• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Waveguide Invariant and Passive Ranging Using Double Element

    2011-07-25 06:22:02YUYun余赟HUIJunying惠俊英CHENYang陳陽LINFang林芳
    Defence Technology 2011年3期
    關(guān)鍵詞:林芳陳陽

    YU Yun(余赟),HUI Jun-ying(惠俊英),CHEN Yang(陳陽),LIN Fang(林芳)

    (1.Science and Technology on Underwater Acoustic Laboratory,Harbin Engineering University,Harbin 150001,Heilongjiang,China;2.Department of Physics and Electrical Information Engineering,Daqing Normal University,Daqing 163712,Heilongjiang,China)

    Introduction

    The passive ranging technology has been researched for sonar system.The main passive ranging technologies conclude the three-element array passive ranging technology[1]which uses a high-precision time delay estimation and provides the relative ranging error of about 15%at 10 km,the bearing-time delay difference-based target motion analysis[2]of which position accuracy is better than the three-element array passive ranging technology[3],the matched field-based ranging technology of which position accuracy is similar to the three-element array passive[4-5]ranging technology but its range is farther,and the focused beamforming-based passive ranging technology which is suitable for highprecision positioning in the near sound field.The performance of the first three-element array and bearingtime delay difference-based target motion analysis passive ranging technologies decline sharply when they are used in the towed linear array sonar whose relative position of the array element is unstable,while the matched field-based ranging technology needs the accurate prior knowledge of marine environment to model the sound field,which requires the deep pre-investigation of the ocean region in which the technique is used,and it is difficult to be used in unfamiliar oceans.Therefore,this paper tries to explore a robust passive ranging algorithm applicable to the towed line array sonar.

    The interference structure,which is divided into line spectrum and continuous spectrum interference structures,exists stably in low-frequency sound field.The features and applications of the line spectrum interference structure were discussed in Ref.[6 - 7].The continuous spectrum interference structure will be discussed in this paper,and it is hoped to realize passive ranging based on it.The continuous spectrum interference structures observed in a shallow sea trial are shown in Fig.1,where Fig.1(a)shows the acoustic field interference fringes of targets at middle and short ranges obtained from the tracking beam output of the towed linear array sonar,and Fig.1(b)shows the acoustic field interference fringes of target at long range obtained from the same sonar.Although both the receiving array and the target move,the interference fringes in LOFARgram are still visible and obvious,which indicates the interference structure in low-frequency acoustic field is indeed stable and observable.

    Fig.1 Interference fringes of the acoustic field obtained from the tracking beam output of the towed linear array sonar

    The waveguide invariant[8-14],usually designated asβ,was proposed by Chuprov,a Russian scholar,in 1982,which is used to describe the continuous spectrum interference fringes in LOFARgram obtained by processing the acoustic signals from moving broadband source.The invariantβis used to denote the relationship among the slope of the interference fringe,dω/dr,the rangerfrom the source and the frequencyω,describe the dispersive propagation characteristics of the acoustic field,and provide a descriptor of constructive/destructive interference structure in a single scalar parameter.In this paper,the expression of the interference fringe is derived by combining the waveguide invariant and the geometric relationship of the target moving trajectory,and the target motion parameters are estimated by image processing.And then the passive ranging can be realized based on double element or double array model,which can be two arrays split from a large array in the actual application.

    1 Waveguide Invariant β and the Expression of Interference Fringe

    According to the definition,the waveguide invariant in the range-independent waveguide can be expressed as[13]:

    whereωis the frequency of acoustic signal,ris the range from the source,βis the waveguide invariant,whose value is 1 in the Pekeris waveguide[15],vanduare the average phase velocity and the average group velocity,respectively.

    Therefore,βcan be predicted using Eq.(1)by modeling the acoustic field to get the mode phase velocity and group velocity if the information on the ocean environment is prior known accurately,which is difficult in practice.However,the first term in Eq.(1)shows that based on the image processing the value ofβcan be estimated by extracting the slope of the interference fringes in LOFARgram,which is obtained by STFT.

    The origin of coordinates is located at the acoustic center of the single sensor or the array.Provided that the target radiates continuously broadband signals and moves in a uniform rectilinearity,the linear speed isv,the range at the closest point of approach(CPA)isr0,the corresponding time ist0,θis target bearing,andφis the heading angle which is defined as the angle between the positive axis ofxand the target moving direction.The geometry relation of target movement is shown in Fig.2.The moving trajectory of the target can be expressed as:

    Fig.2 Moving geometry relation of target

    It can be seen from Fig.2 that:

    It can be derived from Eq.(4)and(5):

    The slope df/dτof the interference fringes can be written as:

    And Eq.(1)can be expressed as:

    It can be known from Eq.(3)that

    Substituting the Eq.(8)and Eq.(9)into Eq.(7),we have

    Then both the sides of the above equation are integrated and rearranged,we have

    Eq.(11)is just the trajectory equation of the interference fringes,which indicates that the interference fringes are a family of quasi-hyperbolas in shallow water.Whenβμ1,Eq.(11)can be simplified as a standard hyperbola equation in which apex is(t0,f0),wheref0is the frequency corresponding toτ=0,namely,f(0)=f0.

    2 Parameter Estimation via Hough Transform

    Hough transform[16]is an image processing method for edge detection,which is suitable to detect arbitrary curve.The Hough transform is to map the points on the same curve in the image space onto a family of curves intersected at a point in the parameter space,and the coordinate of the intersection reflects the parameter of the curve in the image space.The intensity of each element(a,b)in the parameter space is the cumulative intensity of the points on the curve characterized by the parameters(a,b)in the image space,so the parameters of the curve can be achieved by searching the maximum element in the parameter space.

    In this paper,Hough transform is used to process the LOFARgram and bearing-time records to estimate the parameters.For the former,LOFARgram is just the image space mentioned above,in which the curves are determined by Eq.(11).Provided thatt0andf0can be gotten directly from the LOFARgram,while the parameter space is a plane which takesr0/vas the horizontal axis and the waveguide invariantβas the vertical axis.Similarly,for the latter,the bearing-time record is an image space,in which the curves are determined by Eq.(6),while the parameter space is a plane which takesr0/vas the horizontal axis and the heading angle as the vertical axis.

    The simulation results of LOFARgram and its Hough transform are shown in Fig.3.The Hough transform of LOFARgram are performed fort0=0 s andf0=637 Hz as the apex of some interference fringe,as shown in Fig.3(b)and Fig.3(c).Then the parameters can be estimated by searching the maximum element in the parameter space:β=0.97 andr0/v=99.2,where the true value ofr0/vis 100,which indicates that Hough transform has high accuracy.The curve shown in Fig.3(a)as the dotted line can be achieved by substituting the estimated parameters into Eq.(11),which coincides with the bright fringe in LOFARgram.

    Fig.3 LOFARgram and the results of Hough transform

    Assuming that the heading angle of target is 30°,and the targets moves from far to near then the opposite,the remaining conditions are the same as the above.The bearing-time records estimated by acoustic intensity average using the vector sensor are shown in Fig.4(a).In the same way,the bearing-time records are processed by selectingt0=0 as a reference and the Eq.(6)as the Hough transform template,and the parameter space is shown in Fig.4(b).φandr0/vcan be estimated synchronously by searching the brightest pix of parameter space,they are 30°and 100 s,respectively,and the latter is exactly equal to the true value.But in practice,the bearing estimate differs from the real value by several degrees in bearing-time records,so there will be a corresponding estimated error with the parameters we concerned.

    Fig.4 The Bearing-time records and the result of Hough transform

    3 The Principle of Passive Ranging Using Double Array(Element)

    From Eq.(11)and the parameter estimation discussed in the previous section,it can be seen that only the ratio ofr0/vcan be obtained by a single vector sensor or a single array.Therefore,the problem of passive ranging can not be solved entirely.So the model of double element or double array is adopted to realize the passive ranging,which has a far detecting range and a lot of application aspects,such as shore station,surface ship or submarine.

    A double array element model is adopted as an example to explain the ranging principle,the principle using double array is the same as the former,but its operating range is father and the direction finding is more accurate.The ranging model is shown in Fig.5.The two array elements are placed onxaxis,and the array element spacing isL=d.Assuming that the target moves in a uniform linearity,its speed isv,and its heading angle isφ.The distances from the target to element 1 and 2 arer1andr2,and the corresponding bearing angles areθ1andθ2,respectively.Relative to element 1 and element 2,the ranges at the closest point of approach(CPA)arer01andr02,and the times at CPA aret01andt02,respectively.If the origin is used as a reference,the range at CPA and the time at CPA arer0andt0,respectively.

    Fig.5 Double element based positioning model

    LOFARgram 1 and LOFARgram 2 can be achieved by processing the signals received by element 1 and 2 using STFT.At the same time,the bearing-time records 1 and bearing-time records 2 can be achieved by bearing estimation.The four figures are the premise of further passive ranging.Four ranging algorithms will be introduced in the following sections.

    3.1 Algorithm 1

    The time delayTof the target moving from pointAto pointBshown in Fig.5 can be estimated by putting image cross-correlation,also called two-dimensional correlation,on two LOFARgrams,at the same time,t01andt02can be gotten easily.The heading angle can be estimated using Hough transform to process some bearing-time records,and the average value ofφ1andφ2can be adopted if Hough transform have be done to both the bearing-time records.So the navigation speed of the target can be expressed as:

    Because the element spacingdis known,the speedvcan be estimated using Eq.(12).

    The Hough transform of two LOFARgrams can be done to estimater01/vandr02/v:

    whereaandbare the values obtained by searching a maximum in parameter space of Hough transform.The ranges at CPA relative to two elements are

    Therefore,the range at CPA of target relative to the origin can be expressed as:

    And the time at CPA relative to the origin is

    So the horizontal distance of target is

    The above equation can be used to estimate the horizontal distance of target.The advantage of this algorithm is simple,but the ranging accuracy is poor when the heading angle of target is close to 90°,and it is inapplicable forφ=90°.

    3.2 Algorithm 2

    Similarly,the heading angleφcan be estimated by processing the bearing-time records using Hough transform,then the ratios of the ranges at CPA relative to two elements to the target speed can be obtained by processing the LOFARgrams using Hough transform,which areaandb,respectively.The simultaneous equations are as follows:

    The solution of the above equations is

    Based on the Eq.(19),the horizontal range of target can be estimated by Eq.(15),(16)and(17).

    This algorithm is also simple,and its calculation amount is less without image correlation.It is suitable to ranging forφ=90°,and the larger the heading angle is,the better the ranging accuracy is.However,the accuracy is poor when the heading angle is small(for example,the target is near the axial direction of the array),and the algorithm is inapplicable forφ=0°.In addition,it can be seen from the first equation of Eq.(19)that the robustness of this algorithm is poor because the target speed is determined by the difference betweenaandb,and the estimated errors caused by Hough transform are random.

    3.3 Algorithm 3

    The heading anglesφ1andφ2,and the ratiosmandnof the ranges at CPA relative to two elements to the target speed can be estimated synchronously by processing the bearing-time records using Hough transform,we have:

    The next step of this algorithm is the same as Algorithm 2.We have

    Then the following steps are also the same as the algorithms mentioned above.

    3.4 Algorithm 4

    This algorithm is obviously different from the algorithms mentioned above.It utilizes the definition of the waveguide invariant.

    Similarly,the waveguide invariantβandr01/v=acan be estimated synchronously by processing LOFAR-grams using Hough transform,and the heading angleφandr01/v=ccan also be obtained by processing the bearing-time records using Hough transform.So the difference of ranges at CPA relative to two elements Δr0can be expressed as:

    The frequenciesf01iandf02j,whereiandjare the numbers of interference fringes,of the corresponding interference fringes at CPA can be extracted easily from two LOFARgrams.So the frequency difference of the corresponding interference fringes can be expressed as:

    Therefore,it can be seen from Eq.(8)that the ranges at CPA of target relative to each element are as follows:

    In this way,the range at CPA relative to the origin can be estimated as:

    and the navigation speedvLandvbof the target are expressed using Eq.(27)and(28),where the subscripts denote the ratio of the range at CPA to the target's speed used to estimate the speed is estimated by processing the LOFARgram or the bearing-time records.

    Finally,the range of the target can be expressed as:

    wherercan be estimated by=vLand=vb,respectively,and the average value of two results is used as the final estimation of target range.The range of the target can also be obtained directly by substituting=(vL+vb)/2 into Eq.(29).

    4 Simulation Research

    The simulation researches have been conducted to verify the correctness of four algorithms proposed above and to evaluate the ranging accuracy of each algorithm.

    The conditions used in the simulation are as follows:the Pekeris model is used.The sea depth isH=55 m.The acoustic velocity and the density of water arec1=1 500 m/s andρ1=1 000 kg/cm3,respectively.While the acoustic velocity and the density of bottom medium arec2=1 610 m/s andρ2=1 900 kg/cm3,respectively.The effect of absorption is negligible.The depth of the vector sensors arezr=30 m,the element spacing isd=120 m.Supposing that the target cruises in the same depth which iszs=4 m,the speed of navigation isv=12 m/s,and the range at the CPA isr0=1 320 m.The time at the CPA is set as 0 time,and the time is defined negative when the target moves towards the receiver,and vice versa.The heading angle is 30°.The working band is 300 ~1 000 Hz.The acoustic field is modeled using the KRAKENC program.

    It can be known from the above analysis that the advantage of Algorithm 1,of which ranging accuracy is dependent on the time delay estimation accuracy is to estimate the range of target at the heading angle of 0°.The time delay estimation results obtained by image cross-correlation under different heading angles are shown in Tab.1,whereτ,and Δτare the true value,estimated value and the relative estimated error of the time delay,respectively.The results indicate that,when the heading angle is 0°,the relative estimated error is 0 which causes the high ranging accuracy,and the time delay estimation accuracy roughly reduces with the increase in heading angle.If the range accuracy is required to be better than 15%,then the condition for Algorithm 1 is that the heading angle is smaller than 10°.

    Tab.1 Time delay estimation results obtained by image cross-correlation under different heading angles

    Ranging results and relative errors of four algorithms when heading angles are 10°,30°and 90°are shown in Fig.6 to Fig.8,where(a)of each figure shows the ranging results,while(b)shows the corresponding relative ranging errors.It can be seen from the comparison of the results in the figures that:first,the relative ranging error of Algorithm 1 is about 9.2%when the heading angle is 10°,while the error is about 23.4%when the heading angle is 30°,which once again verifies that Algorithm 1 is suitable for small heading angle,especially for 0°heading angle at which Algorithm 2,3 and 4 are inapplicable.Second,Algorithm 2,3 and 4 have enough passive range accuracy when the heading angle is large,and the general trend is that the larger the heading angle is,the better the range accuracy is.

    Fig.6 Ranging results and relative errors of four algorithms at 10°heading angle

    5 Conclusions

    The stable interference structure of the low-frequency continuous spectrum acoustic field has been observed in the sea trials.For a target moving towards a receiver from far to near,and then moving away form the receiver,the equation of the interfe-rence fringes has been derived based on the concept of waveguide invariant and the geometric relationship of target moving trajectory,indicating that the interference fringes are a family of quasi hyperbolas.The heading angleφ,waveguide invariantβandr0/v(wherer0is the target's range at CPA andvis the target speed)can be estimated by processing the LOFARgram and the bearingtime records using the Hough transform.The double element or double array model is adopted to achieve passive ranging,four ranging algorithms are proposed.The simulation research shows that Algorithm 1 is suitable for the scenario of small heading angle,the ranging error is less than 10% if the heading angle is smaller than 10°.Algorithm 2,3 and 4 are inapplica-ble when the heading angle is equal to 0°,but all of them have enough range accuracy when the heading angle is larger than 10°.In the practical application,the heading angle should be estimated first,and then a threshold is set according to heading angle in order to use a suitable ranging algorithm.

    Fig.7 Ranging results and relative errors of four algorithms at 30°heading angle

    A complete interference fringe is required to range for all the four algorithms which do not fully satisfies the operational requirements of sonar device,but they are still valuable for basic research and have important application prospect in many aspects,such as shore station,airborne sonobuoy,marine research,especially acoustic measurement and so on.More detailed simulation and sea trial research will be needed for their practical engineering applications.The ranging algorithm suitable for the scenario without the closest point of approach is the focal point of further research.

    [1]WANG Xin-yong,HUI Jun-ying,YU Hong-xia.Filtering applied research on noise passive ranging[J].Journal of Harbin Engineering University,2005,26(1):80 - 83.(in Chinese)

    [2]WANG Yan,HUI Jun-ying,LIANG Guo-long.Target motion analysis based on bearing and time delay difference of dual arrays[C]∥Proceedings of National Conference on Underwater Acoustics,Shanghai:Editorial Office of Technical Acoustic,2001:60-62.(in Chinese)

    [3]Thode A M,Kuperman W A,D’Spain G L,et al.Localization using Bartlett matched-field processor sidelobes[J].J Acoust Soc Am,2000,107(1):278-286.

    [4]HUI Juan,HU Dan,HUI Jun-ying,et al.Research on the measurement of distribution image of radiated noise using focused beamforming[J].Acta Acoust,2007,34(2):356-361.(in Chinese)

    [5]YU Yun,MEI Ji-dan,ZHAI Chun-ping,et al.Sea trial researches on the measurements of passive source space distribution imaging and positioning[J].Acta Acoust,2009,32(4):103-109.(in Chinese)

    [6]HUI Jun-ying,SUN Guo-cang,ZHAO An-bang.Normal modes acoustic intensity flux in Pekeris waveguide and its cross spectra signal processing[J].Acta Acoust,2008,33(4):300-304.(in Chinese)

    [7]YU Yun,HUI Jun-ying,Zhao An-bang,et al.Complex acoustic intensity of normal modes in pekeris waveguide and its application[J].Acta Physica Sinica,2008,57(9):5742-5748.(in Chinese)

    [8]Chuprov S D.Interference structure of acoustic fieldin the layered ocean[M]∥Brekhovskikh L M,Andreeva I B,Ocean Acoustics Nauka,Moscow:Modern State,1982:71-91.

    [9]D’Spain G L,Kuperman W A.Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth[J].J Acoust Soc Am,1999,106(5):2454-2468.

    [10]Rouseff D,Spindel R C.Modeling the waveguide invariant as a distribution[J].AIP Conference Proceedings,2002,621(1):137-160.

    [11]Goldhahn R,Hickman G,Krolikc J.Waveguide invariant broadband target detection and reverberation estimation[J].J Acoust Soc Am,2008,124(5):2841 -2851.

    [12]Quijano J E,Zurk L M.Rouseff D.Demonstration of the invariance principle for active sonar[J].J Acoust Soc Am,2008,123(3):1329-1337.

    [13]Turgut A,Orr M,Rouseff D.Broadband source localization using horizontal-beam acoustic intensity striations[J].J Acoust Soc Am,2010,127(1):73-83.

    [14]Cockrell K L,Schmidt H.Robust passive range estimation using the waveguide invariant[J].J Acoust Soc Am,2010,127(5):2780-2789.

    [15]Brekhovskikh L M,Lysanov Y P.Fundamental of ocean acoustic[M].3rd ed.Moscow,Russia:AIP Press,2002:143-146.

    [16]Hough P VC.A method and means for recognizing complex patterns:US,3069654[P].1962-12-18.

    [17]HUI Jun-ying,HUI Juan.Fundamental theory of signal processing in acoustic vector field[M].Beijing:National Defense Industry Press,2009:10.(in Chinese)

    猜你喜歡
    林芳陳陽
    陳陽美術(shù)作品欣賞
    慢 慢
    那株被肆意觸碰的含羞草后來怎么樣了?
    陳陽:讓青春在筑夢(mèng)路上綻放榮光
    The influence of artificial intelligence on accounting industry
    考驗(yàn)
    上海故事(2018年8期)2018-09-06 02:18:24
    絕對(duì)有償
    樓上老公不在家
    樓上的孩子怕吵架
    Molecular Dynamic Simulation for HMX/NTO Supramolecular Explosive
    简卡轻食公司| 男人舔奶头视频| 两个人的视频大全免费| 九九久久精品国产亚洲av麻豆| 黄色视频,在线免费观看| 97热精品久久久久久| 免费看日本二区| 淫妇啪啪啪对白视频| 成年版毛片免费区| 精品人妻视频免费看| 看非洲黑人一级黄片| 淫秽高清视频在线观看| 一区二区三区免费毛片| 亚洲欧美日韩高清专用| 久久久久久伊人网av| 成人一区二区视频在线观看| 蜜桃久久精品国产亚洲av| 欧美国产日韩亚洲一区| 色尼玛亚洲综合影院| 九九爱精品视频在线观看| 欧美高清成人免费视频www| 看免费成人av毛片| 看十八女毛片水多多多| 国内精品一区二区在线观看| 精品福利观看| 日本-黄色视频高清免费观看| 国产女主播在线喷水免费视频网站 | 乱系列少妇在线播放| 老司机午夜福利在线观看视频| 亚洲欧美精品综合久久99| 免费av观看视频| 国产高清视频在线播放一区| 精品乱码久久久久久99久播| 久久天躁狠狠躁夜夜2o2o| 亚洲av电影不卡..在线观看| 国产成人freesex在线 | 精品人妻一区二区三区麻豆 | 中国国产av一级| av女优亚洲男人天堂| av在线老鸭窝| 精品熟女少妇av免费看| 我的女老师完整版在线观看| 最后的刺客免费高清国语| 内地一区二区视频在线| 国产精品1区2区在线观看.| eeuss影院久久| 我要搜黄色片| 欧美3d第一页| 欧美日韩国产亚洲二区| 亚洲真实伦在线观看| 成人特级av手机在线观看| 亚洲国产精品成人久久小说 | 亚洲欧美精品自产自拍| 深夜精品福利| 在现免费观看毛片| 精品久久久噜噜| av.在线天堂| 我的女老师完整版在线观看| 亚洲欧美清纯卡通| 日本一本二区三区精品| 黄色配什么色好看| 最新中文字幕久久久久| 夜夜爽天天搞| 国产一区二区亚洲精品在线观看| 天天躁夜夜躁狠狠久久av| 别揉我奶头 嗯啊视频| 最好的美女福利视频网| 日韩精品中文字幕看吧| 亚洲av中文字字幕乱码综合| 一级av片app| 好男人在线观看高清免费视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲熟妇中文字幕五十中出| 不卡一级毛片| 日韩成人伦理影院| 天堂影院成人在线观看| 国产精品人妻久久久影院| 91久久精品电影网| 国产午夜福利久久久久久| h日本视频在线播放| 国产免费一级a男人的天堂| 3wmmmm亚洲av在线观看| 久久精品国产清高在天天线| 国产欧美日韩精品亚洲av| 日本免费a在线| 校园人妻丝袜中文字幕| 99久久无色码亚洲精品果冻| 国产真实乱freesex| 国产v大片淫在线免费观看| 真实男女啪啪啪动态图| 少妇的逼水好多| 波野结衣二区三区在线| av天堂在线播放| 精品乱码久久久久久99久播| 久久6这里有精品| 少妇人妻精品综合一区二区 | 高清毛片免费观看视频网站| 亚洲av电影不卡..在线观看| 国产精品伦人一区二区| 99热精品在线国产| 大香蕉久久网| 国产三级中文精品| 国产一区二区在线av高清观看| 欧美日韩一区二区视频在线观看视频在线 | 欧美激情久久久久久爽电影| 2021天堂中文幕一二区在线观| 亚洲精品粉嫩美女一区| 好男人在线观看高清免费视频| 久久人妻av系列| 九九在线视频观看精品| 99热网站在线观看| 久久天躁狠狠躁夜夜2o2o| 性欧美人与动物交配| 精品人妻一区二区三区麻豆 | 99久久精品热视频| 国产av不卡久久| 69av精品久久久久久| 性插视频无遮挡在线免费观看| 美女cb高潮喷水在线观看| 亚洲天堂国产精品一区在线| 看免费成人av毛片| 中文字幕av成人在线电影| 亚洲av中文av极速乱| 免费av毛片视频| 淫秽高清视频在线观看| 乱系列少妇在线播放| 欧美最黄视频在线播放免费| 你懂的网址亚洲精品在线观看 | 小蜜桃在线观看免费完整版高清| 亚洲av五月六月丁香网| 男女啪啪激烈高潮av片| 成人三级黄色视频| 色噜噜av男人的天堂激情| 69av精品久久久久久| 色av中文字幕| 日日摸夜夜添夜夜添av毛片| 神马国产精品三级电影在线观看| 又粗又爽又猛毛片免费看| 亚洲一级一片aⅴ在线观看| 欧美日韩乱码在线| 性色avwww在线观看| 嫩草影院入口| 天天躁日日操中文字幕| 一本一本综合久久| 亚洲高清免费不卡视频| 亚洲四区av| 亚洲av免费高清在线观看| 成人性生交大片免费视频hd| 国产国拍精品亚洲av在线观看| 美女免费视频网站| 草草在线视频免费看| 美女免费视频网站| 十八禁网站免费在线| 久久亚洲精品不卡| 亚洲欧美成人综合另类久久久 | 国产v大片淫在线免费观看| 亚洲图色成人| 高清毛片免费看| 免费黄网站久久成人精品| 国内久久婷婷六月综合欲色啪| 欧美日韩精品成人综合77777| 国产成人精品久久久久久| 2021天堂中文幕一二区在线观| 97人妻精品一区二区三区麻豆| 国产一区二区在线av高清观看| 一区福利在线观看| 久久精品夜色国产| 亚洲四区av| 亚洲性夜色夜夜综合| 亚洲欧美日韩高清专用| 麻豆av噜噜一区二区三区| 夜夜夜夜夜久久久久| 国产精品伦人一区二区| 啦啦啦韩国在线观看视频| 波多野结衣巨乳人妻| 国产精品99久久久久久久久| 网址你懂的国产日韩在线| 中文资源天堂在线| 搞女人的毛片| 国产成人freesex在线 | 亚洲美女黄片视频| 国产 一区精品| 亚洲成人中文字幕在线播放| 精品国产三级普通话版| 国产一区亚洲一区在线观看| 国产成人福利小说| 激情 狠狠 欧美| 深夜精品福利| 丰满乱子伦码专区| 一区二区三区四区激情视频 | 波多野结衣高清作品| 超碰av人人做人人爽久久| 亚洲欧美日韩高清专用| 韩国av在线不卡| 18+在线观看网站| 国产高清视频在线播放一区| 亚洲自拍偷在线| 一区福利在线观看| 变态另类丝袜制服| 一区二区三区四区激情视频 | 一夜夜www| 少妇猛男粗大的猛烈进出视频 | 成年女人看的毛片在线观看| 日本色播在线视频| 久久这里只有精品中国| 美女黄网站色视频| 国产精品爽爽va在线观看网站| 18禁裸乳无遮挡免费网站照片| 在线观看午夜福利视频| 99热全是精品| 中文字幕免费在线视频6| 国产精品久久电影中文字幕| 精品久久久久久久久久免费视频| 免费人成在线观看视频色| 美女被艹到高潮喷水动态| 中文亚洲av片在线观看爽| 12—13女人毛片做爰片一| 99国产极品粉嫩在线观看| 少妇人妻一区二区三区视频| 久久久久久久久久黄片| 亚洲无线在线观看| 免费观看的影片在线观看| 亚洲成人久久爱视频| 中出人妻视频一区二区| 午夜精品一区二区三区免费看| 黄色欧美视频在线观看| 国产精品人妻久久久久久| 日本黄大片高清| av在线观看视频网站免费| 久久婷婷人人爽人人干人人爱| 18禁在线播放成人免费| 男插女下体视频免费在线播放| 非洲黑人性xxxx精品又粗又长| 国产91av在线免费观看| 日韩成人伦理影院| 成年女人看的毛片在线观看| 国产av在哪里看| 亚洲自偷自拍三级| 校园人妻丝袜中文字幕| 在现免费观看毛片| 国产日本99.免费观看| 高清毛片免费看| 免费一级毛片在线播放高清视频| 国产伦在线观看视频一区| 亚洲欧美精品自产自拍| av在线蜜桃| 最新中文字幕久久久久| 国产精品免费一区二区三区在线| 中文字幕熟女人妻在线| 日韩欧美精品免费久久| 在线免费观看不下载黄p国产| 午夜久久久久精精品| 91狼人影院| 日本-黄色视频高清免费观看| 最好的美女福利视频网| 热99在线观看视频| 国产一区二区三区在线臀色熟女| 狠狠狠狠99中文字幕| 男人和女人高潮做爰伦理| 亚洲国产色片| 亚洲精品乱码久久久v下载方式| 欧美最黄视频在线播放免费| 色哟哟哟哟哟哟| 日韩欧美 国产精品| 国产真实伦视频高清在线观看| 免费高清视频大片| 性色avwww在线观看| 麻豆一二三区av精品| 三级男女做爰猛烈吃奶摸视频| 精品一区二区免费观看| 天堂动漫精品| 亚洲aⅴ乱码一区二区在线播放| 直男gayav资源| 国产极品精品免费视频能看的| 日本色播在线视频| a级毛片免费高清观看在线播放| 99riav亚洲国产免费| 91精品国产九色| 欧美最黄视频在线播放免费| 国语自产精品视频在线第100页| 亚洲欧美精品自产自拍| 日韩欧美三级三区| 成人午夜高清在线视频| 夜夜爽天天搞| 亚洲精品456在线播放app| 日韩一区二区视频免费看| 国产高清不卡午夜福利| 午夜影院日韩av| 久久人人爽人人爽人人片va| 夜夜爽天天搞| 99热全是精品| 成人综合一区亚洲| 久久久久久久久久成人| 大型黄色视频在线免费观看| avwww免费| 欧美性猛交黑人性爽| 在现免费观看毛片| 国产在线精品亚洲第一网站| 午夜视频国产福利| 老熟妇乱子伦视频在线观看| 老熟妇仑乱视频hdxx| 美女大奶头视频| 免费av毛片视频| 卡戴珊不雅视频在线播放| 久久久久性生活片| 精品久久久噜噜| 女同久久另类99精品国产91| 亚洲成人久久性| 久久精品国产自在天天线| 听说在线观看完整版免费高清| 久久午夜亚洲精品久久| 久久久a久久爽久久v久久| 亚洲欧美日韩东京热| 国产精品久久久久久久电影| 热99在线观看视频| 男女之事视频高清在线观看| 别揉我奶头~嗯~啊~动态视频| 久久精品国产鲁丝片午夜精品| 成人欧美大片| 麻豆久久精品国产亚洲av| 丰满的人妻完整版| 毛片一级片免费看久久久久| 夜夜夜夜夜久久久久| 国产在线男女| 国产三级在线视频| 久久久久久国产a免费观看| 成人午夜高清在线视频| 久久久久九九精品影院| 欧美成人精品欧美一级黄| 18+在线观看网站| 精品一区二区三区人妻视频| 国产精品免费一区二区三区在线| 久久韩国三级中文字幕| 老女人水多毛片| 日韩精品中文字幕看吧| 午夜福利18| 少妇裸体淫交视频免费看高清| 可以在线观看的亚洲视频| 国产色婷婷99| 婷婷精品国产亚洲av| 成人三级黄色视频| 天美传媒精品一区二区| 国产69精品久久久久777片| 99久久九九国产精品国产免费| 日韩中字成人| 亚洲精品影视一区二区三区av| 国产91av在线免费观看| 又黄又爽又免费观看的视频| 2021天堂中文幕一二区在线观| 97在线视频观看| 日本黄色片子视频| 波多野结衣巨乳人妻| av.在线天堂| 日韩欧美三级三区| 好男人在线观看高清免费视频| 亚洲人成网站高清观看| 三级经典国产精品| 搡女人真爽免费视频火全软件 | 狠狠狠狠99中文字幕| 欧美成人精品欧美一级黄| 精品少妇黑人巨大在线播放 | 亚洲精品456在线播放app| 午夜免费男女啪啪视频观看 | 日韩欧美精品免费久久| 久久精品国产亚洲av天美| .国产精品久久| 香蕉av资源在线| 亚洲精品国产av成人精品 | 97超视频在线观看视频| 日韩av在线大香蕉| 成年av动漫网址| 欧美日韩综合久久久久久| 日韩制服骚丝袜av| 欧美成人一区二区免费高清观看| 亚洲人成网站在线播| 亚洲中文字幕一区二区三区有码在线看| 久久这里只有精品中国| 午夜福利在线观看吧| 中文在线观看免费www的网站| 你懂的网址亚洲精品在线观看 | 亚洲人成网站高清观看| 自拍偷自拍亚洲精品老妇| 亚洲精品色激情综合| 99久久精品国产国产毛片| 欧美国产日韩亚洲一区| 国产老妇女一区| 免费不卡的大黄色大毛片视频在线观看 | 91狼人影院| 国产精品福利在线免费观看| 我要看日韩黄色一级片| 少妇熟女欧美另类| 97超碰精品成人国产| 国产午夜精品久久久久久一区二区三区 | 精品国产三级普通话版| 亚洲七黄色美女视频| 老女人水多毛片| 国产高潮美女av| 狂野欧美激情性xxxx在线观看| 99热这里只有是精品在线观看| 一级毛片aaaaaa免费看小| 嫩草影视91久久| 免费大片18禁| 亚洲av电影不卡..在线观看| 成年女人看的毛片在线观看| 有码 亚洲区| 成人鲁丝片一二三区免费| 99视频精品全部免费 在线| 国产精品人妻久久久影院| 狂野欧美白嫩少妇大欣赏| 精品少妇黑人巨大在线播放 | 成年免费大片在线观看| 大香蕉久久网| 变态另类丝袜制服| 国产日本99.免费观看| 网址你懂的国产日韩在线| 亚洲精品色激情综合| 久久久国产成人精品二区| 黄色一级大片看看| 精品乱码久久久久久99久播| 最近2019中文字幕mv第一页| 日本成人三级电影网站| 国产精品一及| 成人性生交大片免费视频hd| 亚洲国产日韩欧美精品在线观看| 五月伊人婷婷丁香| 国产淫片久久久久久久久| 少妇的逼水好多| 美女免费视频网站| 一本久久中文字幕| 看黄色毛片网站| 久久久久久久久大av| 精品欧美国产一区二区三| 亚洲av中文字字幕乱码综合| av国产免费在线观看| 成人无遮挡网站| 国产色婷婷99| 91av网一区二区| 国产精华一区二区三区| 精品久久久久久久人妻蜜臀av| 国内揄拍国产精品人妻在线| 国内精品宾馆在线| 在线播放无遮挡| 国产私拍福利视频在线观看| 能在线免费观看的黄片| 看免费成人av毛片| 深夜精品福利| 亚洲性久久影院| 人人妻人人看人人澡| 少妇被粗大猛烈的视频| 51国产日韩欧美| 国产精品人妻久久久久久| 久久婷婷人人爽人人干人人爱| 午夜爱爱视频在线播放| 国产精品亚洲一级av第二区| 国产欧美日韩精品亚洲av| 免费看日本二区| 午夜福利在线观看免费完整高清在 | 国产精品国产高清国产av| 久久人人爽人人爽人人片va| 久久草成人影院| 日韩欧美 国产精品| 丝袜美腿在线中文| 联通29元200g的流量卡| 精华霜和精华液先用哪个| 欧美xxxx性猛交bbbb| 白带黄色成豆腐渣| 99在线人妻在线中文字幕| 国产v大片淫在线免费观看| 波多野结衣高清无吗| 亚洲五月天丁香| 午夜日韩欧美国产| 色综合亚洲欧美另类图片| 午夜激情欧美在线| 日本-黄色视频高清免费观看| 久久综合国产亚洲精品| 最近最新中文字幕大全电影3| 国产午夜精品久久久久久一区二区三区 | 丝袜美腿在线中文| 成人欧美大片| 草草在线视频免费看| 少妇熟女欧美另类| 男女啪啪激烈高潮av片| 国产麻豆成人av免费视频| 欧美一区二区精品小视频在线| 男人和女人高潮做爰伦理| 高清午夜精品一区二区三区 | videossex国产| 亚洲成人av在线免费| 六月丁香七月| 一个人看的www免费观看视频| 卡戴珊不雅视频在线播放| 亚洲欧美日韩东京热| 亚洲av熟女| 中国美白少妇内射xxxbb| 亚洲一级一片aⅴ在线观看| 欧美3d第一页| 国产乱人视频| 亚洲精品久久国产高清桃花| 欧美+日韩+精品| 国产精品三级大全| 亚洲天堂国产精品一区在线| 久久精品人妻少妇| 欧美成人a在线观看| 欧美绝顶高潮抽搐喷水| 久久久久久大精品| 少妇的逼水好多| 狂野欧美激情性xxxx在线观看| 小蜜桃在线观看免费完整版高清| av免费在线看不卡| 国产乱人偷精品视频| 无遮挡黄片免费观看| 乱系列少妇在线播放| 你懂的网址亚洲精品在线观看 | 日韩国内少妇激情av| 国国产精品蜜臀av免费| 午夜久久久久精精品| 亚洲精品成人久久久久久| 三级毛片av免费| 亚洲国产高清在线一区二区三| 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 国产私拍福利视频在线观看| 晚上一个人看的免费电影| 成人三级黄色视频| 美女 人体艺术 gogo| 精品熟女少妇av免费看| 日本欧美国产在线视频| 成人亚洲欧美一区二区av| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 欧美性猛交╳xxx乱大交人| 免费人成在线观看视频色| 99久久中文字幕三级久久日本| 成年女人毛片免费观看观看9| 亚洲av中文av极速乱| 国产麻豆成人av免费视频| 成年女人看的毛片在线观看| 久久午夜福利片| 黄色配什么色好看| 亚洲精品国产成人久久av| 精品一区二区三区av网在线观看| 国内揄拍国产精品人妻在线| 成人二区视频| 久久国产乱子免费精品| 久久精品国产亚洲网站| 日韩av不卡免费在线播放| 一级黄片播放器| 日韩欧美 国产精品| 久久国内精品自在自线图片| av天堂中文字幕网| 亚洲aⅴ乱码一区二区在线播放| 一个人看视频在线观看www免费| 欧美一区二区国产精品久久精品| 伊人久久精品亚洲午夜| 男女之事视频高清在线观看| 亚洲精华国产精华液的使用体验 | 久久中文看片网| av黄色大香蕉| 99久久精品热视频| 国产久久久一区二区三区| 男女下面进入的视频免费午夜| 老司机午夜福利在线观看视频| 美女免费视频网站| 欧美极品一区二区三区四区| 日韩欧美精品v在线| 夜夜夜夜夜久久久久| av天堂在线播放| 99热6这里只有精品| 午夜福利18| 国产单亲对白刺激| 最好的美女福利视频网| 国产精品一二三区在线看| 亚洲av中文av极速乱| 非洲黑人性xxxx精品又粗又长| 中文字幕av成人在线电影| 国产精品美女特级片免费视频播放器| 日本免费一区二区三区高清不卡| 1024手机看黄色片| 两个人的视频大全免费| 成人性生交大片免费视频hd| 悠悠久久av| 久99久视频精品免费| 大型黄色视频在线免费观看| 国产日本99.免费观看| 亚洲精品在线观看二区| 国产日本99.免费观看| av中文乱码字幕在线| 麻豆av噜噜一区二区三区| 亚洲自拍偷在线| 性欧美人与动物交配| 日本色播在线视频| 欧美高清性xxxxhd video| 香蕉av资源在线| 免费观看精品视频网站| 床上黄色一级片| 小蜜桃在线观看免费完整版高清| 九九热线精品视视频播放| 97超碰精品成人国产| 美女xxoo啪啪120秒动态图| 中文资源天堂在线| 一级毛片久久久久久久久女| 少妇高潮的动态图| 男女视频在线观看网站免费| .国产精品久久| 一本久久中文字幕| 亚洲一区二区三区色噜噜| 在线免费十八禁| 嫩草影视91久久| 99久国产av精品| 成人国产麻豆网| 一本精品99久久精品77| 国国产精品蜜臀av免费| 色综合色国产| 日本一二三区视频观看| 日韩欧美 国产精品|