• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Waveguide Invariant and Passive Ranging Using Double Element

    2011-07-25 06:22:02YUYun余赟HUIJunying惠俊英CHENYang陳陽LINFang林芳
    Defence Technology 2011年3期
    關(guān)鍵詞:林芳陳陽

    YU Yun(余赟),HUI Jun-ying(惠俊英),CHEN Yang(陳陽),LIN Fang(林芳)

    (1.Science and Technology on Underwater Acoustic Laboratory,Harbin Engineering University,Harbin 150001,Heilongjiang,China;2.Department of Physics and Electrical Information Engineering,Daqing Normal University,Daqing 163712,Heilongjiang,China)

    Introduction

    The passive ranging technology has been researched for sonar system.The main passive ranging technologies conclude the three-element array passive ranging technology[1]which uses a high-precision time delay estimation and provides the relative ranging error of about 15%at 10 km,the bearing-time delay difference-based target motion analysis[2]of which position accuracy is better than the three-element array passive ranging technology[3],the matched field-based ranging technology of which position accuracy is similar to the three-element array passive[4-5]ranging technology but its range is farther,and the focused beamforming-based passive ranging technology which is suitable for highprecision positioning in the near sound field.The performance of the first three-element array and bearingtime delay difference-based target motion analysis passive ranging technologies decline sharply when they are used in the towed linear array sonar whose relative position of the array element is unstable,while the matched field-based ranging technology needs the accurate prior knowledge of marine environment to model the sound field,which requires the deep pre-investigation of the ocean region in which the technique is used,and it is difficult to be used in unfamiliar oceans.Therefore,this paper tries to explore a robust passive ranging algorithm applicable to the towed line array sonar.

    The interference structure,which is divided into line spectrum and continuous spectrum interference structures,exists stably in low-frequency sound field.The features and applications of the line spectrum interference structure were discussed in Ref.[6 - 7].The continuous spectrum interference structure will be discussed in this paper,and it is hoped to realize passive ranging based on it.The continuous spectrum interference structures observed in a shallow sea trial are shown in Fig.1,where Fig.1(a)shows the acoustic field interference fringes of targets at middle and short ranges obtained from the tracking beam output of the towed linear array sonar,and Fig.1(b)shows the acoustic field interference fringes of target at long range obtained from the same sonar.Although both the receiving array and the target move,the interference fringes in LOFARgram are still visible and obvious,which indicates the interference structure in low-frequency acoustic field is indeed stable and observable.

    Fig.1 Interference fringes of the acoustic field obtained from the tracking beam output of the towed linear array sonar

    The waveguide invariant[8-14],usually designated asβ,was proposed by Chuprov,a Russian scholar,in 1982,which is used to describe the continuous spectrum interference fringes in LOFARgram obtained by processing the acoustic signals from moving broadband source.The invariantβis used to denote the relationship among the slope of the interference fringe,dω/dr,the rangerfrom the source and the frequencyω,describe the dispersive propagation characteristics of the acoustic field,and provide a descriptor of constructive/destructive interference structure in a single scalar parameter.In this paper,the expression of the interference fringe is derived by combining the waveguide invariant and the geometric relationship of the target moving trajectory,and the target motion parameters are estimated by image processing.And then the passive ranging can be realized based on double element or double array model,which can be two arrays split from a large array in the actual application.

    1 Waveguide Invariant β and the Expression of Interference Fringe

    According to the definition,the waveguide invariant in the range-independent waveguide can be expressed as[13]:

    whereωis the frequency of acoustic signal,ris the range from the source,βis the waveguide invariant,whose value is 1 in the Pekeris waveguide[15],vanduare the average phase velocity and the average group velocity,respectively.

    Therefore,βcan be predicted using Eq.(1)by modeling the acoustic field to get the mode phase velocity and group velocity if the information on the ocean environment is prior known accurately,which is difficult in practice.However,the first term in Eq.(1)shows that based on the image processing the value ofβcan be estimated by extracting the slope of the interference fringes in LOFARgram,which is obtained by STFT.

    The origin of coordinates is located at the acoustic center of the single sensor or the array.Provided that the target radiates continuously broadband signals and moves in a uniform rectilinearity,the linear speed isv,the range at the closest point of approach(CPA)isr0,the corresponding time ist0,θis target bearing,andφis the heading angle which is defined as the angle between the positive axis ofxand the target moving direction.The geometry relation of target movement is shown in Fig.2.The moving trajectory of the target can be expressed as:

    Fig.2 Moving geometry relation of target

    It can be seen from Fig.2 that:

    It can be derived from Eq.(4)and(5):

    The slope df/dτof the interference fringes can be written as:

    And Eq.(1)can be expressed as:

    It can be known from Eq.(3)that

    Substituting the Eq.(8)and Eq.(9)into Eq.(7),we have

    Then both the sides of the above equation are integrated and rearranged,we have

    Eq.(11)is just the trajectory equation of the interference fringes,which indicates that the interference fringes are a family of quasi-hyperbolas in shallow water.Whenβμ1,Eq.(11)can be simplified as a standard hyperbola equation in which apex is(t0,f0),wheref0is the frequency corresponding toτ=0,namely,f(0)=f0.

    2 Parameter Estimation via Hough Transform

    Hough transform[16]is an image processing method for edge detection,which is suitable to detect arbitrary curve.The Hough transform is to map the points on the same curve in the image space onto a family of curves intersected at a point in the parameter space,and the coordinate of the intersection reflects the parameter of the curve in the image space.The intensity of each element(a,b)in the parameter space is the cumulative intensity of the points on the curve characterized by the parameters(a,b)in the image space,so the parameters of the curve can be achieved by searching the maximum element in the parameter space.

    In this paper,Hough transform is used to process the LOFARgram and bearing-time records to estimate the parameters.For the former,LOFARgram is just the image space mentioned above,in which the curves are determined by Eq.(11).Provided thatt0andf0can be gotten directly from the LOFARgram,while the parameter space is a plane which takesr0/vas the horizontal axis and the waveguide invariantβas the vertical axis.Similarly,for the latter,the bearing-time record is an image space,in which the curves are determined by Eq.(6),while the parameter space is a plane which takesr0/vas the horizontal axis and the heading angle as the vertical axis.

    The simulation results of LOFARgram and its Hough transform are shown in Fig.3.The Hough transform of LOFARgram are performed fort0=0 s andf0=637 Hz as the apex of some interference fringe,as shown in Fig.3(b)and Fig.3(c).Then the parameters can be estimated by searching the maximum element in the parameter space:β=0.97 andr0/v=99.2,where the true value ofr0/vis 100,which indicates that Hough transform has high accuracy.The curve shown in Fig.3(a)as the dotted line can be achieved by substituting the estimated parameters into Eq.(11),which coincides with the bright fringe in LOFARgram.

    Fig.3 LOFARgram and the results of Hough transform

    Assuming that the heading angle of target is 30°,and the targets moves from far to near then the opposite,the remaining conditions are the same as the above.The bearing-time records estimated by acoustic intensity average using the vector sensor are shown in Fig.4(a).In the same way,the bearing-time records are processed by selectingt0=0 as a reference and the Eq.(6)as the Hough transform template,and the parameter space is shown in Fig.4(b).φandr0/vcan be estimated synchronously by searching the brightest pix of parameter space,they are 30°and 100 s,respectively,and the latter is exactly equal to the true value.But in practice,the bearing estimate differs from the real value by several degrees in bearing-time records,so there will be a corresponding estimated error with the parameters we concerned.

    Fig.4 The Bearing-time records and the result of Hough transform

    3 The Principle of Passive Ranging Using Double Array(Element)

    From Eq.(11)and the parameter estimation discussed in the previous section,it can be seen that only the ratio ofr0/vcan be obtained by a single vector sensor or a single array.Therefore,the problem of passive ranging can not be solved entirely.So the model of double element or double array is adopted to realize the passive ranging,which has a far detecting range and a lot of application aspects,such as shore station,surface ship or submarine.

    A double array element model is adopted as an example to explain the ranging principle,the principle using double array is the same as the former,but its operating range is father and the direction finding is more accurate.The ranging model is shown in Fig.5.The two array elements are placed onxaxis,and the array element spacing isL=d.Assuming that the target moves in a uniform linearity,its speed isv,and its heading angle isφ.The distances from the target to element 1 and 2 arer1andr2,and the corresponding bearing angles areθ1andθ2,respectively.Relative to element 1 and element 2,the ranges at the closest point of approach(CPA)arer01andr02,and the times at CPA aret01andt02,respectively.If the origin is used as a reference,the range at CPA and the time at CPA arer0andt0,respectively.

    Fig.5 Double element based positioning model

    LOFARgram 1 and LOFARgram 2 can be achieved by processing the signals received by element 1 and 2 using STFT.At the same time,the bearing-time records 1 and bearing-time records 2 can be achieved by bearing estimation.The four figures are the premise of further passive ranging.Four ranging algorithms will be introduced in the following sections.

    3.1 Algorithm 1

    The time delayTof the target moving from pointAto pointBshown in Fig.5 can be estimated by putting image cross-correlation,also called two-dimensional correlation,on two LOFARgrams,at the same time,t01andt02can be gotten easily.The heading angle can be estimated using Hough transform to process some bearing-time records,and the average value ofφ1andφ2can be adopted if Hough transform have be done to both the bearing-time records.So the navigation speed of the target can be expressed as:

    Because the element spacingdis known,the speedvcan be estimated using Eq.(12).

    The Hough transform of two LOFARgrams can be done to estimater01/vandr02/v:

    whereaandbare the values obtained by searching a maximum in parameter space of Hough transform.The ranges at CPA relative to two elements are

    Therefore,the range at CPA of target relative to the origin can be expressed as:

    And the time at CPA relative to the origin is

    So the horizontal distance of target is

    The above equation can be used to estimate the horizontal distance of target.The advantage of this algorithm is simple,but the ranging accuracy is poor when the heading angle of target is close to 90°,and it is inapplicable forφ=90°.

    3.2 Algorithm 2

    Similarly,the heading angleφcan be estimated by processing the bearing-time records using Hough transform,then the ratios of the ranges at CPA relative to two elements to the target speed can be obtained by processing the LOFARgrams using Hough transform,which areaandb,respectively.The simultaneous equations are as follows:

    The solution of the above equations is

    Based on the Eq.(19),the horizontal range of target can be estimated by Eq.(15),(16)and(17).

    This algorithm is also simple,and its calculation amount is less without image correlation.It is suitable to ranging forφ=90°,and the larger the heading angle is,the better the ranging accuracy is.However,the accuracy is poor when the heading angle is small(for example,the target is near the axial direction of the array),and the algorithm is inapplicable forφ=0°.In addition,it can be seen from the first equation of Eq.(19)that the robustness of this algorithm is poor because the target speed is determined by the difference betweenaandb,and the estimated errors caused by Hough transform are random.

    3.3 Algorithm 3

    The heading anglesφ1andφ2,and the ratiosmandnof the ranges at CPA relative to two elements to the target speed can be estimated synchronously by processing the bearing-time records using Hough transform,we have:

    The next step of this algorithm is the same as Algorithm 2.We have

    Then the following steps are also the same as the algorithms mentioned above.

    3.4 Algorithm 4

    This algorithm is obviously different from the algorithms mentioned above.It utilizes the definition of the waveguide invariant.

    Similarly,the waveguide invariantβandr01/v=acan be estimated synchronously by processing LOFAR-grams using Hough transform,and the heading angleφandr01/v=ccan also be obtained by processing the bearing-time records using Hough transform.So the difference of ranges at CPA relative to two elements Δr0can be expressed as:

    The frequenciesf01iandf02j,whereiandjare the numbers of interference fringes,of the corresponding interference fringes at CPA can be extracted easily from two LOFARgrams.So the frequency difference of the corresponding interference fringes can be expressed as:

    Therefore,it can be seen from Eq.(8)that the ranges at CPA of target relative to each element are as follows:

    In this way,the range at CPA relative to the origin can be estimated as:

    and the navigation speedvLandvbof the target are expressed using Eq.(27)and(28),where the subscripts denote the ratio of the range at CPA to the target's speed used to estimate the speed is estimated by processing the LOFARgram or the bearing-time records.

    Finally,the range of the target can be expressed as:

    wherercan be estimated by=vLand=vb,respectively,and the average value of two results is used as the final estimation of target range.The range of the target can also be obtained directly by substituting=(vL+vb)/2 into Eq.(29).

    4 Simulation Research

    The simulation researches have been conducted to verify the correctness of four algorithms proposed above and to evaluate the ranging accuracy of each algorithm.

    The conditions used in the simulation are as follows:the Pekeris model is used.The sea depth isH=55 m.The acoustic velocity and the density of water arec1=1 500 m/s andρ1=1 000 kg/cm3,respectively.While the acoustic velocity and the density of bottom medium arec2=1 610 m/s andρ2=1 900 kg/cm3,respectively.The effect of absorption is negligible.The depth of the vector sensors arezr=30 m,the element spacing isd=120 m.Supposing that the target cruises in the same depth which iszs=4 m,the speed of navigation isv=12 m/s,and the range at the CPA isr0=1 320 m.The time at the CPA is set as 0 time,and the time is defined negative when the target moves towards the receiver,and vice versa.The heading angle is 30°.The working band is 300 ~1 000 Hz.The acoustic field is modeled using the KRAKENC program.

    It can be known from the above analysis that the advantage of Algorithm 1,of which ranging accuracy is dependent on the time delay estimation accuracy is to estimate the range of target at the heading angle of 0°.The time delay estimation results obtained by image cross-correlation under different heading angles are shown in Tab.1,whereτ,and Δτare the true value,estimated value and the relative estimated error of the time delay,respectively.The results indicate that,when the heading angle is 0°,the relative estimated error is 0 which causes the high ranging accuracy,and the time delay estimation accuracy roughly reduces with the increase in heading angle.If the range accuracy is required to be better than 15%,then the condition for Algorithm 1 is that the heading angle is smaller than 10°.

    Tab.1 Time delay estimation results obtained by image cross-correlation under different heading angles

    Ranging results and relative errors of four algorithms when heading angles are 10°,30°and 90°are shown in Fig.6 to Fig.8,where(a)of each figure shows the ranging results,while(b)shows the corresponding relative ranging errors.It can be seen from the comparison of the results in the figures that:first,the relative ranging error of Algorithm 1 is about 9.2%when the heading angle is 10°,while the error is about 23.4%when the heading angle is 30°,which once again verifies that Algorithm 1 is suitable for small heading angle,especially for 0°heading angle at which Algorithm 2,3 and 4 are inapplicable.Second,Algorithm 2,3 and 4 have enough passive range accuracy when the heading angle is large,and the general trend is that the larger the heading angle is,the better the range accuracy is.

    Fig.6 Ranging results and relative errors of four algorithms at 10°heading angle

    5 Conclusions

    The stable interference structure of the low-frequency continuous spectrum acoustic field has been observed in the sea trials.For a target moving towards a receiver from far to near,and then moving away form the receiver,the equation of the interfe-rence fringes has been derived based on the concept of waveguide invariant and the geometric relationship of target moving trajectory,indicating that the interference fringes are a family of quasi hyperbolas.The heading angleφ,waveguide invariantβandr0/v(wherer0is the target's range at CPA andvis the target speed)can be estimated by processing the LOFARgram and the bearingtime records using the Hough transform.The double element or double array model is adopted to achieve passive ranging,four ranging algorithms are proposed.The simulation research shows that Algorithm 1 is suitable for the scenario of small heading angle,the ranging error is less than 10% if the heading angle is smaller than 10°.Algorithm 2,3 and 4 are inapplica-ble when the heading angle is equal to 0°,but all of them have enough range accuracy when the heading angle is larger than 10°.In the practical application,the heading angle should be estimated first,and then a threshold is set according to heading angle in order to use a suitable ranging algorithm.

    Fig.7 Ranging results and relative errors of four algorithms at 30°heading angle

    A complete interference fringe is required to range for all the four algorithms which do not fully satisfies the operational requirements of sonar device,but they are still valuable for basic research and have important application prospect in many aspects,such as shore station,airborne sonobuoy,marine research,especially acoustic measurement and so on.More detailed simulation and sea trial research will be needed for their practical engineering applications.The ranging algorithm suitable for the scenario without the closest point of approach is the focal point of further research.

    [1]WANG Xin-yong,HUI Jun-ying,YU Hong-xia.Filtering applied research on noise passive ranging[J].Journal of Harbin Engineering University,2005,26(1):80 - 83.(in Chinese)

    [2]WANG Yan,HUI Jun-ying,LIANG Guo-long.Target motion analysis based on bearing and time delay difference of dual arrays[C]∥Proceedings of National Conference on Underwater Acoustics,Shanghai:Editorial Office of Technical Acoustic,2001:60-62.(in Chinese)

    [3]Thode A M,Kuperman W A,D’Spain G L,et al.Localization using Bartlett matched-field processor sidelobes[J].J Acoust Soc Am,2000,107(1):278-286.

    [4]HUI Juan,HU Dan,HUI Jun-ying,et al.Research on the measurement of distribution image of radiated noise using focused beamforming[J].Acta Acoust,2007,34(2):356-361.(in Chinese)

    [5]YU Yun,MEI Ji-dan,ZHAI Chun-ping,et al.Sea trial researches on the measurements of passive source space distribution imaging and positioning[J].Acta Acoust,2009,32(4):103-109.(in Chinese)

    [6]HUI Jun-ying,SUN Guo-cang,ZHAO An-bang.Normal modes acoustic intensity flux in Pekeris waveguide and its cross spectra signal processing[J].Acta Acoust,2008,33(4):300-304.(in Chinese)

    [7]YU Yun,HUI Jun-ying,Zhao An-bang,et al.Complex acoustic intensity of normal modes in pekeris waveguide and its application[J].Acta Physica Sinica,2008,57(9):5742-5748.(in Chinese)

    [8]Chuprov S D.Interference structure of acoustic fieldin the layered ocean[M]∥Brekhovskikh L M,Andreeva I B,Ocean Acoustics Nauka,Moscow:Modern State,1982:71-91.

    [9]D’Spain G L,Kuperman W A.Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth[J].J Acoust Soc Am,1999,106(5):2454-2468.

    [10]Rouseff D,Spindel R C.Modeling the waveguide invariant as a distribution[J].AIP Conference Proceedings,2002,621(1):137-160.

    [11]Goldhahn R,Hickman G,Krolikc J.Waveguide invariant broadband target detection and reverberation estimation[J].J Acoust Soc Am,2008,124(5):2841 -2851.

    [12]Quijano J E,Zurk L M.Rouseff D.Demonstration of the invariance principle for active sonar[J].J Acoust Soc Am,2008,123(3):1329-1337.

    [13]Turgut A,Orr M,Rouseff D.Broadband source localization using horizontal-beam acoustic intensity striations[J].J Acoust Soc Am,2010,127(1):73-83.

    [14]Cockrell K L,Schmidt H.Robust passive range estimation using the waveguide invariant[J].J Acoust Soc Am,2010,127(5):2780-2789.

    [15]Brekhovskikh L M,Lysanov Y P.Fundamental of ocean acoustic[M].3rd ed.Moscow,Russia:AIP Press,2002:143-146.

    [16]Hough P VC.A method and means for recognizing complex patterns:US,3069654[P].1962-12-18.

    [17]HUI Jun-ying,HUI Juan.Fundamental theory of signal processing in acoustic vector field[M].Beijing:National Defense Industry Press,2009:10.(in Chinese)

    猜你喜歡
    林芳陳陽
    陳陽美術(shù)作品欣賞
    慢 慢
    那株被肆意觸碰的含羞草后來怎么樣了?
    陳陽:讓青春在筑夢(mèng)路上綻放榮光
    The influence of artificial intelligence on accounting industry
    考驗(yàn)
    上海故事(2018年8期)2018-09-06 02:18:24
    絕對(duì)有償
    樓上老公不在家
    樓上的孩子怕吵架
    Molecular Dynamic Simulation for HMX/NTO Supramolecular Explosive
    亚洲成人中文字幕在线播放| 两个人看的免费小视频| 在线观看日韩欧美| 中文字幕人妻丝袜一区二区| av欧美777| 精品电影一区二区在线| 久久婷婷成人综合色麻豆| 久久婷婷成人综合色麻豆| 亚洲精品在线美女| 国产区一区二久久| 久久精品国产亚洲av高清一级| 亚洲性夜色夜夜综合| 在线永久观看黄色视频| 午夜免费观看网址| 香蕉av资源在线| 在线永久观看黄色视频| 88av欧美| 国产精品久久久久久精品电影| 久久久国产欧美日韩av| 亚洲真实伦在线观看| 老熟妇仑乱视频hdxx| 黄色 视频免费看| 妹子高潮喷水视频| 日本成人三级电影网站| 国产精品一区二区精品视频观看| 婷婷亚洲欧美| av福利片在线观看| 久久国产精品影院| 在线观看免费视频日本深夜| 国产精品亚洲一级av第二区| 国产精品免费视频内射| 精品不卡国产一区二区三区| 日韩中文字幕欧美一区二区| 精品少妇一区二区三区视频日本电影| 亚洲精品一卡2卡三卡4卡5卡| 少妇熟女aⅴ在线视频| 亚洲自偷自拍图片 自拍| 超碰成人久久| 亚洲欧美日韩东京热| 亚洲欧美日韩东京热| 亚洲欧美日韩东京热| 欧美 亚洲 国产 日韩一| 无限看片的www在线观看| 欧美激情久久久久久爽电影| 亚洲av五月六月丁香网| 亚洲av五月六月丁香网| 日韩精品中文字幕看吧| 又黄又粗又硬又大视频| 欧美乱码精品一区二区三区| 韩国av一区二区三区四区| 国产精品亚洲美女久久久| 成年版毛片免费区| 一级黄色大片毛片| 日韩中文字幕欧美一区二区| 国产午夜福利久久久久久| 成人特级黄色片久久久久久久| 夜夜看夜夜爽夜夜摸| 黄色 视频免费看| 亚洲精品一区av在线观看| 色噜噜av男人的天堂激情| 国产免费av片在线观看野外av| 99精品欧美一区二区三区四区| 波多野结衣高清作品| 亚洲无线在线观看| 嫩草影院精品99| 天天添夜夜摸| 亚洲av第一区精品v没综合| 久久久久久久精品吃奶| 日韩av在线大香蕉| 桃红色精品国产亚洲av| 欧美色欧美亚洲另类二区| 日韩欧美在线二视频| 九色国产91popny在线| 亚洲天堂国产精品一区在线| 可以在线观看毛片的网站| 亚洲国产欧美网| 国产精品亚洲美女久久久| 又黄又粗又硬又大视频| 久久久久国产精品人妻aⅴ院| 白带黄色成豆腐渣| 夜夜看夜夜爽夜夜摸| 91字幕亚洲| 美女大奶头视频| 国产av一区二区精品久久| 深夜精品福利| 露出奶头的视频| 亚洲aⅴ乱码一区二区在线播放 | 国内精品久久久久久久电影| 精品午夜福利视频在线观看一区| 欧美国产日韩亚洲一区| 精品久久久久久久久久免费视频| 波多野结衣巨乳人妻| 欧美乱色亚洲激情| 一二三四在线观看免费中文在| 久久香蕉精品热| 欧美一区二区精品小视频在线| 国产野战对白在线观看| 久久亚洲精品不卡| 成在线人永久免费视频| 久久亚洲真实| 国产麻豆成人av免费视频| 亚洲精品国产一区二区精华液| 波多野结衣巨乳人妻| 欧美乱色亚洲激情| 午夜两性在线视频| 婷婷精品国产亚洲av在线| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区三| 国产一区二区在线av高清观看| 香蕉丝袜av| 小说图片视频综合网站| 国产午夜精品论理片| 一区二区三区激情视频| 三级国产精品欧美在线观看 | 在线观看www视频免费| 午夜福利高清视频| www日本黄色视频网| 国产精品av视频在线免费观看| 88av欧美| 在线观看美女被高潮喷水网站 | a级毛片a级免费在线| 亚洲国产精品成人综合色| 一本一本综合久久| 午夜福利成人在线免费观看| 久久 成人 亚洲| av免费在线观看网站| 此物有八面人人有两片| 国产主播在线观看一区二区| 亚洲精品粉嫩美女一区| 99国产精品一区二区蜜桃av| 99在线视频只有这里精品首页| 老司机午夜福利在线观看视频| 91老司机精品| 天天一区二区日本电影三级| 不卡一级毛片| 美女大奶头视频| 一二三四社区在线视频社区8| 欧美zozozo另类| bbb黄色大片| 色尼玛亚洲综合影院| 欧美日本视频| av福利片在线观看| 嫩草影视91久久| 日韩欧美三级三区| 男女之事视频高清在线观看| 99在线视频只有这里精品首页| 国产精品永久免费网站| 韩国av一区二区三区四区| 亚洲精品在线美女| 亚洲国产精品999在线| 午夜福利免费观看在线| 国产伦人伦偷精品视频| 久久精品91无色码中文字幕| 亚洲免费av在线视频| 久久久久久久久免费视频了| 一本大道久久a久久精品| 欧美日韩黄片免| 美女免费视频网站| 19禁男女啪啪无遮挡网站| 欧美成人一区二区免费高清观看 | 国产区一区二久久| 国产在线精品亚洲第一网站| 日本熟妇午夜| 老熟妇仑乱视频hdxx| 国产一区在线观看成人免费| 12—13女人毛片做爰片一| 亚洲真实伦在线观看| 亚洲成人久久性| 午夜免费观看网址| 亚洲av熟女| 亚洲免费av在线视频| 精品一区二区三区av网在线观看| 亚洲一区二区三区不卡视频| 亚洲专区国产一区二区| 亚洲精品在线观看二区| 亚洲成人国产一区在线观看| 亚洲av熟女| 99在线视频只有这里精品首页| 国产久久久一区二区三区| 亚洲av成人一区二区三| 成人特级黄色片久久久久久久| 搡老岳熟女国产| 十八禁网站免费在线| 夜夜爽天天搞| 久久这里只有精品19| 一级毛片女人18水好多| 老熟妇乱子伦视频在线观看| 人人妻人人澡欧美一区二区| 亚洲av成人av| 午夜福利在线观看吧| 无人区码免费观看不卡| 久久久久久久久免费视频了| 国内精品一区二区在线观看| 婷婷精品国产亚洲av在线| 亚洲av成人av| 嫁个100分男人电影在线观看| 国产区一区二久久| 亚洲人成网站高清观看| 欧美日韩瑟瑟在线播放| 好男人电影高清在线观看| 亚洲av美国av| 最近最新免费中文字幕在线| 好男人在线观看高清免费视频| 老司机午夜十八禁免费视频| 国产av一区在线观看免费| 欧美最黄视频在线播放免费| 在线观看66精品国产| 久久国产乱子伦精品免费另类| 午夜福利免费观看在线| 国产欧美日韩一区二区精品| 日韩欧美在线二视频| 黄色成人免费大全| 久久精品国产亚洲av香蕉五月| 日本免费a在线| 欧美日韩福利视频一区二区| √禁漫天堂资源中文www| 国产精品野战在线观看| 久久久久久免费高清国产稀缺| 久久天堂一区二区三区四区| 欧美黑人巨大hd| 91麻豆av在线| 亚洲国产欧美网| av福利片在线| 久久午夜综合久久蜜桃| 亚洲av五月六月丁香网| 亚洲国产精品999在线| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 亚洲av成人一区二区三| 国产精品久久久久久亚洲av鲁大| 男女床上黄色一级片免费看| 色综合站精品国产| 国产成人影院久久av| 成熟少妇高潮喷水视频| 熟妇人妻久久中文字幕3abv| 国产野战对白在线观看| 91成年电影在线观看| 操出白浆在线播放| 国产av麻豆久久久久久久| 99久久久亚洲精品蜜臀av| 欧美黄色片欧美黄色片| 日韩高清综合在线| 欧美成人免费av一区二区三区| 不卡av一区二区三区| 亚洲欧美日韩无卡精品| 天天添夜夜摸| x7x7x7水蜜桃| 日韩欧美国产在线观看| 欧美另类亚洲清纯唯美| 国产av又大| 中亚洲国语对白在线视频| 男女下面进入的视频免费午夜| 99精品在免费线老司机午夜| 久久久久久久精品吃奶| АⅤ资源中文在线天堂| 免费人成视频x8x8入口观看| 成年女人毛片免费观看观看9| 国产熟女xx| 此物有八面人人有两片| 精品乱码久久久久久99久播| 免费看十八禁软件| 久久伊人香网站| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 一级片免费观看大全| 伦理电影免费视频| 在线观看免费视频日本深夜| av天堂在线播放| 黄色视频不卡| 国产欧美日韩一区二区精品| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清专用| 中文字幕最新亚洲高清| 亚洲色图av天堂| 亚洲精品一区av在线观看| 免费高清视频大片| 麻豆av在线久日| 正在播放国产对白刺激| 久热爱精品视频在线9| 国产精品免费一区二区三区在线| 啪啪无遮挡十八禁网站| 亚洲第一欧美日韩一区二区三区| 99国产精品一区二区三区| 2021天堂中文幕一二区在线观| 久久精品综合一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产在线精品亚洲第一网站| 国产精品亚洲一级av第二区| 国产私拍福利视频在线观看| 高清毛片免费观看视频网站| 中文在线观看免费www的网站 | 成在线人永久免费视频| 精品熟女少妇八av免费久了| 一级毛片精品| 久久久久久九九精品二区国产 | 怎么达到女性高潮| 亚洲中文字幕一区二区三区有码在线看 | 久久九九热精品免费| 日日夜夜操网爽| 国产精品影院久久| 丝袜美腿诱惑在线| 91麻豆av在线| 在线观看66精品国产| 中文字幕人妻丝袜一区二区| av福利片在线| 一区二区三区国产精品乱码| 神马国产精品三级电影在线观看 | 精品国产乱子伦一区二区三区| 日本成人三级电影网站| 久久中文看片网| 久久九九热精品免费| 中文字幕久久专区| 国产精品久久久久久亚洲av鲁大| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 757午夜福利合集在线观看| 午夜免费观看网址| av福利片在线| 亚洲国产精品合色在线| 国产精品免费一区二区三区在线| 成人国语在线视频| 精品国产超薄肉色丝袜足j| or卡值多少钱| 国产人伦9x9x在线观看| 亚洲 国产 在线| 在线观看午夜福利视频| 人人妻人人看人人澡| 欧美黑人精品巨大| 精品欧美国产一区二区三| 国产亚洲精品av在线| 18禁黄网站禁片免费观看直播| 这个男人来自地球电影免费观看| 免费观看精品视频网站| av中文乱码字幕在线| 99国产精品一区二区蜜桃av| 午夜久久久久精精品| 男人舔女人的私密视频| 男女之事视频高清在线观看| 天堂影院成人在线观看| 我的老师免费观看完整版| 国产精品九九99| 久久久久国产一级毛片高清牌| 麻豆久久精品国产亚洲av| 免费观看人在逋| 最近最新中文字幕大全免费视频| 一本精品99久久精品77| 夜夜看夜夜爽夜夜摸| 免费高清视频大片| aaaaa片日本免费| 婷婷精品国产亚洲av| videosex国产| 一卡2卡三卡四卡精品乱码亚洲| 国产精品亚洲一级av第二区| 深夜精品福利| 一进一出抽搐动态| 欧美激情久久久久久爽电影| 99精品欧美一区二区三区四区| 国产亚洲欧美98| av福利片在线观看| 久久久久久国产a免费观看| 欧美丝袜亚洲另类 | 精品无人区乱码1区二区| 国产精品乱码一区二三区的特点| 国产av一区二区精品久久| 可以在线观看的亚洲视频| 亚洲国产精品合色在线| 天堂动漫精品| 又爽又黄无遮挡网站| 色哟哟哟哟哟哟| 一个人观看的视频www高清免费观看 | 亚洲国产欧美人成| 又爽又黄无遮挡网站| 亚洲精品中文字幕在线视频| 久久久国产精品麻豆| 亚洲男人的天堂狠狠| 99久久久亚洲精品蜜臀av| 男女视频在线观看网站免费 | 免费高清视频大片| 99久久99久久久精品蜜桃| 国产一区二区三区视频了| 制服丝袜大香蕉在线| 男女那种视频在线观看| 成人国产一区最新在线观看| 免费搜索国产男女视频| 国产精品久久电影中文字幕| 亚洲全国av大片| 久久久久国内视频| 真人做人爱边吃奶动态| 国产蜜桃级精品一区二区三区| 无人区码免费观看不卡| 婷婷精品国产亚洲av| 色综合站精品国产| 国产激情久久老熟女| 18禁观看日本| 亚洲黑人精品在线| 久久久精品大字幕| 亚洲国产精品sss在线观看| 亚洲欧美日韩高清专用| 亚洲中文日韩欧美视频| 18禁国产床啪视频网站| 国产亚洲欧美98| 免费在线观看影片大全网站| 欧美日韩乱码在线| 国产成人av激情在线播放| 亚洲国产精品sss在线观看| tocl精华| 不卡av一区二区三区| 亚洲18禁久久av| 在线看三级毛片| 91九色精品人成在线观看| 国产又色又爽无遮挡免费看| 色精品久久人妻99蜜桃| 亚洲一区高清亚洲精品| 国产精品98久久久久久宅男小说| 久久久久久久久久黄片| 国内精品久久久久久久电影| 在线十欧美十亚洲十日本专区| 99久久精品热视频| 日韩有码中文字幕| 国产精品一区二区三区四区免费观看 | 一个人免费在线观看电影 | 亚洲一码二码三码区别大吗| 黑人欧美特级aaaaaa片| 久久久久亚洲av毛片大全| 丝袜美腿诱惑在线| 中文在线观看免费www的网站 | 国产精华一区二区三区| 看免费av毛片| 国产成人系列免费观看| 久久性视频一级片| 亚洲自偷自拍图片 自拍| 18禁国产床啪视频网站| 99久久国产精品久久久| 欧美不卡视频在线免费观看 | 日韩有码中文字幕| 国内精品一区二区在线观看| 免费在线观看完整版高清| 国产97色在线日韩免费| 一边摸一边做爽爽视频免费| a级毛片a级免费在线| 国产又黄又爽又无遮挡在线| 欧美日本亚洲视频在线播放| 国产精品 国内视频| 免费在线观看日本一区| 亚洲乱码一区二区免费版| 又大又爽又粗| 亚洲午夜理论影院| 无遮挡黄片免费观看| 日本一二三区视频观看| 中文资源天堂在线| 午夜免费观看网址| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区视频在线观看免费| 国产精品av久久久久免费| 一本精品99久久精品77| 国产三级中文精品| 久久精品91无色码中文字幕| 亚洲欧美精品综合久久99| 这个男人来自地球电影免费观看| 久久草成人影院| 国产av在哪里看| 香蕉国产在线看| 国产精品99久久99久久久不卡| 听说在线观看完整版免费高清| 亚洲欧美日韩高清在线视频| 国产一区二区在线观看日韩 | 久久久久国产精品人妻aⅴ院| 国产亚洲欧美在线一区二区| 精品久久久久久久久久久久久| 美女大奶头视频| 欧美色欧美亚洲另类二区| 国产午夜福利久久久久久| 一级片免费观看大全| 757午夜福利合集在线观看| 中文字幕熟女人妻在线| 脱女人内裤的视频| 亚洲成人国产一区在线观看| 亚洲国产精品久久男人天堂| 美女大奶头视频| 免费在线观看亚洲国产| 老司机靠b影院| 禁无遮挡网站| 黄色成人免费大全| 两个人视频免费观看高清| 看黄色毛片网站| 国产三级黄色录像| 亚洲欧美日韩高清在线视频| 宅男免费午夜| 欧美另类亚洲清纯唯美| 午夜免费成人在线视频| 久久香蕉激情| av福利片在线观看| 啪啪无遮挡十八禁网站| 欧美日韩瑟瑟在线播放| 制服丝袜大香蕉在线| 欧美日本视频| 色综合站精品国产| 脱女人内裤的视频| 岛国视频午夜一区免费看| 国产久久久一区二区三区| 一级a爱片免费观看的视频| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 日本黄大片高清| 在线观看免费日韩欧美大片| 变态另类成人亚洲欧美熟女| 色播亚洲综合网| 少妇熟女aⅴ在线视频| 制服丝袜大香蕉在线| 看黄色毛片网站| 亚洲中文av在线| 啦啦啦观看免费观看视频高清| 1024香蕉在线观看| 国产片内射在线| 两个人免费观看高清视频| 国产精品久久电影中文字幕| 国产真人三级小视频在线观看| 国产97色在线日韩免费| 午夜影院日韩av| 非洲黑人性xxxx精品又粗又长| 成人国产一区最新在线观看| 午夜精品久久久久久毛片777| 亚洲一区二区三区色噜噜| 午夜福利视频1000在线观看| 亚洲精品在线美女| 香蕉国产在线看| 成人国产综合亚洲| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 听说在线观看完整版免费高清| 在线观看免费午夜福利视频| 又黄又粗又硬又大视频| 嫩草影院精品99| 亚洲av成人一区二区三| 国产一区二区激情短视频| 九色国产91popny在线| 他把我摸到了高潮在线观看| 法律面前人人平等表现在哪些方面| 国产在线观看jvid| 少妇的丰满在线观看| 亚洲美女黄片视频| 成人国语在线视频| 日韩成人在线观看一区二区三区| 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| 99久久国产精品久久久| 悠悠久久av| 欧美日韩一级在线毛片| 伊人久久大香线蕉亚洲五| 亚洲人成伊人成综合网2020| 男人舔奶头视频| 久久久久性生活片| 亚洲自拍偷在线| www国产在线视频色| 五月伊人婷婷丁香| 亚洲成人久久爱视频| 亚洲色图av天堂| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av| 啪啪无遮挡十八禁网站| 在线a可以看的网站| 香蕉丝袜av| 亚洲av成人精品一区久久| 亚洲男人天堂网一区| 天堂影院成人在线观看| 欧美日本亚洲视频在线播放| 午夜老司机福利片| 神马国产精品三级电影在线观看 | 老司机靠b影院| 国产精品美女特级片免费视频播放器 | 高清在线国产一区| 午夜福利欧美成人| 国产精品久久电影中文字幕| 99久久精品热视频| 国内久久婷婷六月综合欲色啪| 他把我摸到了高潮在线观看| 久久热在线av| 亚洲熟妇中文字幕五十中出| 欧美久久黑人一区二区| 深夜精品福利| 免费观看精品视频网站| a级毛片a级免费在线| 不卡av一区二区三区| 亚洲五月天丁香| 精品国产亚洲在线| 麻豆成人午夜福利视频| 18禁观看日本| 亚洲一区高清亚洲精品| 国产精品香港三级国产av潘金莲| 校园春色视频在线观看| 国产av一区二区精品久久| 久久午夜综合久久蜜桃| 黄片小视频在线播放| 99精品在免费线老司机午夜| 亚洲熟妇熟女久久| 99久久99久久久精品蜜桃| 一夜夜www| 国语自产精品视频在线第100页| 中亚洲国语对白在线视频| 国产亚洲av高清不卡| 丝袜人妻中文字幕| 黑人巨大精品欧美一区二区mp4| 精品免费久久久久久久清纯| 国产精品一区二区精品视频观看| 一本久久中文字幕| 天天躁夜夜躁狠狠躁躁| 午夜激情福利司机影院| 精华霜和精华液先用哪个| 亚洲国产精品久久男人天堂| 香蕉av资源在线| 人妻丰满熟妇av一区二区三区|