• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Effective Method of Threshold Selection for Small Object Image

    2011-07-25 06:21:54WUYiquan吳一全WUJiaming吳加明ZHANBichao占必超
    Defence Technology 2011年4期

    WU Yi-quan(吳一全),WU Jia-ming(吳加明),ZHAN Bi-chao(占必超)

    (1.School of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,Jiangsu,China;2.Science and Technology on Electro-optic Control Laboratory,Institute of Electro-optic Equipment of AVIC,Luoyang 471009,Henan,China;3.State Key Laboratory of Novel Software Technology,Nanjing University,Nanjing 210093,Jiangsu,China)

    Introduction

    Threshold segmentation is an image segmentation technology which is universally used,effective in processing and simple to implement.It can select an appropriate threshold rapidly for accurate segmentation.The scholars at home and abroad have done extensive research on this issue[1-2],and have put forward the various threshold selection methods based on maximum between-class variance(Otsu)[3],maximum entropy[4]and Fisher criterion[5].At first,the threshold was selected by the 1-D gray scale histogram of image.A satisfactory segmented result is difficult to obtain when the image is interfered with noise,though its processing speed is rapid.Thus the maximum entropy method,Otsu method and Fisher criterion method are extended to gray scale-average gray scale 2-D histogram by Abutaleb[6],Brink[7],LIU Jian-zhuang[8],GONG Jian[9],et al.The result is improved significantly,but at the same time the amount of computation increased exponentially.Consequently some fast algorithms of threshold selection based on 2-D histogram are proposed[10-12],and the running speed is improved to different extent. However, the above-mentioned 2-D methods all divided the 2-D histogram into 4 rectangular areas(called as vertical segmentation).As a result,a certain approximation is introduced into the calculation,which may cause the segmented results inaccurate.Therefore,WU Yi-quan et al put forward a threshold segmentation method based on oblique segmentation of 2-D histogram[13-15],which further reduces errors,greatly shortening the running time,and making the anti-noise performance more robust.

    Image threshold segmentation is one of key steps in infrared target detection.In the imaging plane of infrared target detection,the proportion of object to background is usually very small,for example,less than 1%.Thus the threshold segmentation problem of small target image where the proportion of object to background is very small needs to be solved.The existing threshold selection methods almost fail under the circumstance and can not obtain the perfect results.When there is a larger difference between the sizes of object and background,a smaller intra-class variance or larger between-class variance is obtained if some part of background is divided into object.Therefore Otsu method and Fisher criterion method can not accurately segment the small target images,neither can maximum entropy method.

    In view of the above-mentioned reasons,a kind of threshold selection method for small target image segmentation is proposed,which is based on the area difference between background and the object and intra-class variance.When the exact segmentation of image is considered,the gray inside object and background is uniform,the intra-class variance is very small,the large area difference between object and background can be used to construct the criterion function.On this basis,the threshold selection formulae based on 1-D histogram and 2-D histogram vertical segmentation are given,respectively.Then the threshold selection formulae based on 2-D histogram oblique segmentation and its fast recursive algorithm are derived.Finally,the segmented images and running time of the proposed method are given in experimental results.Otsu,maximum entropy and Fisher threshold selection methods based on 2-D histogram oblique segmentation are compared.

    1 Threshold Selection Based on 1-D Histogram and 2-D Histogram Vertical Segmentation

    1.1 Threshold Selection Based on 1-D Histogram

    Otsu method selects the threshold according to maximum between-class variance or minimum intraclass variance,which is essentially derived based on the least square error criterion.This criterion has a latent problem of that less sum of squares of errors may be obtained if a large category is separated when the number of samples contained in different categories has larger difference.There is a larger difference between the sizes of object and background in a small target image,a smaller intra-class variance or larger betweenclass variance is obtained if part of background is divided into object.Therefore Otsu method can not accurately segment the small target images.

    For the exact segmentation of image,the gray inside object and background is uniform,data points are compact and the intra-class variance is very small,and the area difference between object and background is large,criterion function of threshold selection can be constructed and the accuracy of threshold segmentation is expected to be enhanced.According to the above two characteristics,the criterion function of threshold selection is constructed based on the area difference between background and object and the intra-class variance in this paper,which can be used to segment the small target images effectively.

    Assuming that the size of image isM×N,the gray scale is 0,1,…,L-1,andp(i)is the probability of the gray scalei.The thresholdtis used to divide the image into the object class and background class.Assuming that the bright(dark)pixel of image belongs to the object(background).The probabilities of the background and object areω0(t)andω1(t),respectively.The means of gray scale areμ0(t)/ω0(t)andμ1(t)/ω1(t),respectively.And the variances areσ20(t)andσ21(t),respectively.Thus the criterion function based on 1-D histogram is as follows:

    The optimal threshold is obtained when the criteri-on functionΦ(t)attains the maximum value.

    1.2 Threshold Selection Based on 2-D Histogram Vertical Segmentation

    Fig.1 2-D histogram and vertical segmentation

    The optimal threshold is obtained when the criterion functionΦ(t,s)attains the maximum value,

    As a result,the intra-class gray scale of segmented image is uniform,and the object and background are separated effectively.

    2 Threshold Selection Formula Based on 2-D Histogram Oblique Segmentation and Its Fast Recursive Algorithm

    2.1 Threshold Selection Formula Based on 2-D Histogram Oblique Segmentation

    The 2-D histogram in Fig.1(b)shows that the pixel points are almost distributed near the main diagonal.In Fig.2 the histogram region is divided into an interior-point region,two border-point regions and two noise-point regions by four parallel oblique linesL1,L2,L3,L4,which are located in both sides of the main diagonal and paralleled with it.The region betweenL1 andL2 is considered as the interior-point region of object and background because the pixel gray scale is approximate to the average gray scale of neighborhood.The region betweenL1 andL3 and the region betweenL2 andL4 are regarded as the border-point regions or transitive regions between object and background because of the certain difference between the pixel gray scale and the average gray scale of neighborhood.The two regions outsideL3 andL4 are regarded as the noise-point regions because there is a large difference between the pixel gray scale and the average gray scale of neighborhood[14-15].

    Fig.2 2-D histogram oblique segmentation

    In oblique segmentation,the oblique lineg= -f+2T(Tis the threshold,0≤T≤L-1),which is vertical to the main diagonal(or at a 135°angle with gray scale axis),is used to segment the image according to the average value of the gray scale and the average gray scale of neighborhood.The obtained binary imageb(m,n)is

    Assuming that the total gray-scale means areμtiandμtj,and the total variances areand.Because the total variance equals the sum of the intraclass variance and the between-class variance for oblique segmentation,the criterion function in Eq.(5)can be rewritten as:

    The optimal threshold is obtained when the criterion functionΦ(T)attains the maximum value.

    2.2 Fast Recursive Algorithm

    It can be seen from the above-mentioned algorithm formulae that calculation ofΦ(T)requires the calculation ofω0(T),ω1(T),μ0i(T),μ0j(T),μti,μtj,andare fixed for the specified image.For every thresholdT,if calculation ofΦ(T)requires the cumulative calculation ofω0(T),μ0i(T)andμ0j(T)fromi=0 andj=0 again,it will be bound to cause lots of repetitive calculation and the computational complexity iso(L2).The total computational complexity comes too(L3)because the number of thresholdTisL-1.

    For 0<T≤L/2-1,the recursive formulae are derived as follows:

    similarly,the recursive formulae forL/2≤T≤L-1 can be obtained.

    The flowchart of the above-mentioned algorithm is shown in Fig.3.

    Fig.3 Flowchart of algorithm

    3 Experimental Result and Analysis

    3.1 Comparison of the Methods Based on 1-D Histogram,2-D Histogram Vertical and Oblique Segmentation

    A large number of experiments are made in this paper,and an example is illustrated.The threshold segmented results for the same ship image of the methods based on 1-D histogram,2-D histogram vertical and oblique segmentation are shown in Fig.4.Fig.4(a)shows the original ship image which size is 155×154.Fig.4(b)shows the segmented result based on 1-D histogram.Fig.4(c)shows the segmented result based on 2-D histogram vertical segmentation,and Fig.4(d)shows the segmented result based on 2-D histogram oblique segmentation.It can be seen from Fig.4 that the proposed method in this paper can extract the object accurately and the anti-noise performance of 2-D method is better,especially for the method based on 2-D histogram oblique segmentation.

    Fig.4 Segmented results of different methods

    3.2 Comparison with Other Methods

    Over 200 small target images are used in the experiments.Five of those are chosen to be illustrated.All objects are aircrafts but their distances from the infrared imaging plane are different.The segmented results of the methods proposed in this paper and methods based on 2-D histogram oblique segmentation,such as Otsu method,maximum entropy method,F(xiàn)isher criterion method,are given below,respectively.As shown in Tab.1,image 1 to image 5 are given from top to bottom,and the original image,the 1-D histogram,the segmented results of Otsu method,maximum entropy method,F(xiàn)isher criterion method and the method proposed in this paper are given from left to right in each row in turn.The size of image 1 is 322×221 and the proportion of object to background is 6.8%.The anti-noise performance of the method proposed in this paper is better,though all four methods can extract the object.Image 2 and image 3 are 323×217 and 256×256 in size,respectively.the proportions of object to background are 4.2%and 3.9%,respectively.Otsu method and Fisher criterion method can not extract the object effectively.Although the maximum entropy method can extract the object,some noise still exists in the images.The size of image 4 is 104×90,and the proportion of object to background is 0.43%.Under the circumstances,Otsu method and Fisher criterion method almost fail.The segmented result of the maximum entropy method has larger noise and lower accuracy.While the method proposed in this paper not only can extract the small target accurately,but also has the minimum noise compared with other methods,which meets the requirement.The size of image 5 is 106×94,and the proportion of object to background is 0.18%.The segmented result is similar to image 4,which further proves the superiority of the method proposed in this paper in segmentation of small target images.

    Tab.1 Segmented results of four methods

    The above experimental conditions are Intel Pentium 4,CPU 2.80 GHz,512 MB memory,and Matlab 7.1.The segmentation threshold and running time of four methods in Tab.1 are listed in Tab.2 and the percentages in Tab.2 are the size proportions of object to background.

    Tab.2 Segmentation threshold and running time of four methods

    It can be seen from Tab.2 that Otsu method requires the shortest running time but has the worst segmented result for small target images.The segmented result of maximum entropy method is superior to that of Otsu method while the running time is the longest because of the logarithm operations.The segmented result of Fisher criterion method is slightly better than Otsu method but still undesirable and its running time is longer.The method proposed in this paper has the best segmented result and can segment the small target images accurately.Its running time is shorter than Fisher criterion method and maximum entropy method while slightly longer than Otsu method.

    4 Conclusions

    The proposed threshold selection method for image segmentation based on the area difference between background and object and the intra-class variance can effectively segment the small target image which size proportion of object to background is very small.A large number of experimental results show that the method can make the interior of object and background region in the segmented images uniform and the boundary shape accurate.The anti-noise performance of the method based on 2-D histogram oblique segmentation is better than that of the method based on 1-D histogram and 2-D histogram vertical segmentation.The fast recursive algorithm based on 2-D histogram oblique segmentation reduces the search cost in 2-D space and improves the running speed greatly.Compared to the current fast algorithms of threshold selection for image seg-mentation,such as Otsu method,maximum entropy method and Fisher criterion method,based on 2-D histogram oblique segmentation,the method proposed in this paper has significant superiority in segmentation of small target images.

    [1]WU Yi-quan,ZHU Zhao-da.30 years(1962—1992)of the developments in the threshold selection methods in image processing(I)[J].Journal of Data Acquisition &Processing,1993,8(3):193-201.(in Chinese)

    [2]WU Yi-Quan,ZHU Zhao-da.30 years(1962—1992)of the developments in the threshold selection methods in image processing(II)[J].Journal of Data Acquisition &Processing,1993,8(4):268-282.(in Chinese)

    [3]Otsu N.A threshold selection method from gray-level histogram[J].IEEE Transactions System Man and Cybernetics,1979,9(1):62 -66.

    [4]Kapur J N,Sahoo P K,Wong A K C.A new method for grey-level picture thresholding using the entropy of the histogram[J].Computer Vision,Graphics and Image Processing,1985,29(1):273-285.

    [5]CHEN Guo.The Fisher criterion function method of image thresholding[J].Chinese Journal of Scientific Instrument,2003,24(6):564-567.(in Chinese)

    [6]Abutaleb A S.Automatic thresholding of gray-level picture using two-dimensional entropies[J].Pattern Recognition,1989,47(1):22-32.

    [7]Brink A D.Thresholding of digital image using two-dimensional entropies[J].Pattern Recognition,1992,25(8):803-808.

    [8]LIU Jian-zhuang,LI Wen-qing.Automatic thresholding using the Otsu algorithm based on the two-dimensional gray image[J].Acta Automatica Sinica,1993,19(1):101-105.(in Chinese)

    [9]GONG Jian,LI Li-yuan,CHEN Wei-nan.The gray-level thresholding method based on Fisher linear discriminant of two-dimensional histogram[J].Pattern Recognition and Artificial Intelligence,1997,10(1):1 -8.(in Chinese)

    [10]Gong J,Li L Y,Chen W N.Fast recursive algorithms for two-dimensional thresholding[J].Pattern Recognition,1998,31(3):295-300.

    [11]JING Xiao-jun,CAI An-ni,SUN Jing-ao.Image segmentation based on 2D maximum between-cluster variance[J].Journal of China Institute of Communications,2001,22(4):71-76.(in Chinese)

    [12]WANG Hai-yang,PAN De-lu,XIA De-shen.A fast algorithm for two-dimensional Otsu adaptive threshold algorithm[J].Acta Automatica Sinica,2007,33(9):968-971.(in Chinese)

    [13]FAN Jiu-lun,ZHAO Feng.Two-dimensional Otsu curve thresholding segmentation method for gray-level images[J].Acta Automatica Sinica,2007,35(4):751 -755.(in Chinese)

    [14]WU Yi-quan,PAN Zhe,WU Wen-yi.Image thresholding based on two-dimensional histogram oblique segmentation and its fast recurring algorithm[J].Journal of China Institute of Communications,2008,29(4):77-83.(in Chinese)

    [15]WU Yi-quan,PAN Zhe,WU Wen-yi.Maximum entropy thresholding algorithm based on two-dimensional histogram oblique segmentation[J].Pattern Recognition and Artificial Intelligence,2009,22(1):162 - 168.(in Chinese)

    热re99久久精品国产66热6| 波野结衣二区三区在线| 十八禁人妻一区二区| 成年女人毛片免费观看观看9 | 国产精品国产三级国产专区5o| 新久久久久国产一级毛片| 岛国毛片在线播放| 香蕉国产在线看| 熟女少妇亚洲综合色aaa.| 91精品国产国语对白视频| 国产视频一区二区在线看| 日韩电影二区| 男女之事视频高清在线观看 | 婷婷色av中文字幕| 高清视频免费观看一区二区| 男人操女人黄网站| av国产精品久久久久影院| 在线观看www视频免费| 男女无遮挡免费网站观看| 欧美激情高清一区二区三区| 久久久久视频综合| 国产精品久久久久久精品电影小说| av在线老鸭窝| 中文字幕另类日韩欧美亚洲嫩草| 国产成人免费观看mmmm| 日本欧美国产在线视频| 久久亚洲精品不卡| 交换朋友夫妻互换小说| 亚洲精品国产一区二区精华液| 中文字幕精品免费在线观看视频| 国产免费又黄又爽又色| 麻豆av在线久日| 免费av中文字幕在线| 一边摸一边抽搐一进一出视频| 丁香六月天网| 天堂中文最新版在线下载| 最新在线观看一区二区三区 | 亚洲精品美女久久av网站| 国产黄频视频在线观看| 久久青草综合色| 另类精品久久| 啦啦啦 在线观看视频| 午夜av观看不卡| 欧美久久黑人一区二区| 女人被躁到高潮嗷嗷叫费观| 久久久久精品人妻al黑| 日本wwww免费看| 男男h啪啪无遮挡| 国产高清视频在线播放一区 | 99精品久久久久人妻精品| 啦啦啦中文免费视频观看日本| 国产亚洲一区二区精品| 宅男免费午夜| 只有这里有精品99| 高潮久久久久久久久久久不卡| 热re99久久精品国产66热6| 人人妻人人爽人人添夜夜欢视频| 欧美日韩福利视频一区二区| 日日爽夜夜爽网站| 黑人巨大精品欧美一区二区蜜桃| 免费观看人在逋| 一本—道久久a久久精品蜜桃钙片| 99久久99久久久精品蜜桃| 人人妻,人人澡人人爽秒播 | 亚洲国产欧美网| 国产在线一区二区三区精| 日韩熟女老妇一区二区性免费视频| 99精品久久久久人妻精品| 人人澡人人妻人| 亚洲国产精品成人久久小说| 婷婷色av中文字幕| 成人18禁高潮啪啪吃奶动态图| 一本综合久久免费| 午夜免费成人在线视频| 男女床上黄色一级片免费看| 亚洲av国产av综合av卡| 熟女少妇亚洲综合色aaa.| 亚洲精品国产av成人精品| 国产国语露脸激情在线看| 啦啦啦在线观看免费高清www| 精品少妇久久久久久888优播| 免费日韩欧美在线观看| av在线app专区| 国产成人精品在线电影| 99热国产这里只有精品6| 各种免费的搞黄视频| 亚洲欧美日韩高清在线视频 | 国产精品.久久久| 亚洲一码二码三码区别大吗| 国产一区二区三区av在线| 一本色道久久久久久精品综合| 欧美国产精品一级二级三级| 一级毛片电影观看| 精品高清国产在线一区| 欧美人与性动交α欧美软件| 国产视频一区二区在线看| av线在线观看网站| avwww免费| 男女床上黄色一级片免费看| 中文字幕人妻丝袜制服| 欧美亚洲 丝袜 人妻 在线| 久久久精品国产亚洲av高清涩受| 男女国产视频网站| 夜夜骑夜夜射夜夜干| 国产亚洲一区二区精品| 自线自在国产av| 99久久综合免费| 亚洲午夜精品一区,二区,三区| 飞空精品影院首页| 青春草视频在线免费观看| 黑丝袜美女国产一区| 国产黄频视频在线观看| 一级毛片电影观看| 亚洲欧美一区二区三区黑人| 亚洲av美国av| 国产有黄有色有爽视频| 国产成人免费观看mmmm| 国产1区2区3区精品| 欧美日韩av久久| 精品一区二区三卡| 性高湖久久久久久久久免费观看| av福利片在线| 欧美少妇被猛烈插入视频| 曰老女人黄片| 国产av一区二区精品久久| 国产亚洲精品久久久久5区| 中文字幕色久视频| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 男的添女的下面高潮视频| 一级片'在线观看视频| 老司机深夜福利视频在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 中文字幕av电影在线播放| 看免费av毛片| 久久久久久免费高清国产稀缺| 精品一品国产午夜福利视频| 黄频高清免费视频| 成年女人毛片免费观看观看9 | 国产亚洲午夜精品一区二区久久| 精品一区二区三区av网在线观看 | 在线亚洲精品国产二区图片欧美| 亚洲av成人不卡在线观看播放网 | 蜜桃在线观看..| 欧美日韩亚洲综合一区二区三区_| 国产黄色免费在线视频| 桃花免费在线播放| 久久精品久久精品一区二区三区| 高清欧美精品videossex| 啦啦啦啦在线视频资源| 欧美av亚洲av综合av国产av| 午夜福利在线免费观看网站| 777米奇影视久久| 黄色视频在线播放观看不卡| 亚洲中文av在线| 亚洲国产欧美在线一区| 亚洲精品中文字幕在线视频| 亚洲一码二码三码区别大吗| 日日摸夜夜添夜夜爱| 国产野战对白在线观看| 国产黄频视频在线观看| 我要看黄色一级片免费的| 成人午夜精彩视频在线观看| 午夜老司机福利片| 亚洲国产精品成人久久小说| videosex国产| 高清av免费在线| 国产视频一区二区在线看| 国产精品九九99| 精品欧美一区二区三区在线| 飞空精品影院首页| 人成视频在线观看免费观看| 丝袜美足系列| 亚洲成人国产一区在线观看 | 男女无遮挡免费网站观看| 青草久久国产| 国产精品熟女久久久久浪| 免费在线观看完整版高清| 亚洲av成人精品一二三区| 超碰成人久久| 在线天堂中文资源库| av又黄又爽大尺度在线免费看| 一级黄片播放器| 国产亚洲欧美在线一区二区| 欧美大码av| 国产爽快片一区二区三区| 国产免费福利视频在线观看| 高清不卡的av网站| 欧美97在线视频| 麻豆国产av国片精品| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看| 国产激情久久老熟女| 晚上一个人看的免费电影| 亚洲人成77777在线视频| 一级毛片女人18水好多 | 中文字幕最新亚洲高清| 免费黄频网站在线观看国产| 免费高清在线观看视频在线观看| 午夜91福利影院| 国产午夜精品一二区理论片| 亚洲国产av影院在线观看| 9热在线视频观看99| 黄色视频不卡| 国产亚洲欧美精品永久| 老汉色∧v一级毛片| 国产亚洲精品久久久久5区| 两个人看的免费小视频| 精品人妻一区二区三区麻豆| 久久免费观看电影| 欧美人与性动交α欧美软件| videosex国产| 黄色a级毛片大全视频| 国产精品久久久av美女十八| 男人操女人黄网站| 亚洲欧美日韩另类电影网站| 国产伦人伦偷精品视频| 热re99久久国产66热| 久久精品aⅴ一区二区三区四区| 99精品久久久久人妻精品| 下体分泌物呈黄色| 国产亚洲精品久久久久5区| 国产精品一区二区免费欧美 | 最近最新中文字幕大全免费视频 | 国产成人精品久久久久久| 久久久久久久精品精品| 蜜桃在线观看..| 国产精品亚洲av一区麻豆| 天堂俺去俺来也www色官网| 免费女性裸体啪啪无遮挡网站| 国产一区二区 视频在线| 欧美精品高潮呻吟av久久| 后天国语完整版免费观看| 在现免费观看毛片| 一二三四社区在线视频社区8| 中文字幕色久视频| 亚洲伊人色综图| 中国美女看黄片| 一区二区三区乱码不卡18| 欧美人与善性xxx| 亚洲综合色网址| 中文字幕亚洲精品专区| 老鸭窝网址在线观看| 午夜福利视频精品| 国产成人一区二区在线| 久久久精品94久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产极品粉嫩免费观看在线| 国产一级毛片在线| 欧美日韩成人在线一区二区| 777久久人妻少妇嫩草av网站| 久久久国产精品麻豆| 中国国产av一级| 欧美av亚洲av综合av国产av| 免费在线观看黄色视频的| 亚洲精品成人av观看孕妇| 99国产综合亚洲精品| 天堂8中文在线网| 国产淫语在线视频| 大码成人一级视频| 亚洲少妇的诱惑av| 69精品国产乱码久久久| 精品国产超薄肉色丝袜足j| 永久免费av网站大全| 好男人视频免费观看在线| 欧美黑人欧美精品刺激| 亚洲精品国产色婷婷电影| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 欧美日韩av久久| 精品国产一区二区三区久久久樱花| 欧美久久黑人一区二区| 91麻豆精品激情在线观看国产 | 欧美日韩av久久| 99精国产麻豆久久婷婷| 好男人视频免费观看在线| www.999成人在线观看| www.精华液| 精品亚洲成国产av| 国产麻豆69| 久久久精品区二区三区| 亚洲精品久久久久久婷婷小说| 色婷婷久久久亚洲欧美| 中文字幕另类日韩欧美亚洲嫩草| 丰满少妇做爰视频| 久久国产精品大桥未久av| 脱女人内裤的视频| 蜜桃在线观看..| 又粗又硬又长又爽又黄的视频| 亚洲av成人不卡在线观看播放网 | 高清不卡的av网站| 成年人免费黄色播放视频| 黑人猛操日本美女一级片| 午夜影院在线不卡| 亚洲成国产人片在线观看| 午夜精品国产一区二区电影| 一区在线观看完整版| 亚洲欧美日韩另类电影网站| 男女边摸边吃奶| 99国产精品一区二区三区| 久久女婷五月综合色啪小说| 免费一级毛片在线播放高清视频 | 另类亚洲欧美激情| 欧美中文综合在线视频| h视频一区二区三区| 狂野欧美激情性xxxx| 亚洲 国产 在线| 香蕉国产在线看| 一级黄片播放器| cao死你这个sao货| 国产老妇伦熟女老妇高清| 叶爱在线成人免费视频播放| 一级毛片我不卡| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 尾随美女入室| 91老司机精品| 99re6热这里在线精品视频| 激情五月婷婷亚洲| 考比视频在线观看| 欧美精品av麻豆av| 欧美激情 高清一区二区三区| 欧美中文综合在线视频| 美女午夜性视频免费| 十分钟在线观看高清视频www| 亚洲图色成人| av片东京热男人的天堂| 精品亚洲成a人片在线观看| 欧美日韩一级在线毛片| 亚洲专区中文字幕在线| 亚洲欧洲国产日韩| 欧美+亚洲+日韩+国产| 欧美日韩一级在线毛片| 亚洲 国产 在线| 精品国产乱码久久久久久小说| 蜜桃国产av成人99| 在线观看免费日韩欧美大片| 亚洲成人免费电影在线观看 | 亚洲精品国产av蜜桃| 后天国语完整版免费观看| 精品国产超薄肉色丝袜足j| 十八禁人妻一区二区| 久久久久国产精品人妻一区二区| 日韩人妻精品一区2区三区| 女性被躁到高潮视频| 肉色欧美久久久久久久蜜桃| 热re99久久国产66热| 国产一区二区激情短视频 | 国产爽快片一区二区三区| 99精品久久久久人妻精品| 婷婷色av中文字幕| 欧美人与性动交α欧美精品济南到| 性色av一级| 国产精品偷伦视频观看了| 国产精品国产三级国产专区5o| 亚洲精品日韩在线中文字幕| 久久久精品区二区三区| 久9热在线精品视频| 老汉色∧v一级毛片| 男人操女人黄网站| 成年av动漫网址| 精品国产乱码久久久久久小说| 搡老岳熟女国产| 99久久精品国产亚洲精品| 日韩制服丝袜自拍偷拍| 操美女的视频在线观看| 国产精品久久久av美女十八| 国产精品免费大片| 1024香蕉在线观看| 一级毛片女人18水好多 | 欧美 亚洲 国产 日韩一| 亚洲av电影在线进入| 精品高清国产在线一区| 国产熟女欧美一区二区| 不卡av一区二区三区| 亚洲国产精品一区二区三区在线| 欧美精品亚洲一区二区| 久久99精品国语久久久| 日韩中文字幕欧美一区二区 | 涩涩av久久男人的天堂| 婷婷丁香在线五月| 天天影视国产精品| 国产精品三级大全| 亚洲成人国产一区在线观看 | 无遮挡黄片免费观看| 亚洲伊人久久精品综合| 男人舔女人的私密视频| 久久精品亚洲av国产电影网| 97精品久久久久久久久久精品| 久久精品成人免费网站| 免费看av在线观看网站| 人人妻人人澡人人看| 久久人人97超碰香蕉20202| 亚洲欧美成人综合另类久久久| 男人舔女人的私密视频| 首页视频小说图片口味搜索 | 青青草视频在线视频观看| 亚洲久久久国产精品| 一区二区三区四区激情视频| 成人亚洲欧美一区二区av| 亚洲国产最新在线播放| 亚洲av日韩在线播放| 9热在线视频观看99| 1024视频免费在线观看| 热re99久久精品国产66热6| 日本色播在线视频| 午夜免费成人在线视频| 一级片'在线观看视频| 精品人妻在线不人妻| 久久午夜综合久久蜜桃| 黄色一级大片看看| 婷婷色综合www| 欧美在线一区亚洲| 国产精品一二三区在线看| 日本av免费视频播放| 热re99久久精品国产66热6| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲少妇的诱惑av| 美女扒开内裤让男人捅视频| 18禁国产床啪视频网站| 丁香六月欧美| 中文字幕另类日韩欧美亚洲嫩草| a 毛片基地| 汤姆久久久久久久影院中文字幕| 老汉色∧v一级毛片| 人人妻人人澡人人看| 国产野战对白在线观看| 国产成人啪精品午夜网站| 久久久欧美国产精品| 人人妻人人添人人爽欧美一区卜| 90打野战视频偷拍视频| 亚洲精品日本国产第一区| 亚洲激情五月婷婷啪啪| 飞空精品影院首页| 最新在线观看一区二区三区 | 桃花免费在线播放| 久热这里只有精品99| 久久午夜综合久久蜜桃| 看十八女毛片水多多多| 老司机亚洲免费影院| 久久久亚洲精品成人影院| 国产亚洲一区二区精品| 精品一区二区三区四区五区乱码 | 国产一区二区在线观看av| 午夜福利视频在线观看免费| 欧美少妇被猛烈插入视频| 国产成人一区二区在线| 国产精品亚洲av一区麻豆| av天堂在线播放| 国产一区亚洲一区在线观看| 久久天堂一区二区三区四区| 看免费av毛片| 一级毛片黄色毛片免费观看视频| 久热爱精品视频在线9| 后天国语完整版免费观看| 久久精品国产a三级三级三级| 久久久久视频综合| a级片在线免费高清观看视频| av国产精品久久久久影院| 99精国产麻豆久久婷婷| 亚洲精品一卡2卡三卡4卡5卡 | 一级毛片 在线播放| 男女无遮挡免费网站观看| 欧美久久黑人一区二区| 免费高清在线观看日韩| 九色亚洲精品在线播放| 日本午夜av视频| 97在线人人人人妻| www.熟女人妻精品国产| 美女高潮到喷水免费观看| 亚洲自偷自拍图片 自拍| 中国美女看黄片| 中文字幕亚洲精品专区| 亚洲国产欧美在线一区| 欧美人与善性xxx| 99九九在线精品视频| 天天操日日干夜夜撸| 日韩中文字幕欧美一区二区 | 精品人妻在线不人妻| 亚洲精品久久午夜乱码| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人看| 美女午夜性视频免费| 国产精品一区二区免费欧美 | 日韩大片免费观看网站| 91麻豆精品激情在线观看国产 | 新久久久久国产一级毛片| 国产精品三级大全| 国产一区二区激情短视频 | 精品一品国产午夜福利视频| 久久青草综合色| 美女脱内裤让男人舔精品视频| 一二三四在线观看免费中文在| 欧美日韩视频精品一区| 亚洲欧美色中文字幕在线| 成人影院久久| 色94色欧美一区二区| 一边摸一边抽搐一进一出视频| 久久九九热精品免费| 涩涩av久久男人的天堂| 久久影院123| 久久久国产精品麻豆| 亚洲国产精品成人久久小说| 亚洲一卡2卡3卡4卡5卡精品中文| 天天影视国产精品| 高潮久久久久久久久久久不卡| 丝袜美腿诱惑在线| 国产视频一区二区在线看| 国产精品秋霞免费鲁丝片| 美女中出高潮动态图| 亚洲精品久久午夜乱码| 亚洲国产精品一区二区三区在线| 国产一级毛片在线| 亚洲国产欧美在线一区| 久久久久精品人妻al黑| 五月天丁香电影| 男人操女人黄网站| 巨乳人妻的诱惑在线观看| 色视频在线一区二区三区| 欧美激情高清一区二区三区| 一区二区三区激情视频| 七月丁香在线播放| 国产伦理片在线播放av一区| 欧美乱码精品一区二区三区| 国产成人影院久久av| 亚洲少妇的诱惑av| 亚洲av电影在线观看一区二区三区| 成人亚洲精品一区在线观看| 亚洲欧美精品综合一区二区三区| 国产成人av教育| 精品一品国产午夜福利视频| 99国产精品99久久久久| 日韩av在线免费看完整版不卡| 韩国精品一区二区三区| 伦理电影免费视频| 99精国产麻豆久久婷婷| 久久久精品区二区三区| 久久久久国产一级毛片高清牌| www.999成人在线观看| 老司机亚洲免费影院| 观看av在线不卡| 久久精品熟女亚洲av麻豆精品| 日日爽夜夜爽网站| 日韩一本色道免费dvd| 亚洲图色成人| 青春草亚洲视频在线观看| 老司机影院毛片| 少妇 在线观看| 69精品国产乱码久久久| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 日韩电影二区| 国产片内射在线| 欧美黑人欧美精品刺激| 9191精品国产免费久久| 男女免费视频国产| 午夜两性在线视频| 亚洲精品国产av蜜桃| 桃花免费在线播放| 日本欧美视频一区| √禁漫天堂资源中文www| 久久天堂一区二区三区四区| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 50天的宝宝边吃奶边哭怎么回事| 久久人妻福利社区极品人妻图片 | 一级毛片 在线播放| 欧美人与善性xxx| 中文乱码字字幕精品一区二区三区| 美女主播在线视频| 两个人免费观看高清视频| 亚洲国产最新在线播放| 制服诱惑二区| 亚洲精品久久成人aⅴ小说| 99久久综合免费| 大香蕉久久成人网| 天天躁狠狠躁夜夜躁狠狠躁| av国产精品久久久久影院| 一级片免费观看大全| 精品亚洲乱码少妇综合久久| 久久人人爽av亚洲精品天堂| 国产成人精品无人区| 97精品久久久久久久久久精品| 一级毛片 在线播放| 一二三四社区在线视频社区8| 下体分泌物呈黄色| 色婷婷av一区二区三区视频| www.999成人在线观看| 老司机在亚洲福利影院| 一区二区av电影网| 少妇被粗大的猛进出69影院| 久久精品国产综合久久久| 如日韩欧美国产精品一区二区三区| 国产精品香港三级国产av潘金莲 | 欧美精品人与动牲交sv欧美| 日本五十路高清| 久久久久久久精品精品| 久久久亚洲精品成人影院| 久久久国产欧美日韩av| 久久青草综合色| 男女之事视频高清在线观看 | 亚洲精品美女久久av网站| av不卡在线播放| 欧美亚洲 丝袜 人妻 在线| 99久久人妻综合| 午夜激情久久久久久久| 熟女av电影| 啦啦啦视频在线资源免费观看| 韩国高清视频一区二区三区| 欧美日韩视频精品一区| 亚洲第一av免费看| 国产成人av激情在线播放| 国产熟女欧美一区二区| 国产亚洲一区二区精品|