• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Waveguide Invariant and Passive Ranging Using Double Element

    2011-07-25 06:22:02YUYun余赟HUIJunying惠俊英CHENYang陳陽LINFang林芳
    Defence Technology 2011年3期
    關(guān)鍵詞:林芳陳陽

    YU Yun(余赟),HUI Jun-ying(惠俊英),CHEN Yang(陳陽),LIN Fang(林芳)

    (1.Science and Technology on Underwater Acoustic Laboratory,Harbin Engineering University,Harbin 150001,Heilongjiang,China;2.Department of Physics and Electrical Information Engineering,Daqing Normal University,Daqing 163712,Heilongjiang,China)

    Introduction

    The passive ranging technology has been researched for sonar system.The main passive ranging technologies conclude the three-element array passive ranging technology[1]which uses a high-precision time delay estimation and provides the relative ranging error of about 15%at 10 km,the bearing-time delay difference-based target motion analysis[2]of which position accuracy is better than the three-element array passive ranging technology[3],the matched field-based ranging technology of which position accuracy is similar to the three-element array passive[4-5]ranging technology but its range is farther,and the focused beamforming-based passive ranging technology which is suitable for highprecision positioning in the near sound field.The performance of the first three-element array and bearingtime delay difference-based target motion analysis passive ranging technologies decline sharply when they are used in the towed linear array sonar whose relative position of the array element is unstable,while the matched field-based ranging technology needs the accurate prior knowledge of marine environment to model the sound field,which requires the deep pre-investigation of the ocean region in which the technique is used,and it is difficult to be used in unfamiliar oceans.Therefore,this paper tries to explore a robust passive ranging algorithm applicable to the towed line array sonar.

    The interference structure,which is divided into line spectrum and continuous spectrum interference structures,exists stably in low-frequency sound field.The features and applications of the line spectrum interference structure were discussed in Ref.[6 - 7].The continuous spectrum interference structure will be discussed in this paper,and it is hoped to realize passive ranging based on it.The continuous spectrum interference structures observed in a shallow sea trial are shown in Fig.1,where Fig.1(a)shows the acoustic field interference fringes of targets at middle and short ranges obtained from the tracking beam output of the towed linear array sonar,and Fig.1(b)shows the acoustic field interference fringes of target at long range obtained from the same sonar.Although both the receiving array and the target move,the interference fringes in LOFARgram are still visible and obvious,which indicates the interference structure in low-frequency acoustic field is indeed stable and observable.

    Fig.1 Interference fringes of the acoustic field obtained from the tracking beam output of the towed linear array sonar

    The waveguide invariant[8-14],usually designated asβ,was proposed by Chuprov,a Russian scholar,in 1982,which is used to describe the continuous spectrum interference fringes in LOFARgram obtained by processing the acoustic signals from moving broadband source.The invariantβis used to denote the relationship among the slope of the interference fringe,dω/dr,the rangerfrom the source and the frequencyω,describe the dispersive propagation characteristics of the acoustic field,and provide a descriptor of constructive/destructive interference structure in a single scalar parameter.In this paper,the expression of the interference fringe is derived by combining the waveguide invariant and the geometric relationship of the target moving trajectory,and the target motion parameters are estimated by image processing.And then the passive ranging can be realized based on double element or double array model,which can be two arrays split from a large array in the actual application.

    1 Waveguide Invariant β and the Expression of Interference Fringe

    According to the definition,the waveguide invariant in the range-independent waveguide can be expressed as[13]:

    whereωis the frequency of acoustic signal,ris the range from the source,βis the waveguide invariant,whose value is 1 in the Pekeris waveguide[15],vanduare the average phase velocity and the average group velocity,respectively.

    Therefore,βcan be predicted using Eq.(1)by modeling the acoustic field to get the mode phase velocity and group velocity if the information on the ocean environment is prior known accurately,which is difficult in practice.However,the first term in Eq.(1)shows that based on the image processing the value ofβcan be estimated by extracting the slope of the interference fringes in LOFARgram,which is obtained by STFT.

    The origin of coordinates is located at the acoustic center of the single sensor or the array.Provided that the target radiates continuously broadband signals and moves in a uniform rectilinearity,the linear speed isv,the range at the closest point of approach(CPA)isr0,the corresponding time ist0,θis target bearing,andφis the heading angle which is defined as the angle between the positive axis ofxand the target moving direction.The geometry relation of target movement is shown in Fig.2.The moving trajectory of the target can be expressed as:

    Fig.2 Moving geometry relation of target

    It can be seen from Fig.2 that:

    It can be derived from Eq.(4)and(5):

    The slope df/dτof the interference fringes can be written as:

    And Eq.(1)can be expressed as:

    It can be known from Eq.(3)that

    Substituting the Eq.(8)and Eq.(9)into Eq.(7),we have

    Then both the sides of the above equation are integrated and rearranged,we have

    Eq.(11)is just the trajectory equation of the interference fringes,which indicates that the interference fringes are a family of quasi-hyperbolas in shallow water.Whenβμ1,Eq.(11)can be simplified as a standard hyperbola equation in which apex is(t0,f0),wheref0is the frequency corresponding toτ=0,namely,f(0)=f0.

    2 Parameter Estimation via Hough Transform

    Hough transform[16]is an image processing method for edge detection,which is suitable to detect arbitrary curve.The Hough transform is to map the points on the same curve in the image space onto a family of curves intersected at a point in the parameter space,and the coordinate of the intersection reflects the parameter of the curve in the image space.The intensity of each element(a,b)in the parameter space is the cumulative intensity of the points on the curve characterized by the parameters(a,b)in the image space,so the parameters of the curve can be achieved by searching the maximum element in the parameter space.

    In this paper,Hough transform is used to process the LOFARgram and bearing-time records to estimate the parameters.For the former,LOFARgram is just the image space mentioned above,in which the curves are determined by Eq.(11).Provided thatt0andf0can be gotten directly from the LOFARgram,while the parameter space is a plane which takesr0/vas the horizontal axis and the waveguide invariantβas the vertical axis.Similarly,for the latter,the bearing-time record is an image space,in which the curves are determined by Eq.(6),while the parameter space is a plane which takesr0/vas the horizontal axis and the heading angle as the vertical axis.

    The simulation results of LOFARgram and its Hough transform are shown in Fig.3.The Hough transform of LOFARgram are performed fort0=0 s andf0=637 Hz as the apex of some interference fringe,as shown in Fig.3(b)and Fig.3(c).Then the parameters can be estimated by searching the maximum element in the parameter space:β=0.97 andr0/v=99.2,where the true value ofr0/vis 100,which indicates that Hough transform has high accuracy.The curve shown in Fig.3(a)as the dotted line can be achieved by substituting the estimated parameters into Eq.(11),which coincides with the bright fringe in LOFARgram.

    Fig.3 LOFARgram and the results of Hough transform

    Assuming that the heading angle of target is 30°,and the targets moves from far to near then the opposite,the remaining conditions are the same as the above.The bearing-time records estimated by acoustic intensity average using the vector sensor are shown in Fig.4(a).In the same way,the bearing-time records are processed by selectingt0=0 as a reference and the Eq.(6)as the Hough transform template,and the parameter space is shown in Fig.4(b).φandr0/vcan be estimated synchronously by searching the brightest pix of parameter space,they are 30°and 100 s,respectively,and the latter is exactly equal to the true value.But in practice,the bearing estimate differs from the real value by several degrees in bearing-time records,so there will be a corresponding estimated error with the parameters we concerned.

    Fig.4 The Bearing-time records and the result of Hough transform

    3 The Principle of Passive Ranging Using Double Array(Element)

    From Eq.(11)and the parameter estimation discussed in the previous section,it can be seen that only the ratio ofr0/vcan be obtained by a single vector sensor or a single array.Therefore,the problem of passive ranging can not be solved entirely.So the model of double element or double array is adopted to realize the passive ranging,which has a far detecting range and a lot of application aspects,such as shore station,surface ship or submarine.

    A double array element model is adopted as an example to explain the ranging principle,the principle using double array is the same as the former,but its operating range is father and the direction finding is more accurate.The ranging model is shown in Fig.5.The two array elements are placed onxaxis,and the array element spacing isL=d.Assuming that the target moves in a uniform linearity,its speed isv,and its heading angle isφ.The distances from the target to element 1 and 2 arer1andr2,and the corresponding bearing angles areθ1andθ2,respectively.Relative to element 1 and element 2,the ranges at the closest point of approach(CPA)arer01andr02,and the times at CPA aret01andt02,respectively.If the origin is used as a reference,the range at CPA and the time at CPA arer0andt0,respectively.

    Fig.5 Double element based positioning model

    LOFARgram 1 and LOFARgram 2 can be achieved by processing the signals received by element 1 and 2 using STFT.At the same time,the bearing-time records 1 and bearing-time records 2 can be achieved by bearing estimation.The four figures are the premise of further passive ranging.Four ranging algorithms will be introduced in the following sections.

    3.1 Algorithm 1

    The time delayTof the target moving from pointAto pointBshown in Fig.5 can be estimated by putting image cross-correlation,also called two-dimensional correlation,on two LOFARgrams,at the same time,t01andt02can be gotten easily.The heading angle can be estimated using Hough transform to process some bearing-time records,and the average value ofφ1andφ2can be adopted if Hough transform have be done to both the bearing-time records.So the navigation speed of the target can be expressed as:

    Because the element spacingdis known,the speedvcan be estimated using Eq.(12).

    The Hough transform of two LOFARgrams can be done to estimater01/vandr02/v:

    whereaandbare the values obtained by searching a maximum in parameter space of Hough transform.The ranges at CPA relative to two elements are

    Therefore,the range at CPA of target relative to the origin can be expressed as:

    And the time at CPA relative to the origin is

    So the horizontal distance of target is

    The above equation can be used to estimate the horizontal distance of target.The advantage of this algorithm is simple,but the ranging accuracy is poor when the heading angle of target is close to 90°,and it is inapplicable forφ=90°.

    3.2 Algorithm 2

    Similarly,the heading angleφcan be estimated by processing the bearing-time records using Hough transform,then the ratios of the ranges at CPA relative to two elements to the target speed can be obtained by processing the LOFARgrams using Hough transform,which areaandb,respectively.The simultaneous equations are as follows:

    The solution of the above equations is

    Based on the Eq.(19),the horizontal range of target can be estimated by Eq.(15),(16)and(17).

    This algorithm is also simple,and its calculation amount is less without image correlation.It is suitable to ranging forφ=90°,and the larger the heading angle is,the better the ranging accuracy is.However,the accuracy is poor when the heading angle is small(for example,the target is near the axial direction of the array),and the algorithm is inapplicable forφ=0°.In addition,it can be seen from the first equation of Eq.(19)that the robustness of this algorithm is poor because the target speed is determined by the difference betweenaandb,and the estimated errors caused by Hough transform are random.

    3.3 Algorithm 3

    The heading anglesφ1andφ2,and the ratiosmandnof the ranges at CPA relative to two elements to the target speed can be estimated synchronously by processing the bearing-time records using Hough transform,we have:

    The next step of this algorithm is the same as Algorithm 2.We have

    Then the following steps are also the same as the algorithms mentioned above.

    3.4 Algorithm 4

    This algorithm is obviously different from the algorithms mentioned above.It utilizes the definition of the waveguide invariant.

    Similarly,the waveguide invariantβandr01/v=acan be estimated synchronously by processing LOFAR-grams using Hough transform,and the heading angleφandr01/v=ccan also be obtained by processing the bearing-time records using Hough transform.So the difference of ranges at CPA relative to two elements Δr0can be expressed as:

    The frequenciesf01iandf02j,whereiandjare the numbers of interference fringes,of the corresponding interference fringes at CPA can be extracted easily from two LOFARgrams.So the frequency difference of the corresponding interference fringes can be expressed as:

    Therefore,it can be seen from Eq.(8)that the ranges at CPA of target relative to each element are as follows:

    In this way,the range at CPA relative to the origin can be estimated as:

    and the navigation speedvLandvbof the target are expressed using Eq.(27)and(28),where the subscripts denote the ratio of the range at CPA to the target's speed used to estimate the speed is estimated by processing the LOFARgram or the bearing-time records.

    Finally,the range of the target can be expressed as:

    wherercan be estimated by=vLand=vb,respectively,and the average value of two results is used as the final estimation of target range.The range of the target can also be obtained directly by substituting=(vL+vb)/2 into Eq.(29).

    4 Simulation Research

    The simulation researches have been conducted to verify the correctness of four algorithms proposed above and to evaluate the ranging accuracy of each algorithm.

    The conditions used in the simulation are as follows:the Pekeris model is used.The sea depth isH=55 m.The acoustic velocity and the density of water arec1=1 500 m/s andρ1=1 000 kg/cm3,respectively.While the acoustic velocity and the density of bottom medium arec2=1 610 m/s andρ2=1 900 kg/cm3,respectively.The effect of absorption is negligible.The depth of the vector sensors arezr=30 m,the element spacing isd=120 m.Supposing that the target cruises in the same depth which iszs=4 m,the speed of navigation isv=12 m/s,and the range at the CPA isr0=1 320 m.The time at the CPA is set as 0 time,and the time is defined negative when the target moves towards the receiver,and vice versa.The heading angle is 30°.The working band is 300 ~1 000 Hz.The acoustic field is modeled using the KRAKENC program.

    It can be known from the above analysis that the advantage of Algorithm 1,of which ranging accuracy is dependent on the time delay estimation accuracy is to estimate the range of target at the heading angle of 0°.The time delay estimation results obtained by image cross-correlation under different heading angles are shown in Tab.1,whereτ,and Δτare the true value,estimated value and the relative estimated error of the time delay,respectively.The results indicate that,when the heading angle is 0°,the relative estimated error is 0 which causes the high ranging accuracy,and the time delay estimation accuracy roughly reduces with the increase in heading angle.If the range accuracy is required to be better than 15%,then the condition for Algorithm 1 is that the heading angle is smaller than 10°.

    Tab.1 Time delay estimation results obtained by image cross-correlation under different heading angles

    Ranging results and relative errors of four algorithms when heading angles are 10°,30°and 90°are shown in Fig.6 to Fig.8,where(a)of each figure shows the ranging results,while(b)shows the corresponding relative ranging errors.It can be seen from the comparison of the results in the figures that:first,the relative ranging error of Algorithm 1 is about 9.2%when the heading angle is 10°,while the error is about 23.4%when the heading angle is 30°,which once again verifies that Algorithm 1 is suitable for small heading angle,especially for 0°heading angle at which Algorithm 2,3 and 4 are inapplicable.Second,Algorithm 2,3 and 4 have enough passive range accuracy when the heading angle is large,and the general trend is that the larger the heading angle is,the better the range accuracy is.

    Fig.6 Ranging results and relative errors of four algorithms at 10°heading angle

    5 Conclusions

    The stable interference structure of the low-frequency continuous spectrum acoustic field has been observed in the sea trials.For a target moving towards a receiver from far to near,and then moving away form the receiver,the equation of the interfe-rence fringes has been derived based on the concept of waveguide invariant and the geometric relationship of target moving trajectory,indicating that the interference fringes are a family of quasi hyperbolas.The heading angleφ,waveguide invariantβandr0/v(wherer0is the target's range at CPA andvis the target speed)can be estimated by processing the LOFARgram and the bearingtime records using the Hough transform.The double element or double array model is adopted to achieve passive ranging,four ranging algorithms are proposed.The simulation research shows that Algorithm 1 is suitable for the scenario of small heading angle,the ranging error is less than 10% if the heading angle is smaller than 10°.Algorithm 2,3 and 4 are inapplica-ble when the heading angle is equal to 0°,but all of them have enough range accuracy when the heading angle is larger than 10°.In the practical application,the heading angle should be estimated first,and then a threshold is set according to heading angle in order to use a suitable ranging algorithm.

    Fig.7 Ranging results and relative errors of four algorithms at 30°heading angle

    A complete interference fringe is required to range for all the four algorithms which do not fully satisfies the operational requirements of sonar device,but they are still valuable for basic research and have important application prospect in many aspects,such as shore station,airborne sonobuoy,marine research,especially acoustic measurement and so on.More detailed simulation and sea trial research will be needed for their practical engineering applications.The ranging algorithm suitable for the scenario without the closest point of approach is the focal point of further research.

    [1]WANG Xin-yong,HUI Jun-ying,YU Hong-xia.Filtering applied research on noise passive ranging[J].Journal of Harbin Engineering University,2005,26(1):80 - 83.(in Chinese)

    [2]WANG Yan,HUI Jun-ying,LIANG Guo-long.Target motion analysis based on bearing and time delay difference of dual arrays[C]∥Proceedings of National Conference on Underwater Acoustics,Shanghai:Editorial Office of Technical Acoustic,2001:60-62.(in Chinese)

    [3]Thode A M,Kuperman W A,D’Spain G L,et al.Localization using Bartlett matched-field processor sidelobes[J].J Acoust Soc Am,2000,107(1):278-286.

    [4]HUI Juan,HU Dan,HUI Jun-ying,et al.Research on the measurement of distribution image of radiated noise using focused beamforming[J].Acta Acoust,2007,34(2):356-361.(in Chinese)

    [5]YU Yun,MEI Ji-dan,ZHAI Chun-ping,et al.Sea trial researches on the measurements of passive source space distribution imaging and positioning[J].Acta Acoust,2009,32(4):103-109.(in Chinese)

    [6]HUI Jun-ying,SUN Guo-cang,ZHAO An-bang.Normal modes acoustic intensity flux in Pekeris waveguide and its cross spectra signal processing[J].Acta Acoust,2008,33(4):300-304.(in Chinese)

    [7]YU Yun,HUI Jun-ying,Zhao An-bang,et al.Complex acoustic intensity of normal modes in pekeris waveguide and its application[J].Acta Physica Sinica,2008,57(9):5742-5748.(in Chinese)

    [8]Chuprov S D.Interference structure of acoustic fieldin the layered ocean[M]∥Brekhovskikh L M,Andreeva I B,Ocean Acoustics Nauka,Moscow:Modern State,1982:71-91.

    [9]D’Spain G L,Kuperman W A.Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth[J].J Acoust Soc Am,1999,106(5):2454-2468.

    [10]Rouseff D,Spindel R C.Modeling the waveguide invariant as a distribution[J].AIP Conference Proceedings,2002,621(1):137-160.

    [11]Goldhahn R,Hickman G,Krolikc J.Waveguide invariant broadband target detection and reverberation estimation[J].J Acoust Soc Am,2008,124(5):2841 -2851.

    [12]Quijano J E,Zurk L M.Rouseff D.Demonstration of the invariance principle for active sonar[J].J Acoust Soc Am,2008,123(3):1329-1337.

    [13]Turgut A,Orr M,Rouseff D.Broadband source localization using horizontal-beam acoustic intensity striations[J].J Acoust Soc Am,2010,127(1):73-83.

    [14]Cockrell K L,Schmidt H.Robust passive range estimation using the waveguide invariant[J].J Acoust Soc Am,2010,127(5):2780-2789.

    [15]Brekhovskikh L M,Lysanov Y P.Fundamental of ocean acoustic[M].3rd ed.Moscow,Russia:AIP Press,2002:143-146.

    [16]Hough P VC.A method and means for recognizing complex patterns:US,3069654[P].1962-12-18.

    [17]HUI Jun-ying,HUI Juan.Fundamental theory of signal processing in acoustic vector field[M].Beijing:National Defense Industry Press,2009:10.(in Chinese)

    猜你喜歡
    林芳陳陽
    陳陽美術(shù)作品欣賞
    慢 慢
    那株被肆意觸碰的含羞草后來怎么樣了?
    陳陽:讓青春在筑夢(mèng)路上綻放榮光
    The influence of artificial intelligence on accounting industry
    考驗(yàn)
    上海故事(2018年8期)2018-09-06 02:18:24
    絕對(duì)有償
    樓上老公不在家
    樓上的孩子怕吵架
    Molecular Dynamic Simulation for HMX/NTO Supramolecular Explosive
    日本免费一区二区三区高清不卡| 欧美xxxx黑人xx丫x性爽| 在线免费观看不下载黄p国产 | 成年版毛片免费区| 亚洲欧美日韩无卡精品| 91av网站免费观看| 日本黄色片子视频| 韩国av一区二区三区四区| 12—13女人毛片做爰片一| 97人妻精品一区二区三区麻豆| 99在线人妻在线中文字幕| 又大又爽又粗| 国产高清三级在线| 不卡一级毛片| 长腿黑丝高跟| 两性夫妻黄色片| 成人18禁在线播放| 亚洲成人免费电影在线观看| 97超视频在线观看视频| 别揉我奶头~嗯~啊~动态视频| 久久午夜综合久久蜜桃| 一区二区三区激情视频| 中文字幕人妻丝袜一区二区| 欧美色视频一区免费| 一本精品99久久精品77| 变态另类成人亚洲欧美熟女| 久久久成人免费电影| 两个人视频免费观看高清| 热99re8久久精品国产| 怎么达到女性高潮| 日韩免费av在线播放| 天堂动漫精品| 别揉我奶头~嗯~啊~动态视频| 亚洲在线自拍视频| 午夜福利高清视频| 露出奶头的视频| 给我免费播放毛片高清在线观看| 中文字幕久久专区| 日韩人妻高清精品专区| 一个人免费在线观看的高清视频| 精品无人区乱码1区二区| 窝窝影院91人妻| 老汉色∧v一级毛片| 美女黄网站色视频| 操出白浆在线播放| 久久精品国产综合久久久| 日韩人妻高清精品专区| 国产精品日韩av在线免费观看| 久久九九热精品免费| av女优亚洲男人天堂 | 国产精品久久久人人做人人爽| 国产精品一区二区三区四区久久| 久99久视频精品免费| 窝窝影院91人妻| 欧美一区二区精品小视频在线| 五月玫瑰六月丁香| 熟女人妻精品中文字幕| 一级毛片精品| 此物有八面人人有两片| 90打野战视频偷拍视频| 三级毛片av免费| 午夜日韩欧美国产| 国产精品影院久久| 日日干狠狠操夜夜爽| 国产成人欧美在线观看| 岛国在线观看网站| 他把我摸到了高潮在线观看| 18禁裸乳无遮挡免费网站照片| 成人亚洲精品av一区二区| 久久中文看片网| 久久久久久久午夜电影| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品久久国产高清桃花| 非洲黑人性xxxx精品又粗又长| 三级毛片av免费| 99久国产av精品| 制服人妻中文乱码| 在线播放国产精品三级| 国产综合懂色| 91在线观看av| 女同久久另类99精品国产91| 99国产极品粉嫩在线观看| 在线免费观看的www视频| 叶爱在线成人免费视频播放| 又大又爽又粗| 亚洲成a人片在线一区二区| 男女那种视频在线观看| 亚洲av片天天在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久久久久精品电影| 欧美性猛交黑人性爽| www.www免费av| 亚洲熟妇熟女久久| 别揉我奶头~嗯~啊~动态视频| 国产伦精品一区二区三区四那| 久久久久久九九精品二区国产| 亚洲国产欧美人成| aaaaa片日本免费| 国产熟女xx| 村上凉子中文字幕在线| 天天躁日日操中文字幕| 国产精品久久电影中文字幕| 国产精品久久久久久久电影 | 性色av乱码一区二区三区2| 亚洲精品456在线播放app | 十八禁人妻一区二区| 欧美大码av| 免费av不卡在线播放| 一区福利在线观看| 男女床上黄色一级片免费看| 国产真人三级小视频在线观看| 97超级碰碰碰精品色视频在线观看| 麻豆av在线久日| 国产成人影院久久av| 亚洲国产色片| 精品久久久久久成人av| 天堂av国产一区二区熟女人妻| 欧美激情久久久久久爽电影| 国产精品综合久久久久久久免费| 亚洲美女黄片视频| 欧美黑人欧美精品刺激| 国产高清有码在线观看视频| 亚洲欧美日韩高清专用| 国产v大片淫在线免费观看| 中文字幕最新亚洲高清| 韩国av一区二区三区四区| 国产av在哪里看| 免费观看人在逋| 欧美成人免费av一区二区三区| 精品福利观看| 亚洲精品国产精品久久久不卡| 久久这里只有精品19| 亚洲无线观看免费| av欧美777| 久久天躁狠狠躁夜夜2o2o| 观看免费一级毛片| 男女午夜视频在线观看| 禁无遮挡网站| 一本综合久久免费| 丰满人妻一区二区三区视频av | 亚洲五月天丁香| 久久国产精品人妻蜜桃| 免费看a级黄色片| 狠狠狠狠99中文字幕| 校园春色视频在线观看| 大型黄色视频在线免费观看| 免费观看人在逋| 亚洲第一电影网av| 国产男靠女视频免费网站| 狠狠狠狠99中文字幕| 中文在线观看免费www的网站| 亚洲一区二区三区色噜噜| 欧美性猛交黑人性爽| 99久国产av精品| 国产精品亚洲一级av第二区| 精品久久久久久久毛片微露脸| 少妇的丰满在线观看| 国产精品1区2区在线观看.| 亚洲精品美女久久av网站| 最新在线观看一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产精品av久久久久免费| 亚洲avbb在线观看| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| 亚洲人成网站高清观看| av天堂在线播放| 久久久久久久精品吃奶| 少妇的逼水好多| 精华霜和精华液先用哪个| 在线观看午夜福利视频| 91在线观看av| 国产精品一及| 国产日本99.免费观看| 曰老女人黄片| 五月玫瑰六月丁香| 国产激情久久老熟女| 久久精品91蜜桃| 综合色av麻豆| 国产精品 欧美亚洲| 国产午夜福利久久久久久| 亚洲无线在线观看| 最新美女视频免费是黄的| 伊人久久大香线蕉亚洲五| 69av精品久久久久久| 久久久久久久久免费视频了| 美女午夜性视频免费| 免费观看的影片在线观看| 99久久99久久久精品蜜桃| 男人舔女人下体高潮全视频| 在线观看免费午夜福利视频| 一级黄色大片毛片| 国产黄色小视频在线观看| 日韩欧美国产在线观看| av国产免费在线观看| 国产精华一区二区三区| 少妇熟女aⅴ在线视频| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 精品国产超薄肉色丝袜足j| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 中文字幕人成人乱码亚洲影| 免费在线观看成人毛片| 免费在线观看影片大全网站| 夜夜爽天天搞| 欧美乱码精品一区二区三区| 九色成人免费人妻av| 国产单亲对白刺激| 又粗又爽又猛毛片免费看| 岛国在线免费视频观看| 成人精品一区二区免费| 美女黄网站色视频| 法律面前人人平等表现在哪些方面| 成年女人看的毛片在线观看| 香蕉丝袜av| 国产在线精品亚洲第一网站| 一a级毛片在线观看| 别揉我奶头~嗯~啊~动态视频| 又黄又爽又免费观看的视频| 综合色av麻豆| 看免费av毛片| 久久久成人免费电影| 欧美色欧美亚洲另类二区| 亚洲中文字幕日韩| 亚洲国产欧美一区二区综合| 久久久久免费精品人妻一区二区| 免费高清视频大片| 国产精品永久免费网站| 无遮挡黄片免费观看| 男人的好看免费观看在线视频| 国产亚洲精品av在线| 免费av毛片视频| 国产亚洲欧美98| 欧美三级亚洲精品| 人妻夜夜爽99麻豆av| 19禁男女啪啪无遮挡网站| 国产精品久久电影中文字幕| 亚洲欧美日韩无卡精品| 免费在线观看成人毛片| 国产精品综合久久久久久久免费| 亚洲五月婷婷丁香| 免费无遮挡裸体视频| 亚洲国产欧美人成| 国产aⅴ精品一区二区三区波| 女人高潮潮喷娇喘18禁视频| 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| av在线天堂中文字幕| 精品99又大又爽又粗少妇毛片 | 欧美3d第一页| 欧美又色又爽又黄视频| 欧美日韩福利视频一区二区| 国产一级毛片七仙女欲春2| 亚洲欧美一区二区三区黑人| 国产成人av激情在线播放| 美女免费视频网站| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 国模一区二区三区四区视频 | 一边摸一边抽搐一进一小说| www日本在线高清视频| 国产午夜精品久久久久久| 国产成人啪精品午夜网站| 此物有八面人人有两片| 亚洲人成电影免费在线| 成年女人看的毛片在线观看| 性色avwww在线观看| 超碰成人久久| 天天添夜夜摸| 在线国产一区二区在线| 久久久水蜜桃国产精品网| 99热这里只有精品一区 | tocl精华| 成人特级黄色片久久久久久久| 免费观看人在逋| 日日摸夜夜添夜夜添小说| 18禁国产床啪视频网站| www.精华液| 亚洲成人精品中文字幕电影| 中文字幕精品亚洲无线码一区| 亚洲成人免费电影在线观看| 欧美zozozo另类| 亚洲国产欧美网| www.999成人在线观看| 婷婷丁香在线五月| 久久人人精品亚洲av| 精品一区二区三区视频在线 | 国产精品久久久人人做人人爽| 狂野欧美激情性xxxx| 午夜福利高清视频| 欧美日韩一级在线毛片| 亚洲成人免费电影在线观看| 丝袜人妻中文字幕| av天堂中文字幕网| 啪啪无遮挡十八禁网站| 一个人看视频在线观看www免费 | 免费在线观看成人毛片| 波多野结衣高清无吗| 国产亚洲精品久久久com| 国产毛片a区久久久久| 99精品欧美一区二区三区四区| 成人亚洲精品av一区二区| 黑人欧美特级aaaaaa片| 黄色日韩在线| 啦啦啦观看免费观看视频高清| 国内精品久久久久精免费| 日本黄大片高清| 亚洲九九香蕉| 国产1区2区3区精品| 亚洲精品一区av在线观看| 波多野结衣高清作品| 18禁黄网站禁片午夜丰满| 变态另类成人亚洲欧美熟女| 久久久久久大精品| 两个人看的免费小视频| 久久这里只有精品中国| 人妻久久中文字幕网| 久久久久久人人人人人| 嫁个100分男人电影在线观看| 亚洲欧美日韩东京热| 久久久久久国产a免费观看| 黄色丝袜av网址大全| 亚洲真实伦在线观看| 免费搜索国产男女视频| www日本在线高清视频| 亚洲精品美女久久av网站| 在线播放国产精品三级| 亚洲片人在线观看| 免费看日本二区| 又粗又爽又猛毛片免费看| 成人无遮挡网站| 99国产精品一区二区三区| 午夜福利免费观看在线| 成人欧美大片| 国产精品一区二区三区四区久久| 国产 一区 欧美 日韩| 在线观看一区二区三区| 亚洲男人的天堂狠狠| 男女午夜视频在线观看| 国产日本99.免费观看| 每晚都被弄得嗷嗷叫到高潮| 给我免费播放毛片高清在线观看| 亚洲熟女毛片儿| 免费人成视频x8x8入口观看| 又黄又爽又免费观看的视频| 一夜夜www| netflix在线观看网站| 变态另类丝袜制服| 国产探花在线观看一区二区| 亚洲熟妇中文字幕五十中出| 精品一区二区三区av网在线观看| 亚洲,欧美精品.| 日本三级黄在线观看| 国产精品久久久av美女十八| 国产成人欧美在线观看| 美女大奶头视频| 老司机午夜十八禁免费视频| 此物有八面人人有两片| 无人区码免费观看不卡| 又粗又爽又猛毛片免费看| 日韩有码中文字幕| 午夜福利高清视频| 亚洲成人久久爱视频| 一进一出抽搐gif免费好疼| 国产精华一区二区三区| 欧美三级亚洲精品| 久久九九热精品免费| 麻豆成人av在线观看| 69av精品久久久久久| 国产免费男女视频| 精品免费久久久久久久清纯| 日韩精品中文字幕看吧| 亚洲国产精品成人综合色| 老司机深夜福利视频在线观看| 舔av片在线| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 亚洲av中文字字幕乱码综合| 久久久久久久午夜电影| 国产成人精品久久二区二区免费| 国产一区二区三区在线臀色熟女| 亚洲午夜理论影院| 欧美性猛交╳xxx乱大交人| 看黄色毛片网站| 国产亚洲欧美在线一区二区| 亚洲中文日韩欧美视频| 天天添夜夜摸| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| 757午夜福利合集在线观看| 免费大片18禁| 两性午夜刺激爽爽歪歪视频在线观看| 日本a在线网址| 国产免费男女视频| cao死你这个sao货| 黄色成人免费大全| 十八禁人妻一区二区| 精品不卡国产一区二区三区| 嫁个100分男人电影在线观看| 国产精品久久久久久久电影 | 国产精品爽爽va在线观看网站| 成人欧美大片| 欧美性猛交╳xxx乱大交人| 欧美日韩国产亚洲二区| 搡老妇女老女人老熟妇| 色老头精品视频在线观看| 欧美成人性av电影在线观看| 手机成人av网站| 最近最新免费中文字幕在线| 国产午夜福利久久久久久| 精品一区二区三区视频在线 | 亚洲熟妇熟女久久| 一级毛片高清免费大全| 成在线人永久免费视频| 岛国在线观看网站| 日韩高清综合在线| 亚洲一区二区三区色噜噜| tocl精华| 18禁观看日本| 97超级碰碰碰精品色视频在线观看| 国产av在哪里看| 色视频www国产| 精品久久久久久,| 精品久久蜜臀av无| 久久这里只有精品中国| 久久久久久久久免费视频了| 九色成人免费人妻av| 99久久精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 一区二区三区国产精品乱码| 叶爱在线成人免费视频播放| 亚洲最大成人中文| 久久天躁狠狠躁夜夜2o2o| 黑人巨大精品欧美一区二区mp4| 免费观看的影片在线观看| 日本黄大片高清| 女警被强在线播放| 欧美日本亚洲视频在线播放| 蜜桃久久精品国产亚洲av| 色综合亚洲欧美另类图片| 久久人妻av系列| www.999成人在线观看| 成人一区二区视频在线观看| 国产精品爽爽va在线观看网站| 熟妇人妻久久中文字幕3abv| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线美女| 女警被强在线播放| 美女免费视频网站| 亚洲第一电影网av| 成人国产一区最新在线观看| 国产精品精品国产色婷婷| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品合色在线| 宅男免费午夜| 中国美女看黄片| 国产精品电影一区二区三区| 久久国产乱子伦精品免费另类| 嫩草影院入口| 精品久久久久久久人妻蜜臀av| 99re在线观看精品视频| 欧美成人一区二区免费高清观看 | xxxwww97欧美| 国产亚洲精品久久久com| 淫妇啪啪啪对白视频| 国产爱豆传媒在线观看| a级毛片a级免费在线| 在线播放国产精品三级| 91麻豆av在线| 不卡av一区二区三区| 久久久水蜜桃国产精品网| 成年女人毛片免费观看观看9| 黑人操中国人逼视频| 97碰自拍视频| 美女cb高潮喷水在线观看 | 麻豆久久精品国产亚洲av| 变态另类丝袜制服| 欧美中文日本在线观看视频| 我的老师免费观看完整版| 桃红色精品国产亚洲av| 999久久久国产精品视频| 精品熟女少妇八av免费久了| 欧美日韩黄片免| 一本久久中文字幕| 91字幕亚洲| 91麻豆av在线| 欧美黑人欧美精品刺激| 人人妻人人看人人澡| 搡老妇女老女人老熟妇| 亚洲国产高清在线一区二区三| 欧美日韩一级在线毛片| 少妇人妻一区二区三区视频| 国产人伦9x9x在线观看| 久久香蕉国产精品| 国产精品一区二区三区四区免费观看 | 脱女人内裤的视频| 午夜免费观看网址| 国产av一区在线观看免费| 一a级毛片在线观看| 特大巨黑吊av在线直播| 亚洲真实伦在线观看| 国内精品久久久久久久电影| 国产极品精品免费视频能看的| 最近最新免费中文字幕在线| 婷婷亚洲欧美| 我要搜黄色片| 亚洲中文日韩欧美视频| 免费高清视频大片| 级片在线观看| 宅男免费午夜| 国产又黄又爽又无遮挡在线| 久久精品aⅴ一区二区三区四区| 亚洲avbb在线观看| 99久久精品热视频| 欧美另类亚洲清纯唯美| 成人三级黄色视频| 桃色一区二区三区在线观看| 亚洲美女黄片视频| 男女那种视频在线观看| 免费大片18禁| 亚洲精品在线美女| 性欧美人与动物交配| 精品国产美女av久久久久小说| 美女被艹到高潮喷水动态| 国产成人精品久久二区二区91| 动漫黄色视频在线观看| 夜夜夜夜夜久久久久| 少妇丰满av| 一级毛片女人18水好多| 精品免费久久久久久久清纯| 麻豆久久精品国产亚洲av| 99久久综合精品五月天人人| 哪里可以看免费的av片| 欧美精品啪啪一区二区三区| 麻豆成人午夜福利视频| 18禁黄网站禁片免费观看直播| 国产高清三级在线| 久久中文字幕一级| 全区人妻精品视频| 亚洲成a人片在线一区二区| 国产精品久久久人人做人人爽| 色综合婷婷激情| 中国美女看黄片| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 久久精品综合一区二区三区| av天堂中文字幕网| 非洲黑人性xxxx精品又粗又长| 精品国产三级普通话版| 国产伦精品一区二区三区四那| 99国产精品一区二区蜜桃av| 悠悠久久av| 欧美另类亚洲清纯唯美| 欧美性猛交黑人性爽| 亚洲欧美精品综合一区二区三区| 亚洲成人久久爱视频| 男女做爰动态图高潮gif福利片| 国产欧美日韩精品一区二区| 亚洲国产精品成人综合色| 成人国产一区最新在线观看| 亚洲欧洲精品一区二区精品久久久| 淫秽高清视频在线观看| av天堂中文字幕网| 日本黄色片子视频| 一二三四社区在线视频社区8| 欧美激情久久久久久爽电影| 国产真实乱freesex| 美女午夜性视频免费| 99热精品在线国产| 男女视频在线观看网站免费| 国产精品久久久久久亚洲av鲁大| 99久久成人亚洲精品观看| 噜噜噜噜噜久久久久久91| 精品不卡国产一区二区三区| 女人被狂操c到高潮| 国产成年人精品一区二区| 亚洲国产精品合色在线| 三级毛片av免费| 国产91精品成人一区二区三区| 特级一级黄色大片| 1024手机看黄色片| 久久这里只有精品中国| 91九色精品人成在线观看| 亚洲五月婷婷丁香| 久久国产乱子伦精品免费另类| 中文字幕久久专区| 亚洲aⅴ乱码一区二区在线播放| 成人国产一区最新在线观看| 欧美大码av| 免费观看人在逋| ponron亚洲| 国产久久久一区二区三区| 亚洲av电影在线进入| 国产午夜福利久久久久久| 亚洲avbb在线观看| 天天添夜夜摸| 麻豆久久精品国产亚洲av| 亚洲国产精品久久男人天堂| or卡值多少钱| 亚洲国产高清在线一区二区三| 老司机福利观看| 国产精品爽爽va在线观看网站| 精品一区二区三区视频在线观看免费| 中出人妻视频一区二区| 19禁男女啪啪无遮挡网站| 在线观看免费视频日本深夜| 国产v大片淫在线免费观看| 床上黄色一级片| 黄色成人免费大全| www国产在线视频色| 19禁男女啪啪无遮挡网站| 国产视频一区二区在线看| 久久精品国产99精品国产亚洲性色| 哪里可以看免费的av片|