow over the bachalo-Johnson[18]axisymmetric bump is chosen to study the performance of the present hybrid scheme in predicting the compressible flow involving shock wave and turbulence. The free-stream Mach number is 0.875 and Reynolds number based on the pipediameter D is 2.66×106.Fig.1shows thegeometry and computational mesh of the bump.Here,the diameter of bump is 1.25D.O-H mesh is employed,and the grid number is 113× 81× 65 in the streamwise,normal,azimuthal direction,respectively,with the outer boundary 30D.Time step is 0.005D/a∞.

    Fig.1 Geometry and computational mesh of bump

    hybrid scheme.Here,the increment between the iso-lines is a constant value of 0.04.A local supersonic zone is formed above the bump surface,and a shock wave occurs at x/D≈0.65.Moreover,the shock wave is captured well,which indicates that the present hybrid scheme is capable of capturing the discontinuity caused by shock wave.

    Fig.2 Time-averaged flow pattern by means of isolines of local Mach number

    The measured and computational mean pressure coefficient distribution〈Cp〉 on the surface of the cylinder and bump are show n in Fig.3.Compared with experimental measurement[18],the upwind scheme overestimates the position of shockwave/turbulence interaction.The hybrid scheme gives a better agreement with the experimental data,which is closely related to the low-dissipation of the present hybrid scheme.The mean streamwise velocity〈u〉 distributions calculated by the two numerical schemes are compared with experimental data[17]at thevarious streamwise locations from x/D=0.563 to x/D=1.375,as shown in Fig.4.Upstream shock wave(x/D=0.563),the computed result obtained by the hybrid schemeis same as the upwind scheme.How-ever,downstream shock wave(x/D=0.563,0.875,1.000and 1.375),results obtained by the hybrid scheme are closer to the experimental data, which indicates that the present hybrid scheme can predict well the shock wave and turbulence over the bump.

    2.2 Supersonic turbulent f low past axisymmetric slender pointed body

    In this case,supersonic turbulent flow involving the shock wave around an axisymmetric

    Fig.3 Distribution of wall pressure coefficient〈C p〉

    Fig.4 Mean streamwisevelocity profiles obtained numerically and experimentally

    slender pointed body is investigated. The body geometric equation can be written as

    Fig.5 shows thegeometry and computational mesh of the axisymmetric slender pointed body.O-H-type grid is used with clustered distributions in the vicinity of the wall.The grid number is 113× 101× 81 in the streamwise,radial, azimuthal direction,respectively,with the outer boundary 30D,and the time step is 0.005D/a∞.According to the previous experiment[19], the free-stream Mach number Ma∞is chosen as 2.5,angle of attack T as 14o,and Reynolds number Re based on thediameter of thecylinder as 1.1×106.

    Time-averaged flow pattern in the meridiansection calculated by the hybrid scheme is shown in Fig.6 using local Mach number iso-lines.Here,the increment between the iso-lines is a constant value of 0.04.We can found that an oblique

    Fig.5 Geometry and computational mesh of axisymmetric slender pointed body

    shock wave occurs at the windward surface,and some expanded waves exist on the leeward surface.Theazimuthal distributions of wall pressure coefficient〈C p〉 obtained numerically and experimentally are exhibited in Fig.7.Here,θ=0°is corresponding to the windward surface. At x/D=3.5,two calculated results agree well with the experimental data,as shown in Fig.7(a).Fig.7(b)shows that the mean separation position predicted by the upwind scheme is delayed to the leeward surface at x/D=5.5,however,the hybrid scheme can give an improved result.Moreover,〈C p〉 is overestimated by both the upwind and hybrid schemes on the leeward surfaceθ≈150°.Fig.7(c)shows that〈C p〉 is underestimated by the two numerical schemes on the leeward surface θ≈ 150°. Similar to 〈C p〉 distribution at x/D=5.5,the mean separation position predicted by theupwind scheme is delayed to the leeward surface at x/D=11.5,as shown in Fig.7(d).Furthermore,after we carefully examine the flow fields,it is revealed that the hybrid scheme can predict the main vortex bifurcating and the secondary vortex structures,which also indicatesthat the present hybrid scheme can give a reasonable result.

    Fig.6 Time-averaged flow pattern in meridian-section using iso-lines of local Mach number

    Fig.7 Azimuthal distributions of mean wall pressure coefficient〈C p〉 obtained numerically and experimentally

    2.3 Transonic turbulent flow past aerofoil

    Finally,another typical case,transonic turbulent flow past a RAE2822 aerofoil,is chosen to validate the present hybrid scheme.Experiment in Ref.[20]is considered.Here,the experimental data is obtained in the wind tunnel for the flow conditions:Ma∞=0.75,T=3.19°,Re=6.2× 106.

    In order to compare the computational flow with experimental flow past the aerofoil in freeflight conditions,some corrections to the tunnel data are required.The wind tunnel correction proposed in Ref.[21]is used,i.e.,Ma∞=0.75,T=2.72o,Re=6.2×106.C-type mesh is used,and the grid number is 257×97,as shown in Fig.8.The far field is about 20 cord lengths from the aerofoil,and the time step is 0.005D/a∞.

    Fig.9 shows time-averaged flow pattern calculated by the hybrid scheme using the iso-lines

    Fig.8 Computational mesh of RAE2822 aerofoil

    of local Mach number.Here,the increment between the iso-lines is a constant value of 0.04.Similar to the bump case,local supersonic zone and shock wave are formed over the aerofoil surface,suggesting that the present hybrid scheme can capture the shock wave.To show the performance of the present hybrid scheme in predicting the compressible turbulent flow involving shock wave quantitatively,comparisons of the calculated wall pressure coefficient〈Cp〉 and skin friction coefficient〈C f〉 distributions with the experimental measurement are given in Fig.10.The mean shock wave position is predicted downstream by the upwind scheme.However,result obtained by the hybrid scheme agrees well with the experimental data.The calculated〈C f〉 distributions obtained by the two numerical schemes give a good agreement with the experimental data upstream the shock wave.However,〈C f〉 is slightly underestimated by both upwind and hybrid schemes downstream the shock wave.For more validation,comparisons of thecomputational time-averaged lift coefficient 〈CL〉tand drag coefficient〈C D〉t with the experimental ones are exhibited in Table 1,which also shows a good agreement between the numerical results obtained by the hybrid scheme and the experimental measurements.

    Fig.9 Time-averaged flow pattern using iso-lines of local Mach number

    Fig.10 Comparison of present numerical results with experimental data

    Table 1 Comparisons of present computational results with experimental data in Ref.[20]

    3 CONCLUSION

    A hybrid central-upwind scheme for the compressible turbulent flow around a curved surface body is proposed.Two sub-schemes,the central difference scheme and the Roe′s flux-difference splitting scheme,arehybridized by means of a binary sensor function.In order to examine the capability of the hybrid scheme in computing the compressible turbulent flow around a curved surface body,especially the flow involving shock wave,three typical cases are investigated using detached-eddy simulation technique,i.e.,the compressible flow including transonic and supersonic regime over an axisymmetric bump,axisymmetric slender pointed body and aerofoil.It is revealed that the numerical results obtained by the proposed hybrid scheme can give more reasonable agreements with the experiment than that obtained by the upwind scheme,which indicates that the present hybrid scheme can be applied to computing the compressible flow around a curved surface body involving shock wave and turbulence.

    [1] Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock capturing schemes II[J].Journal of Computational Physics,1989,83(1):32-78.

    [2] Jiang G S,Shu C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1):202-228.

    [3] Balsara D S,Shu C W.Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J].Journal of Computational Physics,2000,160(2):405-452.

    [4] Tolstykh A I.High accuracy non-centered compact difference schemes for fluid dynamics applications[M].Singapore:World Scientific,1994.

    [5] Lele S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42.

    [6] Kim D,Kwon J H.A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis[J].Journal of Computational Physics,2005,210(2):554-583.

    [7] Shen Y,Yang G.Hybrid finite compact-WENO schemes for shock calculation [J]. International Journal for Numerical Methods in Fluids,2007,53(4):531-560.

    [8] Hill D J,Pantano C,Pullin D I.Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock[J].Journal of Fluid Mechanics,2006,557(1):29-61.

    [9] Lu X Y,Wang S W,Sung H G,et al.Large eddy simulations of turbulent swirling flows injected into a dump chamber[J].Journal of Fluid Mechanics,2005,527(1):171-195.

    [10]Chen L W,Xu C Y,Lu X Y.Numerical investigation of the compressible flow past an aerofoil[J].Modern Physics Letters B,2009,23:233-236.

    [11]Xu CY,Chen L W,Lu X Y.Large-eddy simulation of the compressible past a wavy cylinder[J].Journal of Fluid M echanics,2010,665(1):238-273.

    [12]Xu C Y,Chen L W,Lu X Y.Effect of Mach number on transonic flow past a circular cylinder[J].Chinese Science Bulletin,2009,54(11):1886-1893.[13]Spalart P R,Jou W H,Strelets M,et al.Comments on the feasibility of LESfor wings and on a hybrid RANS/LES approach [C]//Advances in DNS/LES.Columbus,OH:Greyden Press,1997.

    [14]Spalart P R,Allmaras S R.A one-equation turbulence model for aerodynamic flows[R].AIAA paper 92-0439,1992.

    [15]Shur M L,Spalart P R.Detached-eddy simulation of an airfoil at high angle of attack[C]//the 4th International Symposium of Engineering Turbulence Modelling and Measurements.Amsterdam:Elsevier,1999:669-678.

    [16]Swanson R C,Turkel E.On central-difference and upwind schemes [J]. Journal of Computational Physics,1990,101(2):292-306.

    [17]Bachalo W D,Johnson D A.Transonic,turbulent boundary-layer separation generated on an axisymmetric flow model[J].AIAA Journal,1986,24(3):437-443.

    [18]Xu Changyue.Large eddy simulation of the compressible flow past a circular cylinder and its flow control[D].Hefei:University of Science and Technology of China,2009.(in Chinese)

    [19]Yang Yunjun,Zhou Weijiang.Numerical simulation of turbulence flows about a slender pointed body at high angle of attack[J].Acta Aerodynamica Sinica,2003,21(3):351-355.(in Chinese)

    [20]Cook P H,Mcdonald M A,Firmin M C P.Aerofoil 2822-pressure distributions, boundary layer and wake measurement[R].AGARD AR 138,1979.

    [21]Krist S,Biedron R,Rumsey C.CFL3D user′s manual(Version 5.0)[R].NASA/TM-1998-208444,1998.

    猜你喜歡
    分工經(jīng)濟(jì)效益項(xiàng)目管理
    裝配式EPC總承包項(xiàng)目管理
    “分工明確”等十四則
    基于大數(shù)據(jù)分析的集合式EPC總承包項(xiàng)目管理軟件技術(shù)的應(yīng)用
    項(xiàng)目管理在科研項(xiàng)目管理中的應(yīng)用
    造價(jià)人員在提高企業(yè)經(jīng)濟(jì)效益中如何發(fā)揮積極作用
    未來如何更高效地進(jìn)行工程項(xiàng)目管理
    “家庭的幸福需要彼此分工共同努力”
    如何提高農(nóng)村合作社的經(jīng)濟(jì)效益
    新形勢(shì)下經(jīng)濟(jì)效益審計(jì)的新措施
    園林綠化工程的經(jīng)濟(jì)效益初探
    亚洲色图综合在线观看| 十八禁网站网址无遮挡 | 欧美激情国产日韩精品一区| 国产精品偷伦视频观看了| 国产精品三级大全| 美女内射精品一级片tv| 亚洲久久久久久中文字幕| 国产伦在线观看视频一区| 久久久亚洲精品成人影院| 亚洲精品乱久久久久久| 精品久久久精品久久久| 又爽又黄a免费视频| 国产精品99久久久久久久久| 免费高清在线观看视频在线观看| 色哟哟·www| 毛片女人毛片| 中文字幕久久专区| 国产午夜福利久久久久久| 久久久久久久久大av| 91久久精品国产一区二区成人| 性色av一级| 美女被艹到高潮喷水动态| 亚洲电影在线观看av| 日韩精品有码人妻一区| 一个人观看的视频www高清免费观看| 午夜激情福利司机影院| 欧美高清成人免费视频www| 国产女主播在线喷水免费视频网站| 高清日韩中文字幕在线| 毛片女人毛片| 可以在线观看毛片的网站| 肉色欧美久久久久久久蜜桃 | 日韩电影二区| 边亲边吃奶的免费视频| 综合色av麻豆| 成年免费大片在线观看| 国产成人freesex在线| 免费高清在线观看视频在线观看| 69人妻影院| 蜜桃亚洲精品一区二区三区| 五月开心婷婷网| 免费观看a级毛片全部| 久久综合国产亚洲精品| 欧美xxxx性猛交bbbb| 男女无遮挡免费网站观看| 大话2 男鬼变身卡| 欧美少妇被猛烈插入视频| 99久国产av精品国产电影| 乱码一卡2卡4卡精品| 黄色配什么色好看| 亚洲av.av天堂| 久久韩国三级中文字幕| 欧美日韩亚洲高清精品| 成年版毛片免费区| 亚洲一级一片aⅴ在线观看| 97热精品久久久久久| 久久精品国产亚洲av天美| 国产精品.久久久| 99热国产这里只有精品6| 午夜亚洲福利在线播放| 99热这里只有精品一区| 岛国毛片在线播放| 亚洲美女视频黄频| 国产亚洲av嫩草精品影院| 久久久a久久爽久久v久久| 九九在线视频观看精品| av免费观看日本| 午夜免费鲁丝| 国产在线一区二区三区精| 夫妻性生交免费视频一级片| 久久久成人免费电影| 国产高清国产精品国产三级 | 日韩视频在线欧美| 纵有疾风起免费观看全集完整版| 国产男人的电影天堂91| 亚洲精品第二区| 国产精品国产av在线观看| 大陆偷拍与自拍| av免费在线看不卡| 亚洲欧美中文字幕日韩二区| 欧美日本视频| 日韩中字成人| 春色校园在线视频观看| 尤物成人国产欧美一区二区三区| 午夜福利高清视频| 国产一区二区亚洲精品在线观看| 成人鲁丝片一二三区免费| 欧美激情国产日韩精品一区| 五月伊人婷婷丁香| 丝袜美腿在线中文| 中文在线观看免费www的网站| 精品一区二区三区视频在线| 亚洲丝袜综合中文字幕| 日本-黄色视频高清免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲va在线va天堂va国产| 高清在线视频一区二区三区| 午夜福利网站1000一区二区三区| 国产国拍精品亚洲av在线观看| 毛片女人毛片| 亚洲精品一二三| freevideosex欧美| 91在线精品国自产拍蜜月| 亚洲精品国产av蜜桃| 特级一级黄色大片| 成人国产麻豆网| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站高清观看| 中文字幕av成人在线电影| 综合色av麻豆| 特大巨黑吊av在线直播| 老司机影院毛片| 各种免费的搞黄视频| 国产老妇伦熟女老妇高清| 成人一区二区视频在线观看| 国产一区二区三区av在线| 亚洲色图综合在线观看| 天堂网av新在线| av网站免费在线观看视频| 欧美少妇被猛烈插入视频| 成年免费大片在线观看| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 久久精品国产亚洲av涩爱| 最新中文字幕久久久久| 久久久久网色| 国产精品不卡视频一区二区| 一区二区av电影网| 亚洲成人久久爱视频| 在线播放无遮挡| 国产真实伦视频高清在线观看| av在线播放精品| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区 | 亚洲精品一区蜜桃| 男人舔奶头视频| 亚洲av男天堂| 亚洲欧美清纯卡通| 男女那种视频在线观看| 色综合色国产| 日韩大片免费观看网站| 韩国高清视频一区二区三区| 美女脱内裤让男人舔精品视频| 亚洲内射少妇av| 久久精品国产亚洲网站| 人体艺术视频欧美日本| 色哟哟·www| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 成人特级av手机在线观看| 蜜桃亚洲精品一区二区三区| 中文天堂在线官网| 日日摸夜夜添夜夜爱| 精品人妻一区二区三区麻豆| 亚洲激情五月婷婷啪啪| 亚洲精品影视一区二区三区av| 日本一本二区三区精品| 免费看a级黄色片| 久久6这里有精品| 99热这里只有是精品50| 亚洲熟女精品中文字幕| 在线免费十八禁| av在线亚洲专区| 一区二区av电影网| 国产精品国产三级国产专区5o| www.av在线官网国产| 99久久中文字幕三级久久日本| 国产淫片久久久久久久久| 国产精品不卡视频一区二区| 亚州av有码| 一级黄片播放器| 黄色一级大片看看| 自拍欧美九色日韩亚洲蝌蚪91 | 水蜜桃什么品种好| av天堂中文字幕网| 欧美另类一区| 国产91av在线免费观看| 内射极品少妇av片p| 日韩制服骚丝袜av| 日韩一区二区三区影片| 亚洲色图av天堂| 久久人人爽人人爽人人片va| 久久久久久久国产电影| 寂寞人妻少妇视频99o| 在线观看美女被高潮喷水网站| 久久精品国产鲁丝片午夜精品| 中文天堂在线官网| 国产免费视频播放在线视频| 欧美高清成人免费视频www| 亚洲欧美成人综合另类久久久| 免费观看的影片在线观看| 少妇的逼水好多| 一区二区av电影网| 免费看av在线观看网站| av.在线天堂| 我要看日韩黄色一级片| 欧美一级a爱片免费观看看| 汤姆久久久久久久影院中文字幕| 一本一本综合久久| 岛国毛片在线播放| 嫩草影院精品99| 新久久久久国产一级毛片| 在线观看av片永久免费下载| 久久ye,这里只有精品| 国产在线一区二区三区精| freevideosex欧美| 精品一区二区三区视频在线| 国产老妇女一区| 久久久精品94久久精品| 免费少妇av软件| 国产午夜精品久久久久久一区二区三区| 能在线免费看毛片的网站| 小蜜桃在线观看免费完整版高清| 3wmmmm亚洲av在线观看| 三级国产精品片| 大陆偷拍与自拍| 成人漫画全彩无遮挡| 涩涩av久久男人的天堂| 看非洲黑人一级黄片| 久久久久网色| 高清午夜精品一区二区三区| 丝袜美腿在线中文| av在线亚洲专区| 国产成年人精品一区二区| 嘟嘟电影网在线观看| 亚洲电影在线观看av| 午夜亚洲福利在线播放| 看黄色毛片网站| 国产伦精品一区二区三区视频9| 乱系列少妇在线播放| 五月开心婷婷网| 97在线视频观看| 高清毛片免费看| 国内少妇人妻偷人精品xxx网站| 嫩草影院入口| 欧美人与善性xxx| 各种免费的搞黄视频| 人妻少妇偷人精品九色| 在线a可以看的网站| 九色成人免费人妻av| 国产精品久久久久久久久免| 日韩人妻高清精品专区| 禁无遮挡网站| 国产欧美亚洲国产| 舔av片在线| 中文字幕人妻熟人妻熟丝袜美| 天天躁夜夜躁狠狠久久av| 欧美成人一区二区免费高清观看| 91精品一卡2卡3卡4卡| 国产精品人妻久久久影院| 国产精品久久久久久精品古装| 两个人的视频大全免费| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 少妇的逼好多水| 熟妇人妻不卡中文字幕| 日韩欧美精品v在线| 国产精品熟女久久久久浪| 成人高潮视频无遮挡免费网站| av又黄又爽大尺度在线免费看| 美女视频免费永久观看网站| 亚洲精品,欧美精品| 老司机影院成人| 国产精品一区二区在线观看99| 综合色av麻豆| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品久久久久久久性| 成人亚洲欧美一区二区av| 美女xxoo啪啪120秒动态图| 亚洲三级黄色毛片| 亚洲国产欧美在线一区| av在线老鸭窝| 少妇人妻久久综合中文| 亚洲精品456在线播放app| 91久久精品电影网| 热99国产精品久久久久久7| 色综合色国产| 欧美激情在线99| 国产午夜精品一二区理论片| 国产男人的电影天堂91| 99热这里只有是精品50| 中国三级夫妇交换| 97在线人人人人妻| 成人黄色视频免费在线看| 午夜爱爱视频在线播放| 纵有疾风起免费观看全集完整版| 国产亚洲av嫩草精品影院| 日本熟妇午夜| 亚洲av男天堂| 国产乱来视频区| 直男gayav资源| 性色av一级| 人妻 亚洲 视频| 人妻 亚洲 视频| 国产精品一区二区性色av| 在线观看美女被高潮喷水网站| tube8黄色片| 在线a可以看的网站| 国产一区二区三区av在线| 有码 亚洲区| av线在线观看网站| 天天躁夜夜躁狠狠久久av| 欧美日韩视频高清一区二区三区二| 欧美成人午夜免费资源| 中文天堂在线官网| 女人十人毛片免费观看3o分钟| 在线观看人妻少妇| 欧美亚洲 丝袜 人妻 在线| 王馨瑶露胸无遮挡在线观看| 乱码一卡2卡4卡精品| 欧美日韩一区二区视频在线观看视频在线 | 大香蕉久久网| 成人国产av品久久久| 久久久久久久久久久免费av| 久久国产乱子免费精品| 国产成人91sexporn| 日韩一区二区三区影片| 国产永久视频网站| 亚洲四区av| 看免费成人av毛片| 亚洲av一区综合| 日韩视频在线欧美| 中国三级夫妇交换| 新久久久久国产一级毛片| 欧美日韩视频精品一区| 三级国产精品片| av在线蜜桃| 大片免费播放器 马上看| 麻豆成人av视频| 国产一区亚洲一区在线观看| 中文字幕免费在线视频6| 久久久久久九九精品二区国产| 精品久久久久久久末码| 人妻制服诱惑在线中文字幕| 亚洲av一区综合| 午夜免费观看性视频| 国产成人91sexporn| 香蕉精品网在线| 久久精品人妻少妇| 在线 av 中文字幕| 99视频精品全部免费 在线| 嫩草影院新地址| 人人妻人人看人人澡| av又黄又爽大尺度在线免费看| 国产久久久一区二区三区| 汤姆久久久久久久影院中文字幕| 啦啦啦中文免费视频观看日本| 欧美一级a爱片免费观看看| 少妇人妻一区二区三区视频| av国产久精品久网站免费入址| 亚洲人成网站在线观看播放| 又粗又硬又长又爽又黄的视频| 高清毛片免费看| 国产真实伦视频高清在线观看| 欧美xxxx性猛交bbbb| 永久网站在线| 日本一二三区视频观看| 国产熟女欧美一区二区| 午夜福利视频1000在线观看| 欧美日韩综合久久久久久| 久久97久久精品| 免费看光身美女| 最近中文字幕高清免费大全6| 99re6热这里在线精品视频| 超碰av人人做人人爽久久| 欧美高清成人免费视频www| 精品一区在线观看国产| 小蜜桃在线观看免费完整版高清| 欧美国产精品一级二级三级 | 国产av国产精品国产| 中国美白少妇内射xxxbb| 国产精品三级大全| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 国产综合懂色| 久久久久久久久大av| 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 韩国av在线不卡| 边亲边吃奶的免费视频| 国产淫片久久久久久久久| 免费观看av网站的网址| 一区二区三区乱码不卡18| 老司机影院毛片| 一个人观看的视频www高清免费观看| 精品少妇黑人巨大在线播放| 校园人妻丝袜中文字幕| 日韩国内少妇激情av| 一级二级三级毛片免费看| 看黄色毛片网站| 夫妻午夜视频| 少妇的逼水好多| 有码 亚洲区| 中文字幕久久专区| 好男人视频免费观看在线| 十八禁网站网址无遮挡 | 成人毛片a级毛片在线播放| 99久久精品国产国产毛片| 在线a可以看的网站| 国产精品久久久久久av不卡| 波野结衣二区三区在线| 最近手机中文字幕大全| 国产爱豆传媒在线观看| 日韩一区二区三区影片| 黄片wwwwww| 欧美成人午夜免费资源| 亚洲精品色激情综合| 欧美潮喷喷水| 美女xxoo啪啪120秒动态图| 精品少妇黑人巨大在线播放| 天天躁日日操中文字幕| 女人久久www免费人成看片| videossex国产| 国产熟女欧美一区二区| 国产精品一区www在线观看| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 亚洲国产精品专区欧美| 99热这里只有是精品50| 激情五月婷婷亚洲| 十八禁网站网址无遮挡 | 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 日韩免费高清中文字幕av| 成年女人看的毛片在线观看| 人妻少妇偷人精品九色| 亚洲真实伦在线观看| 如何舔出高潮| 成人国产av品久久久| 噜噜噜噜噜久久久久久91| 中国美白少妇内射xxxbb| av在线播放精品| 国产男女超爽视频在线观看| 老司机影院成人| 男人舔奶头视频| 美女视频免费永久观看网站| 99热网站在线观看| 中文字幕久久专区| 国产精品女同一区二区软件| 国产成人精品福利久久| 国产亚洲精品久久久com| 久久久久久九九精品二区国产| 久久精品国产亚洲网站| 成人国产麻豆网| 国产高清三级在线| 黄色配什么色好看| 美女内射精品一级片tv| 国产高潮美女av| 免费在线观看成人毛片| 成人国产麻豆网| 国产成人a区在线观看| 国产精品三级大全| 天天一区二区日本电影三级| 大片免费播放器 马上看| 日本黄大片高清| 亚洲欧美日韩另类电影网站 | 亚洲精品色激情综合| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| 天堂中文最新版在线下载 | 亚洲欧美一区二区三区黑人 | 黄色视频在线播放观看不卡| 日韩欧美精品v在线| av线在线观看网站| 麻豆国产97在线/欧美| 欧美+日韩+精品| 好男人视频免费观看在线| 在线看a的网站| 少妇熟女欧美另类| 日韩伦理黄色片| 久久久久久久亚洲中文字幕| 欧美性猛交╳xxx乱大交人| 成人免费观看视频高清| 国产老妇伦熟女老妇高清| 只有这里有精品99| 亚洲人成网站在线播| 午夜福利在线观看免费完整高清在| 2021少妇久久久久久久久久久| 亚洲精品日韩在线中文字幕| 狠狠精品人妻久久久久久综合| 我的女老师完整版在线观看| 国产午夜精品一二区理论片| 91精品伊人久久大香线蕉| 肉色欧美久久久久久久蜜桃 | 男的添女的下面高潮视频| 女人被狂操c到高潮| 九九久久精品国产亚洲av麻豆| 成人美女网站在线观看视频| 青青草视频在线视频观看| 亚洲成色77777| 在线免费十八禁| 亚洲精品日韩av片在线观看| 国产色爽女视频免费观看| 久久ye,这里只有精品| 看十八女毛片水多多多| 国产淫片久久久久久久久| 深夜a级毛片| 亚洲国产精品国产精品| 亚洲精品国产成人久久av| 免费大片黄手机在线观看| 亚洲av免费高清在线观看| 日本与韩国留学比较| 高清在线视频一区二区三区| 日韩强制内射视频| 久久久久久久久久人人人人人人| 欧美xxxx性猛交bbbb| 最新中文字幕久久久久| 秋霞伦理黄片| 少妇猛男粗大的猛烈进出视频 | 特大巨黑吊av在线直播| 在线观看三级黄色| 日韩国内少妇激情av| 2021少妇久久久久久久久久久| 国产黄频视频在线观看| 97在线人人人人妻| 中国国产av一级| 欧美日韩综合久久久久久| 午夜激情福利司机影院| www.色视频.com| 国产午夜精品一二区理论片| 王馨瑶露胸无遮挡在线观看| 亚洲av国产av综合av卡| 久久久久久久久久久丰满| 欧美国产精品一级二级三级 | 国产伦在线观看视频一区| 久久久久九九精品影院| 黄片无遮挡物在线观看| 亚洲av成人精品一区久久| 综合色丁香网| 免费观看在线日韩| 成人二区视频| 又粗又硬又长又爽又黄的视频| 国产一区二区三区综合在线观看 | 免费人成在线观看视频色| 日本av手机在线免费观看| 制服丝袜香蕉在线| 极品教师在线视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲在久久综合| 色婷婷久久久亚洲欧美| 少妇被粗大猛烈的视频| 日韩欧美一区视频在线观看 | 在线观看美女被高潮喷水网站| 全区人妻精品视频| 婷婷色av中文字幕| 又粗又硬又长又爽又黄的视频| 国产欧美亚洲国产| 亚洲成人久久爱视频| 草草在线视频免费看| 国产午夜精品一二区理论片| av国产久精品久网站免费入址| 2022亚洲国产成人精品| 在线观看人妻少妇| 精品少妇久久久久久888优播| 人妻夜夜爽99麻豆av| 中文字幕免费在线视频6| 久久精品综合一区二区三区| 在线a可以看的网站| 韩国高清视频一区二区三区| 五月玫瑰六月丁香| 国产精品一区二区三区四区免费观看| 最近2019中文字幕mv第一页| 久久久久久伊人网av| 欧美日本视频| 亚洲av免费高清在线观看| 五月伊人婷婷丁香| 80岁老熟妇乱子伦牲交| 精品久久久精品久久久| 少妇人妻一区二区三区视频| 国产淫语在线视频| 18禁在线无遮挡免费观看视频| 免费高清在线观看视频在线观看| videos熟女内射| 日韩成人av中文字幕在线观看| 纵有疾风起免费观看全集完整版| 国产久久久一区二区三区| 亚洲av电影在线观看一区二区三区 | 青青草视频在线视频观看| 亚洲av二区三区四区| 亚洲精品成人av观看孕妇| 日韩精品有码人妻一区| 亚洲精品一二三| 热99国产精品久久久久久7| 26uuu在线亚洲综合色| 赤兔流量卡办理| 欧美成人一区二区免费高清观看| 亚洲欧美精品专区久久| 精品视频人人做人人爽| 男男h啪啪无遮挡| 2021天堂中文幕一二区在线观| 黄色欧美视频在线观看| 国产成人免费无遮挡视频| 汤姆久久久久久久影院中文字幕| 亚洲av成人精品一区久久| 一二三四中文在线观看免费高清| 久久久午夜欧美精品| 国产一区有黄有色的免费视频| 建设人人有责人人尽责人人享有的 | 街头女战士在线观看网站| 久久久a久久爽久久v久久| 亚洲欧美日韩卡通动漫| 亚洲国产高清在线一区二区三| 麻豆乱淫一区二区| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 欧美日本视频| 大片免费播放器 马上看| 在线观看av片永久免费下载| 韩国av在线不卡| av国产免费在线观看| 男女那种视频在线观看| 综合色av麻豆|