• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Waveguide Invariant and Passive Ranging Using Double Element

    2011-07-25 06:22:02YUYun余赟HUIJunying惠俊英CHENYang陳陽LINFang林芳
    Defence Technology 2011年3期
    關(guān)鍵詞:林芳陳陽

    YU Yun(余赟),HUI Jun-ying(惠俊英),CHEN Yang(陳陽),LIN Fang(林芳)

    (1.Science and Technology on Underwater Acoustic Laboratory,Harbin Engineering University,Harbin 150001,Heilongjiang,China;2.Department of Physics and Electrical Information Engineering,Daqing Normal University,Daqing 163712,Heilongjiang,China)

    Introduction

    The passive ranging technology has been researched for sonar system.The main passive ranging technologies conclude the three-element array passive ranging technology[1]which uses a high-precision time delay estimation and provides the relative ranging error of about 15%at 10 km,the bearing-time delay difference-based target motion analysis[2]of which position accuracy is better than the three-element array passive ranging technology[3],the matched field-based ranging technology of which position accuracy is similar to the three-element array passive[4-5]ranging technology but its range is farther,and the focused beamforming-based passive ranging technology which is suitable for highprecision positioning in the near sound field.The performance of the first three-element array and bearingtime delay difference-based target motion analysis passive ranging technologies decline sharply when they are used in the towed linear array sonar whose relative position of the array element is unstable,while the matched field-based ranging technology needs the accurate prior knowledge of marine environment to model the sound field,which requires the deep pre-investigation of the ocean region in which the technique is used,and it is difficult to be used in unfamiliar oceans.Therefore,this paper tries to explore a robust passive ranging algorithm applicable to the towed line array sonar.

    The interference structure,which is divided into line spectrum and continuous spectrum interference structures,exists stably in low-frequency sound field.The features and applications of the line spectrum interference structure were discussed in Ref.[6 - 7].The continuous spectrum interference structure will be discussed in this paper,and it is hoped to realize passive ranging based on it.The continuous spectrum interference structures observed in a shallow sea trial are shown in Fig.1,where Fig.1(a)shows the acoustic field interference fringes of targets at middle and short ranges obtained from the tracking beam output of the towed linear array sonar,and Fig.1(b)shows the acoustic field interference fringes of target at long range obtained from the same sonar.Although both the receiving array and the target move,the interference fringes in LOFARgram are still visible and obvious,which indicates the interference structure in low-frequency acoustic field is indeed stable and observable.

    Fig.1 Interference fringes of the acoustic field obtained from the tracking beam output of the towed linear array sonar

    The waveguide invariant[8-14],usually designated asβ,was proposed by Chuprov,a Russian scholar,in 1982,which is used to describe the continuous spectrum interference fringes in LOFARgram obtained by processing the acoustic signals from moving broadband source.The invariantβis used to denote the relationship among the slope of the interference fringe,dω/dr,the rangerfrom the source and the frequencyω,describe the dispersive propagation characteristics of the acoustic field,and provide a descriptor of constructive/destructive interference structure in a single scalar parameter.In this paper,the expression of the interference fringe is derived by combining the waveguide invariant and the geometric relationship of the target moving trajectory,and the target motion parameters are estimated by image processing.And then the passive ranging can be realized based on double element or double array model,which can be two arrays split from a large array in the actual application.

    1 Waveguide Invariant β and the Expression of Interference Fringe

    According to the definition,the waveguide invariant in the range-independent waveguide can be expressed as[13]:

    whereωis the frequency of acoustic signal,ris the range from the source,βis the waveguide invariant,whose value is 1 in the Pekeris waveguide[15],vanduare the average phase velocity and the average group velocity,respectively.

    Therefore,βcan be predicted using Eq.(1)by modeling the acoustic field to get the mode phase velocity and group velocity if the information on the ocean environment is prior known accurately,which is difficult in practice.However,the first term in Eq.(1)shows that based on the image processing the value ofβcan be estimated by extracting the slope of the interference fringes in LOFARgram,which is obtained by STFT.

    The origin of coordinates is located at the acoustic center of the single sensor or the array.Provided that the target radiates continuously broadband signals and moves in a uniform rectilinearity,the linear speed isv,the range at the closest point of approach(CPA)isr0,the corresponding time ist0,θis target bearing,andφis the heading angle which is defined as the angle between the positive axis ofxand the target moving direction.The geometry relation of target movement is shown in Fig.2.The moving trajectory of the target can be expressed as:

    Fig.2 Moving geometry relation of target

    It can be seen from Fig.2 that:

    It can be derived from Eq.(4)and(5):

    The slope df/dτof the interference fringes can be written as:

    And Eq.(1)can be expressed as:

    It can be known from Eq.(3)that

    Substituting the Eq.(8)and Eq.(9)into Eq.(7),we have

    Then both the sides of the above equation are integrated and rearranged,we have

    Eq.(11)is just the trajectory equation of the interference fringes,which indicates that the interference fringes are a family of quasi-hyperbolas in shallow water.Whenβμ1,Eq.(11)can be simplified as a standard hyperbola equation in which apex is(t0,f0),wheref0is the frequency corresponding toτ=0,namely,f(0)=f0.

    2 Parameter Estimation via Hough Transform

    Hough transform[16]is an image processing method for edge detection,which is suitable to detect arbitrary curve.The Hough transform is to map the points on the same curve in the image space onto a family of curves intersected at a point in the parameter space,and the coordinate of the intersection reflects the parameter of the curve in the image space.The intensity of each element(a,b)in the parameter space is the cumulative intensity of the points on the curve characterized by the parameters(a,b)in the image space,so the parameters of the curve can be achieved by searching the maximum element in the parameter space.

    In this paper,Hough transform is used to process the LOFARgram and bearing-time records to estimate the parameters.For the former,LOFARgram is just the image space mentioned above,in which the curves are determined by Eq.(11).Provided thatt0andf0can be gotten directly from the LOFARgram,while the parameter space is a plane which takesr0/vas the horizontal axis and the waveguide invariantβas the vertical axis.Similarly,for the latter,the bearing-time record is an image space,in which the curves are determined by Eq.(6),while the parameter space is a plane which takesr0/vas the horizontal axis and the heading angle as the vertical axis.

    The simulation results of LOFARgram and its Hough transform are shown in Fig.3.The Hough transform of LOFARgram are performed fort0=0 s andf0=637 Hz as the apex of some interference fringe,as shown in Fig.3(b)and Fig.3(c).Then the parameters can be estimated by searching the maximum element in the parameter space:β=0.97 andr0/v=99.2,where the true value ofr0/vis 100,which indicates that Hough transform has high accuracy.The curve shown in Fig.3(a)as the dotted line can be achieved by substituting the estimated parameters into Eq.(11),which coincides with the bright fringe in LOFARgram.

    Fig.3 LOFARgram and the results of Hough transform

    Assuming that the heading angle of target is 30°,and the targets moves from far to near then the opposite,the remaining conditions are the same as the above.The bearing-time records estimated by acoustic intensity average using the vector sensor are shown in Fig.4(a).In the same way,the bearing-time records are processed by selectingt0=0 as a reference and the Eq.(6)as the Hough transform template,and the parameter space is shown in Fig.4(b).φandr0/vcan be estimated synchronously by searching the brightest pix of parameter space,they are 30°and 100 s,respectively,and the latter is exactly equal to the true value.But in practice,the bearing estimate differs from the real value by several degrees in bearing-time records,so there will be a corresponding estimated error with the parameters we concerned.

    Fig.4 The Bearing-time records and the result of Hough transform

    3 The Principle of Passive Ranging Using Double Array(Element)

    From Eq.(11)and the parameter estimation discussed in the previous section,it can be seen that only the ratio ofr0/vcan be obtained by a single vector sensor or a single array.Therefore,the problem of passive ranging can not be solved entirely.So the model of double element or double array is adopted to realize the passive ranging,which has a far detecting range and a lot of application aspects,such as shore station,surface ship or submarine.

    A double array element model is adopted as an example to explain the ranging principle,the principle using double array is the same as the former,but its operating range is father and the direction finding is more accurate.The ranging model is shown in Fig.5.The two array elements are placed onxaxis,and the array element spacing isL=d.Assuming that the target moves in a uniform linearity,its speed isv,and its heading angle isφ.The distances from the target to element 1 and 2 arer1andr2,and the corresponding bearing angles areθ1andθ2,respectively.Relative to element 1 and element 2,the ranges at the closest point of approach(CPA)arer01andr02,and the times at CPA aret01andt02,respectively.If the origin is used as a reference,the range at CPA and the time at CPA arer0andt0,respectively.

    Fig.5 Double element based positioning model

    LOFARgram 1 and LOFARgram 2 can be achieved by processing the signals received by element 1 and 2 using STFT.At the same time,the bearing-time records 1 and bearing-time records 2 can be achieved by bearing estimation.The four figures are the premise of further passive ranging.Four ranging algorithms will be introduced in the following sections.

    3.1 Algorithm 1

    The time delayTof the target moving from pointAto pointBshown in Fig.5 can be estimated by putting image cross-correlation,also called two-dimensional correlation,on two LOFARgrams,at the same time,t01andt02can be gotten easily.The heading angle can be estimated using Hough transform to process some bearing-time records,and the average value ofφ1andφ2can be adopted if Hough transform have be done to both the bearing-time records.So the navigation speed of the target can be expressed as:

    Because the element spacingdis known,the speedvcan be estimated using Eq.(12).

    The Hough transform of two LOFARgrams can be done to estimater01/vandr02/v:

    whereaandbare the values obtained by searching a maximum in parameter space of Hough transform.The ranges at CPA relative to two elements are

    Therefore,the range at CPA of target relative to the origin can be expressed as:

    And the time at CPA relative to the origin is

    So the horizontal distance of target is

    The above equation can be used to estimate the horizontal distance of target.The advantage of this algorithm is simple,but the ranging accuracy is poor when the heading angle of target is close to 90°,and it is inapplicable forφ=90°.

    3.2 Algorithm 2

    Similarly,the heading angleφcan be estimated by processing the bearing-time records using Hough transform,then the ratios of the ranges at CPA relative to two elements to the target speed can be obtained by processing the LOFARgrams using Hough transform,which areaandb,respectively.The simultaneous equations are as follows:

    The solution of the above equations is

    Based on the Eq.(19),the horizontal range of target can be estimated by Eq.(15),(16)and(17).

    This algorithm is also simple,and its calculation amount is less without image correlation.It is suitable to ranging forφ=90°,and the larger the heading angle is,the better the ranging accuracy is.However,the accuracy is poor when the heading angle is small(for example,the target is near the axial direction of the array),and the algorithm is inapplicable forφ=0°.In addition,it can be seen from the first equation of Eq.(19)that the robustness of this algorithm is poor because the target speed is determined by the difference betweenaandb,and the estimated errors caused by Hough transform are random.

    3.3 Algorithm 3

    The heading anglesφ1andφ2,and the ratiosmandnof the ranges at CPA relative to two elements to the target speed can be estimated synchronously by processing the bearing-time records using Hough transform,we have:

    The next step of this algorithm is the same as Algorithm 2.We have

    Then the following steps are also the same as the algorithms mentioned above.

    3.4 Algorithm 4

    This algorithm is obviously different from the algorithms mentioned above.It utilizes the definition of the waveguide invariant.

    Similarly,the waveguide invariantβandr01/v=acan be estimated synchronously by processing LOFAR-grams using Hough transform,and the heading angleφandr01/v=ccan also be obtained by processing the bearing-time records using Hough transform.So the difference of ranges at CPA relative to two elements Δr0can be expressed as:

    The frequenciesf01iandf02j,whereiandjare the numbers of interference fringes,of the corresponding interference fringes at CPA can be extracted easily from two LOFARgrams.So the frequency difference of the corresponding interference fringes can be expressed as:

    Therefore,it can be seen from Eq.(8)that the ranges at CPA of target relative to each element are as follows:

    In this way,the range at CPA relative to the origin can be estimated as:

    and the navigation speedvLandvbof the target are expressed using Eq.(27)and(28),where the subscripts denote the ratio of the range at CPA to the target's speed used to estimate the speed is estimated by processing the LOFARgram or the bearing-time records.

    Finally,the range of the target can be expressed as:

    wherercan be estimated by=vLand=vb,respectively,and the average value of two results is used as the final estimation of target range.The range of the target can also be obtained directly by substituting=(vL+vb)/2 into Eq.(29).

    4 Simulation Research

    The simulation researches have been conducted to verify the correctness of four algorithms proposed above and to evaluate the ranging accuracy of each algorithm.

    The conditions used in the simulation are as follows:the Pekeris model is used.The sea depth isH=55 m.The acoustic velocity and the density of water arec1=1 500 m/s andρ1=1 000 kg/cm3,respectively.While the acoustic velocity and the density of bottom medium arec2=1 610 m/s andρ2=1 900 kg/cm3,respectively.The effect of absorption is negligible.The depth of the vector sensors arezr=30 m,the element spacing isd=120 m.Supposing that the target cruises in the same depth which iszs=4 m,the speed of navigation isv=12 m/s,and the range at the CPA isr0=1 320 m.The time at the CPA is set as 0 time,and the time is defined negative when the target moves towards the receiver,and vice versa.The heading angle is 30°.The working band is 300 ~1 000 Hz.The acoustic field is modeled using the KRAKENC program.

    It can be known from the above analysis that the advantage of Algorithm 1,of which ranging accuracy is dependent on the time delay estimation accuracy is to estimate the range of target at the heading angle of 0°.The time delay estimation results obtained by image cross-correlation under different heading angles are shown in Tab.1,whereτ,and Δτare the true value,estimated value and the relative estimated error of the time delay,respectively.The results indicate that,when the heading angle is 0°,the relative estimated error is 0 which causes the high ranging accuracy,and the time delay estimation accuracy roughly reduces with the increase in heading angle.If the range accuracy is required to be better than 15%,then the condition for Algorithm 1 is that the heading angle is smaller than 10°.

    Tab.1 Time delay estimation results obtained by image cross-correlation under different heading angles

    Ranging results and relative errors of four algorithms when heading angles are 10°,30°and 90°are shown in Fig.6 to Fig.8,where(a)of each figure shows the ranging results,while(b)shows the corresponding relative ranging errors.It can be seen from the comparison of the results in the figures that:first,the relative ranging error of Algorithm 1 is about 9.2%when the heading angle is 10°,while the error is about 23.4%when the heading angle is 30°,which once again verifies that Algorithm 1 is suitable for small heading angle,especially for 0°heading angle at which Algorithm 2,3 and 4 are inapplicable.Second,Algorithm 2,3 and 4 have enough passive range accuracy when the heading angle is large,and the general trend is that the larger the heading angle is,the better the range accuracy is.

    Fig.6 Ranging results and relative errors of four algorithms at 10°heading angle

    5 Conclusions

    The stable interference structure of the low-frequency continuous spectrum acoustic field has been observed in the sea trials.For a target moving towards a receiver from far to near,and then moving away form the receiver,the equation of the interfe-rence fringes has been derived based on the concept of waveguide invariant and the geometric relationship of target moving trajectory,indicating that the interference fringes are a family of quasi hyperbolas.The heading angleφ,waveguide invariantβandr0/v(wherer0is the target's range at CPA andvis the target speed)can be estimated by processing the LOFARgram and the bearingtime records using the Hough transform.The double element or double array model is adopted to achieve passive ranging,four ranging algorithms are proposed.The simulation research shows that Algorithm 1 is suitable for the scenario of small heading angle,the ranging error is less than 10% if the heading angle is smaller than 10°.Algorithm 2,3 and 4 are inapplica-ble when the heading angle is equal to 0°,but all of them have enough range accuracy when the heading angle is larger than 10°.In the practical application,the heading angle should be estimated first,and then a threshold is set according to heading angle in order to use a suitable ranging algorithm.

    Fig.7 Ranging results and relative errors of four algorithms at 30°heading angle

    A complete interference fringe is required to range for all the four algorithms which do not fully satisfies the operational requirements of sonar device,but they are still valuable for basic research and have important application prospect in many aspects,such as shore station,airborne sonobuoy,marine research,especially acoustic measurement and so on.More detailed simulation and sea trial research will be needed for their practical engineering applications.The ranging algorithm suitable for the scenario without the closest point of approach is the focal point of further research.

    [1]WANG Xin-yong,HUI Jun-ying,YU Hong-xia.Filtering applied research on noise passive ranging[J].Journal of Harbin Engineering University,2005,26(1):80 - 83.(in Chinese)

    [2]WANG Yan,HUI Jun-ying,LIANG Guo-long.Target motion analysis based on bearing and time delay difference of dual arrays[C]∥Proceedings of National Conference on Underwater Acoustics,Shanghai:Editorial Office of Technical Acoustic,2001:60-62.(in Chinese)

    [3]Thode A M,Kuperman W A,D’Spain G L,et al.Localization using Bartlett matched-field processor sidelobes[J].J Acoust Soc Am,2000,107(1):278-286.

    [4]HUI Juan,HU Dan,HUI Jun-ying,et al.Research on the measurement of distribution image of radiated noise using focused beamforming[J].Acta Acoust,2007,34(2):356-361.(in Chinese)

    [5]YU Yun,MEI Ji-dan,ZHAI Chun-ping,et al.Sea trial researches on the measurements of passive source space distribution imaging and positioning[J].Acta Acoust,2009,32(4):103-109.(in Chinese)

    [6]HUI Jun-ying,SUN Guo-cang,ZHAO An-bang.Normal modes acoustic intensity flux in Pekeris waveguide and its cross spectra signal processing[J].Acta Acoust,2008,33(4):300-304.(in Chinese)

    [7]YU Yun,HUI Jun-ying,Zhao An-bang,et al.Complex acoustic intensity of normal modes in pekeris waveguide and its application[J].Acta Physica Sinica,2008,57(9):5742-5748.(in Chinese)

    [8]Chuprov S D.Interference structure of acoustic fieldin the layered ocean[M]∥Brekhovskikh L M,Andreeva I B,Ocean Acoustics Nauka,Moscow:Modern State,1982:71-91.

    [9]D’Spain G L,Kuperman W A.Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth[J].J Acoust Soc Am,1999,106(5):2454-2468.

    [10]Rouseff D,Spindel R C.Modeling the waveguide invariant as a distribution[J].AIP Conference Proceedings,2002,621(1):137-160.

    [11]Goldhahn R,Hickman G,Krolikc J.Waveguide invariant broadband target detection and reverberation estimation[J].J Acoust Soc Am,2008,124(5):2841 -2851.

    [12]Quijano J E,Zurk L M.Rouseff D.Demonstration of the invariance principle for active sonar[J].J Acoust Soc Am,2008,123(3):1329-1337.

    [13]Turgut A,Orr M,Rouseff D.Broadband source localization using horizontal-beam acoustic intensity striations[J].J Acoust Soc Am,2010,127(1):73-83.

    [14]Cockrell K L,Schmidt H.Robust passive range estimation using the waveguide invariant[J].J Acoust Soc Am,2010,127(5):2780-2789.

    [15]Brekhovskikh L M,Lysanov Y P.Fundamental of ocean acoustic[M].3rd ed.Moscow,Russia:AIP Press,2002:143-146.

    [16]Hough P VC.A method and means for recognizing complex patterns:US,3069654[P].1962-12-18.

    [17]HUI Jun-ying,HUI Juan.Fundamental theory of signal processing in acoustic vector field[M].Beijing:National Defense Industry Press,2009:10.(in Chinese)

    猜你喜歡
    林芳陳陽
    陳陽美術(shù)作品欣賞
    慢 慢
    那株被肆意觸碰的含羞草后來怎么樣了?
    陳陽:讓青春在筑夢(mèng)路上綻放榮光
    The influence of artificial intelligence on accounting industry
    考驗(yàn)
    上海故事(2018年8期)2018-09-06 02:18:24
    絕對(duì)有償
    樓上老公不在家
    樓上的孩子怕吵架
    Molecular Dynamic Simulation for HMX/NTO Supramolecular Explosive
    大香蕉久久成人网| 国产欧美日韩一区二区三区在线| 国产片特级美女逼逼视频| 91精品伊人久久大香线蕉| 青青草视频在线视频观看| 一级毛片 在线播放| 亚洲精品中文字幕在线视频| 中文精品一卡2卡3卡4更新| 亚洲欧美精品自产自拍| 新久久久久国产一级毛片| 久久精品久久久久久久性| 亚洲综合精品二区| 亚洲 欧美一区二区三区| 中国国产av一级| 国产激情久久老熟女| 成年女人毛片免费观看观看9 | 热re99久久精品国产66热6| 精品少妇内射三级| 又粗又硬又长又爽又黄的视频| 日韩制服骚丝袜av| 看非洲黑人一级黄片| 日韩av在线免费看完整版不卡| 高清黄色对白视频在线免费看| 欧美精品一区二区大全| 一级片免费观看大全| 久久免费观看电影| 久久久亚洲精品成人影院| 国产女主播在线喷水免费视频网站| 亚洲七黄色美女视频| 黄频高清免费视频| 伦理电影大哥的女人| 九草在线视频观看| 人妻一区二区av| 亚洲成人国产一区在线观看 | 好男人视频免费观看在线| 亚洲精品久久午夜乱码| 国产成人欧美在线观看 | av天堂久久9| 777米奇影视久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品亚洲av一区麻豆 | 久久人人97超碰香蕉20202| 狠狠婷婷综合久久久久久88av| 亚洲成人国产一区在线观看 | 亚洲伊人色综图| 熟妇人妻不卡中文字幕| 欧美 日韩 精品 国产| 女人被躁到高潮嗷嗷叫费观| 天天躁夜夜躁狠狠躁躁| 亚洲图色成人| 老熟女久久久| 欧美av亚洲av综合av国产av | 亚洲激情五月婷婷啪啪| 成人免费观看视频高清| 高清在线视频一区二区三区| 国产日韩欧美在线精品| 亚洲欧美色中文字幕在线| 18禁动态无遮挡网站| 国产一区二区三区综合在线观看| 女人久久www免费人成看片| 色精品久久人妻99蜜桃| 啦啦啦 在线观看视频| 青春草国产在线视频| 国产乱人偷精品视频| 一区福利在线观看| 国产精品国产av在线观看| 日韩欧美一区视频在线观看| 国产成人精品福利久久| 亚洲五月色婷婷综合| 18禁观看日本| 国产色婷婷99| 久久亚洲国产成人精品v| 亚洲中文av在线| 久久久久久久久久久久大奶| 婷婷色综合大香蕉| 自拍欧美九色日韩亚洲蝌蚪91| 免费观看性生交大片5| 五月天丁香电影| 欧美成人精品欧美一级黄| 国产成人系列免费观看| 欧美老熟妇乱子伦牲交| 久久久国产精品麻豆| 日韩一本色道免费dvd| 精品国产一区二区久久| 亚洲四区av| 精品一区二区三卡| 久久99精品国语久久久| 国精品久久久久久国模美| 女人被躁到高潮嗷嗷叫费观| 成年美女黄网站色视频大全免费| 国产视频首页在线观看| 亚洲国产成人一精品久久久| 亚洲七黄色美女视频| 美女扒开内裤让男人捅视频| 97精品久久久久久久久久精品| 欧美激情 高清一区二区三区| 日本av免费视频播放| 黄色怎么调成土黄色| 亚洲国产欧美日韩在线播放| 美女脱内裤让男人舔精品视频| 免费不卡黄色视频| 夫妻午夜视频| 午夜免费鲁丝| 女性被躁到高潮视频| av线在线观看网站| 国产成人精品福利久久| 可以免费在线观看a视频的电影网站 | 校园人妻丝袜中文字幕| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲综合一区二区三区_| 日韩中文字幕视频在线看片| 一级黄片播放器| 欧美黄色片欧美黄色片| 日韩大片免费观看网站| 亚洲三区欧美一区| 99国产综合亚洲精品| 国产精品人妻久久久影院| 国产片特级美女逼逼视频| 一区二区日韩欧美中文字幕| av福利片在线| 久久久久精品性色| 日本黄色日本黄色录像| 少妇的丰满在线观看| 97人妻天天添夜夜摸| 国产一卡二卡三卡精品 | 午夜激情av网站| 尾随美女入室| 色吧在线观看| 丰满饥渴人妻一区二区三| 欧美激情极品国产一区二区三区| 久久久国产一区二区| 国产亚洲av高清不卡| 十八禁网站网址无遮挡| 女人精品久久久久毛片| 一级黄片播放器| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 日本一区二区免费在线视频| 欧美日韩av久久| 亚洲精华国产精华液的使用体验| 久久久久久久久久久久大奶| 自拍欧美九色日韩亚洲蝌蚪91| 秋霞在线观看毛片| 大陆偷拍与自拍| 国产极品粉嫩免费观看在线| 看免费av毛片| av在线老鸭窝| 亚洲精品视频女| 日本av手机在线免费观看| 国产精品久久久久久久久免| 成年美女黄网站色视频大全免费| 久久久久久久精品精品| 日本欧美视频一区| 18在线观看网站| 亚洲色图综合在线观看| 纯流量卡能插随身wifi吗| 最近中文字幕2019免费版| 一级片'在线观看视频| 韩国av在线不卡| 黄色视频不卡| av又黄又爽大尺度在线免费看| 亚洲欧美一区二区三区国产| 亚洲av电影在线进入| 久久久久国产一级毛片高清牌| 一级黄片播放器| 国产一区二区激情短视频 | 免费高清在线观看视频在线观看| 91精品国产国语对白视频| 日本91视频免费播放| 美女大奶头黄色视频| 久久人人爽av亚洲精品天堂| 国产精品麻豆人妻色哟哟久久| 1024视频免费在线观看| 日韩免费高清中文字幕av| 在线观看免费视频网站a站| 亚洲av国产av综合av卡| 好男人视频免费观看在线| 日韩 欧美 亚洲 中文字幕| 亚洲美女黄色视频免费看| 亚洲国产欧美网| 人妻 亚洲 视频| 亚洲色图 男人天堂 中文字幕| 人妻人人澡人人爽人人| 不卡视频在线观看欧美| 亚洲精品国产一区二区精华液| 国产亚洲一区二区精品| 大话2 男鬼变身卡| 国产成人免费无遮挡视频| 国产一区有黄有色的免费视频| 1024视频免费在线观看| 又黄又粗又硬又大视频| 看免费成人av毛片| 欧美另类一区| 丝瓜视频免费看黄片| 久久鲁丝午夜福利片| 中文字幕人妻熟女乱码| 成人漫画全彩无遮挡| 99久久99久久久精品蜜桃| 久久人人97超碰香蕉20202| 欧美黑人欧美精品刺激| 香蕉丝袜av| 国产成人欧美在线观看 | 亚洲欧美一区二区三区黑人| 日韩大片免费观看网站| 欧美日韩国产mv在线观看视频| 纯流量卡能插随身wifi吗| 成年人免费黄色播放视频| 婷婷色综合大香蕉| 黑人欧美特级aaaaaa片| 2021少妇久久久久久久久久久| 韩国精品一区二区三区| 日韩,欧美,国产一区二区三区| 老鸭窝网址在线观看| 少妇被粗大猛烈的视频| 国产日韩一区二区三区精品不卡| 少妇 在线观看| 午夜福利乱码中文字幕| 国产成人精品无人区| 日韩中文字幕视频在线看片| 久久精品亚洲熟妇少妇任你| 欧美av亚洲av综合av国产av | 色播在线永久视频| 久久久久久人妻| 五月开心婷婷网| 久久精品久久久久久噜噜老黄| 亚洲色图综合在线观看| 成年av动漫网址| 天天躁夜夜躁狠狠久久av| 啦啦啦视频在线资源免费观看| 欧美97在线视频| av在线观看视频网站免费| 丝袜美足系列| 亚洲视频免费观看视频| 一级片'在线观看视频| 亚洲欧美激情在线| 美女大奶头黄色视频| 丝袜美足系列| 熟女av电影| 少妇的丰满在线观看| 如何舔出高潮| 在线观看免费日韩欧美大片| 久久久久精品性色| 国产伦人伦偷精品视频| 国产免费一区二区三区四区乱码| 国产探花极品一区二区| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 少妇人妻 视频| 精品少妇一区二区三区视频日本电影 | 大香蕉久久成人网| 国产精品99久久99久久久不卡 | 9热在线视频观看99| 国产在线免费精品| 黑人欧美特级aaaaaa片| 久久毛片免费看一区二区三区| 亚洲免费av在线视频| 亚洲精品中文字幕在线视频| 国产黄色免费在线视频| 亚洲国产最新在线播放| 国产精品麻豆人妻色哟哟久久| 成年美女黄网站色视频大全免费| 少妇人妻 视频| 一区二区三区乱码不卡18| 丝袜喷水一区| 亚洲欧美精品自产自拍| 熟女少妇亚洲综合色aaa.| 少妇 在线观看| 高清视频免费观看一区二区| 制服诱惑二区| av卡一久久| 亚洲欧美色中文字幕在线| 一级片免费观看大全| 黄片播放在线免费| 伊人久久大香线蕉亚洲五| 亚洲成人av在线免费| 欧美精品一区二区免费开放| 久久久国产一区二区| 国产精品三级大全| netflix在线观看网站| videos熟女内射| 国产成人精品无人区| 国产片内射在线| 亚洲精品在线美女| 韩国精品一区二区三区| 人体艺术视频欧美日本| 一级片'在线观看视频| 建设人人有责人人尽责人人享有的| 在线天堂中文资源库| 国产精品亚洲av一区麻豆 | 美女高潮到喷水免费观看| av福利片在线| 成人影院久久| 亚洲精品第二区| 国产不卡av网站在线观看| 91国产中文字幕| 国产精品一区二区在线不卡| 秋霞在线观看毛片| 亚洲在久久综合| 69精品国产乱码久久久| 少妇猛男粗大的猛烈进出视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av在线免费看完整版不卡| 成人18禁高潮啪啪吃奶动态图| 熟妇人妻不卡中文字幕| 肉色欧美久久久久久久蜜桃| 国产片内射在线| 18禁观看日本| 在线看a的网站| 精品第一国产精品| 久久人人97超碰香蕉20202| 制服丝袜香蕉在线| 国产精品一区二区在线不卡| 亚洲专区中文字幕在线 | 下体分泌物呈黄色| 国产精品久久久久久人妻精品电影 | 尾随美女入室| 青春草亚洲视频在线观看| 久久精品aⅴ一区二区三区四区| 久久久久视频综合| av在线老鸭窝| 亚洲av成人精品一二三区| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| 欧美国产精品va在线观看不卡| 国产成人精品在线电影| 美女福利国产在线| 捣出白浆h1v1| 高清不卡的av网站| videosex国产| av在线播放精品| 亚洲男人天堂网一区| 中文字幕最新亚洲高清| 亚洲欧美成人精品一区二区| 国产日韩一区二区三区精品不卡| 久久av网站| 成人18禁高潮啪啪吃奶动态图| 成人午夜精彩视频在线观看| 国产人伦9x9x在线观看| 尾随美女入室| 日本av手机在线免费观看| 亚洲精品久久成人aⅴ小说| 日韩不卡一区二区三区视频在线| 高清不卡的av网站| 成人漫画全彩无遮挡| 99久国产av精品国产电影| 国产在线免费精品| 亚洲国产欧美在线一区| 欧美亚洲日本最大视频资源| 一区福利在线观看| av福利片在线| 一级毛片我不卡| 成人午夜精彩视频在线观看| av在线观看视频网站免费| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 国产一区二区在线观看av| 亚洲熟女毛片儿| 免费观看人在逋| 精品少妇久久久久久888优播| 丝袜喷水一区| 大香蕉久久成人网| 99久国产av精品国产电影| 中文字幕人妻丝袜一区二区 | 日韩中文字幕视频在线看片| 欧美久久黑人一区二区| 丝袜喷水一区| 欧美人与性动交α欧美精品济南到| 热99国产精品久久久久久7| 欧美日本中文国产一区发布| 一级毛片电影观看| 乱人伦中国视频| 男女免费视频国产| 色视频在线一区二区三区| 欧美精品高潮呻吟av久久| 亚洲天堂av无毛| 国产精品嫩草影院av在线观看| 在线天堂中文资源库| www.精华液| 伊人久久国产一区二区| 在线观看免费日韩欧美大片| av不卡在线播放| 精品酒店卫生间| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区蜜桃| 18在线观看网站| 婷婷色综合www| 亚洲国产日韩一区二区| 大片电影免费在线观看免费| 少妇被粗大的猛进出69影院| 国产精品一区二区在线不卡| 久久久久精品人妻al黑| 91精品伊人久久大香线蕉| videosex国产| 亚洲综合精品二区| 成人毛片60女人毛片免费| 亚洲国产精品成人久久小说| 亚洲精品久久久久久婷婷小说| 日韩中文字幕欧美一区二区 | 精品久久蜜臀av无| 精品人妻在线不人妻| 免费av中文字幕在线| 亚洲精华国产精华液的使用体验| 天美传媒精品一区二区| 人人妻人人澡人人爽人人夜夜| 好男人视频免费观看在线| 国产av码专区亚洲av| 亚洲综合精品二区| 男的添女的下面高潮视频| 一二三四在线观看免费中文在| 国产黄色免费在线视频| 悠悠久久av| bbb黄色大片| 男女午夜视频在线观看| 日韩av免费高清视频| 久久久欧美国产精品| 黄片播放在线免费| 国产免费现黄频在线看| 免费在线观看视频国产中文字幕亚洲 | 97在线人人人人妻| 亚洲成国产人片在线观看| 国产免费又黄又爽又色| 久久午夜综合久久蜜桃| 国产一区二区激情短视频 | 国精品久久久久久国模美| 亚洲中文av在线| 咕卡用的链子| 成人毛片60女人毛片免费| 久久久久国产精品人妻一区二区| 国产一区二区三区av在线| 国产爽快片一区二区三区| 日日撸夜夜添| 日韩欧美一区视频在线观看| 精品一区二区三区av网在线观看 | 久久狼人影院| 极品人妻少妇av视频| 成年人午夜在线观看视频| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 母亲3免费完整高清在线观看| 日韩 亚洲 欧美在线| 国产精品成人在线| 久久久久久人妻| 十分钟在线观看高清视频www| 老熟女久久久| 色综合欧美亚洲国产小说| 欧美黑人精品巨大| xxxhd国产人妻xxx| 大陆偷拍与自拍| 国产片特级美女逼逼视频| 午夜日本视频在线| 亚洲精品国产区一区二| h视频一区二区三区| 99热全是精品| 啦啦啦 在线观看视频| 2018国产大陆天天弄谢| 天天躁夜夜躁狠狠躁躁| 久久精品亚洲av国产电影网| 国产 精品1| 免费女性裸体啪啪无遮挡网站| 丝袜美足系列| 国产一区二区激情短视频 | 国产av精品麻豆| 精品少妇久久久久久888优播| 在线观看人妻少妇| 亚洲欧美成人综合另类久久久| 精品少妇一区二区三区视频日本电影 | 久久久国产精品麻豆| 免费观看性生交大片5| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久 | 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 制服诱惑二区| 婷婷色av中文字幕| 日韩大码丰满熟妇| 777久久人妻少妇嫩草av网站| 黄色一级大片看看| 9色porny在线观看| 久久鲁丝午夜福利片| 国产1区2区3区精品| 女人久久www免费人成看片| 色综合欧美亚洲国产小说| 搡老岳熟女国产| 精品久久久久久电影网| 成年av动漫网址| 中文字幕人妻熟女乱码| 日韩中文字幕欧美一区二区 | 国产精品一国产av| 国产精品99久久99久久久不卡 | 一本大道久久a久久精品| 看免费成人av毛片| 亚洲情色 制服丝袜| 欧美97在线视频| 在线观看三级黄色| 无遮挡黄片免费观看| 99香蕉大伊视频| 999精品在线视频| 欧美亚洲 丝袜 人妻 在线| 精品少妇一区二区三区视频日本电影 | 成人毛片60女人毛片免费| 亚洲四区av| 中文字幕人妻丝袜制服| 久久韩国三级中文字幕| 看十八女毛片水多多多| 久久99热这里只频精品6学生| 精品人妻在线不人妻| 色综合欧美亚洲国产小说| 国产又爽黄色视频| 亚洲综合色网址| 国产精品香港三级国产av潘金莲 | 久久久久久久久免费视频了| 欧美黑人欧美精品刺激| 人人澡人人妻人| 久久久欧美国产精品| 午夜久久久在线观看| 男人添女人高潮全过程视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩成人在线一区二区| 久久久久国产精品人妻一区二区| 久久久亚洲精品成人影院| 亚洲精品第二区| 久久99精品国语久久久| 国产一级毛片在线| 男女边摸边吃奶| 夜夜骑夜夜射夜夜干| 黄色一级大片看看| 制服人妻中文乱码| 一区二区日韩欧美中文字幕| 日本猛色少妇xxxxx猛交久久| 亚洲第一av免费看| 国产国语露脸激情在线看| 美女视频免费永久观看网站| 日本午夜av视频| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区大全| 美女国产高潮福利片在线看| 国产女主播在线喷水免费视频网站| 亚洲一区中文字幕在线| 欧美在线一区亚洲| 国产精品99久久99久久久不卡 | 少妇 在线观看| av在线观看视频网站免费| 蜜桃国产av成人99| 久久精品久久久久久噜噜老黄| 国产在线一区二区三区精| 操出白浆在线播放| 99久久人妻综合| e午夜精品久久久久久久| 国产免费又黄又爽又色| 免费av中文字幕在线| 亚洲第一青青草原| 综合色丁香网| 成人免费观看视频高清| 精品久久久精品久久久| 精品免费久久久久久久清纯 | 欧美日韩国产mv在线观看视频| 日韩大码丰满熟妇| 久久久国产欧美日韩av| 国产精品女同一区二区软件| 久久久久久久久久久免费av| 亚洲五月色婷婷综合| 桃花免费在线播放| 一本一本久久a久久精品综合妖精| 2021少妇久久久久久久久久久| 国产熟女午夜一区二区三区| 久久婷婷青草| 国产成人a∨麻豆精品| 婷婷色麻豆天堂久久| 丁香六月天网| 久久久久久久精品精品| 亚洲av日韩在线播放| 亚洲国产成人一精品久久久| www.熟女人妻精品国产| 99国产综合亚洲精品| 亚洲成人一二三区av| 色综合欧美亚洲国产小说| 五月开心婷婷网| 亚洲精品成人av观看孕妇| 七月丁香在线播放| 十八禁网站网址无遮挡| 97人妻天天添夜夜摸| 精品久久久久久电影网| 国产毛片在线视频| 日韩欧美精品免费久久| 丝袜人妻中文字幕| av在线老鸭窝| 黄色毛片三级朝国网站| 这个男人来自地球电影免费观看 | 99热网站在线观看| 日韩视频在线欧美| 国产日韩一区二区三区精品不卡| 久久毛片免费看一区二区三区| 丰满迷人的少妇在线观看| a级片在线免费高清观看视频| 欧美国产精品一级二级三级| 赤兔流量卡办理| 丁香六月欧美| 亚洲国产精品一区二区三区在线| 一区二区三区激情视频| 精品一区二区免费观看| 男女边吃奶边做爰视频| 国产探花极品一区二区| 亚洲精品国产av成人精品| 婷婷色麻豆天堂久久| www.自偷自拍.com| 国产成人啪精品午夜网站| 亚洲国产日韩一区二区| 老司机深夜福利视频在线观看 | 亚洲精品久久成人aⅴ小说| 校园人妻丝袜中文字幕| 99国产综合亚洲精品| 精品少妇一区二区三区视频日本电影 | 桃花免费在线播放|