• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of Quantum Dot-modified Ln-ZIF Hybrid Materials and Fluorescence Detection of Tannic Acid

    2023-10-08 02:39:04FANGZhouJIADongshengLITianmingLIYingZHANGDongliang
    發(fā)光學(xué)報(bào) 2023年9期

    FANG Zhou, JIA Dongsheng, LI Tianming, LI Ying, ZHANG Dongliang

    (School of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China)

    Abstract: Lanthanide Eu3+-doped metal-organic backbone material Eu/ZIF-67 was prepared by a one-step hydrothermal method with a novel pleated sphere structure. A dual-emission fluorescent hybrid material Eu/ZIF-67@ZnO QDs with a zeolite imidazolium ester backbone was obtained by loading ZnO quantum dots onto the surface of Eu/ZIF-67 via coordination bonding. The structure, morphology and fluorescence sensing properties of the material were characterized in detail. Furthermore, the fluorescent material was found to display the dual fluorescence emission of ZnO quantum dots and lanthanide red europium ions. The fluorescence sensing performance of Eu/ZIF-67@ZnO QDs to tannic acid was further investigated, and the results indicated that tannic acid can effectively burst the characteristic fluorescence emission of Eu/ZIF-67@ZnO QDs at ZnO QDs with a detection limit of 0.029 9 μmol/L. Meanwhile,Eu/ZIF-67@ZnO QDs have the fluorescence response to tannic acid with anti-interference ability, which can be used as a cost-effective fluorescence sensor to specifically identify tannic acid.

    Key words: metal organic skeleton; quantum dots; dual-emission probes; tannic acid; fluorescent detection

    1 Introduction

    Tannins, or ellagic acid, is a multiphase phenolic compound widely distributed in nature and can be mainly classified into three categories: hydrolyzed tannins (HT), condensed tannins (CT) and fucoidan polyphenols (PT)[1-3]. The polyphenolic hydroxyl structure of tannins gives them a unique set of chemical properties and physiological activities, making them valuable in food, pharmaceutical and industrial production applications. The polyphenolic structure of tannins allows them to combine with proteins and alkaloids, as well as to complex and electrostatically interact with many metal ions, and to possess antioxidant and anti-inflammatory properties[4-9]. Therefore,tannins can be used as food antioxidants, detoxifying agents, sunscreen skin brighteners, topical coagulants, clarifying agents for beer and wine, coagulants for rubber,etc.[10]. In beer brewing, tannic acid can form precipitates with proteins in the wort, clarifying and making the beer transparent. However, excessive intake of tannic acid also has certain adverse effects on the human body, therefore, as a widely used food additive, the concentration level of tannic acid not only affects the flavor of food, but also plays a standard role in evaluating the quality of food[11-12].Currently, the detection of tannins mainly includes spectrophotometric[13], electrochemical[14-15], chromatographic[16]and colorimetric[17]methods. Although there are various detection methods, most of them exist poor selection specificity, complicated pre-processing or operation, expensive machine cost, and other problems, hence, it is of practical significance to explore a method for the accurate, rapid, and effective detection of tannins.

    Quantum dots are quasi-zero-dimensional nanomaterials with a semiconducting nanostructure in which electrons are bound in all three directions.With the ability to modify the emission spectrum by modulating the size and chemical composition, quantum dots also have excellent photostability, large Stokes shifts, low cytotoxicity, and high stability[18-20].Therefore, they have a wide range of applications in recent decades in the fields of biofluorescent labeling, luminescent devices, and fluorescence detection[21-25]. Among them, ZnO quantum dots are a novel semiconductor nanomaterial with a forbidden band width of 3.37 eV[26], which have great potential for applications in fluorescence detection and matter sensing due to their good biocompatibility and excellent optoelectronic properties[27-29]. Metal organic framework materials (MOFs) are a class of porous crystalline materials with a regular network structure formed by metal ions or clusters as the central binding ligands. MOFs have in-depth investigations and applications in sensing and storage separation of gases, catalysis, and drug mitigation due to their high specific surface area, low crystal density, tunable pore size, and easily modified functional structures[30-33]. Due to metal-organic framework materials have the features of designable pore surface functional sites and adjustable ligands, novel framework structures can be continuously designed to expand the application fields of lanthanide MOFs by introducing different central metal ions, loading, or embedding nanomaterials and designing novel ligands.

    Herein, we designed a simple & green strategy to construct a dual-emitting metal organic skeleton material. The yellow-emitting ZnO quantum dots were prepared by a chemical solution method and capped with amino groups to obtain amino-functionalized ZnO quantum dots; then a novel zeolite-like imidazolium ester backbone was constructed by doping with Co and lanthanide metal Eu to obtain a novel pleated sphere structured metal-organic framework. By loading ZnO quantum dots, a fluorescent hybrid material with double emission is finally obtained, which can realize the sensing detection of tannic acid and provide a simple and feasible method for the rapid and effective detection of tannic acid concentration.

    2 Experiment

    2.1 Preparation of Eu/ZIF-67@ZnO QDs

    2.1.1 Experimental Reagents

    Eu(NO3)3?6H2O, Zn(OAc)2?2H2O, L-arginine,L-alanine, glycine, L-aspartic acid, gallic acid, ellagic acid,(3-aminopropyl) tri-ethoxysilane(APTES),2-Methylimidazole, KBr and tannic acid(TA) were purchased from Adamas-beta Co., Ltd.(Shanghai,China). Methyl alcohol, L-ascorbic acid(AA), Mg-Cl2, NaCl, CuCl2, FeCl3?6H2O, FeCl2?4H2O, ZnCl2,KOH and CoCl2?6H2O were purchased from Sinopharm Chemical Reagent Co., Ltd.(Shanghai, China). Toluene, anhydrous ethanol, glucose, and sucrose were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.(Shanghai, China).

    2.1.2 Preparation Process

    (1)Preparation of amino-functionalized ZnO QDs

    The 2.79 mmol of Zn(OAc)2?2H2O was added to 15 mL of anhydrous ethanol in a water bath at 78 ℃ and refluxed under vigorous stirring until completely dissolved. The 6 mol of KOH was dissolved in anhydrous ethanol and refrigerated to 4 ℃, then slowly add dropwise to the ethanol solution of Zn-(OAc)2?2H2O. After stirring for 60 min at room temperature, 0.5 mmol of APTES was added to anhydrous ethanol/water (anhydrous ethanol∶water =10∶1), mixed well and added to the above reaction system, and continued to stir at room temperature for 6 h. After the reaction was completed, the precipitate was washed several times by centrifugation with toluene and anhydrous ethanol and dried, and the white translucent solid was obtained as ZnO QDs.

    (2) Synthesis of Eu-doped ZIF-67

    The mixture of 0.95 mmol of CoCl2?6H2O and 0.05 mmol of Eu(NO3)3?6H2O was dissolved in 10 mL of deionized water as solution A. The 20 mmol of 2-methylimidazole was dissolved in 10 mL of deionized water as solution B. After adding B to A and sonicating for 5 min, the mixed system was placed in a 50 mL reactor at 120 ℃ for 1 h. When reaction was finished, the mixture was washed several times by centrifugation using methyl alcohol and water, respectively, and dried to obtain the purple solid as Eu/ZIF-67.

    (3) Construction of Eu/ZIF-67@ZnO QDs

    The 20 mg of Eu/ZIF-67 was ultrasonically dispersed in 10 mL of deionized water, and 30 mg of ZnO QDs was dispersed in 10 mL of deionized water. The ZnO QDs solution was added dropwise to the aqueous solution of Eu/ZIF-67, stirred for 12 h at room temperature, and then centrifuged to obtain Eu/ZIF-67@ZnO QDs(Fig.1) .

    Fig.1 Experimental process and schematic diagram of Eu/ZIF-67@ZnO QDs

    (4) Sensing detection of tannic acid (TA)

    Eu/ZIF-67@ZnO QDs were configured into a homogeneous solution, to which a series of TA solutions with different concentrations were added dropwise, and the fluorescence intensity changes were measured using a fluorescence spectrometer. The concentration range of the added TA solution was 0.01-1 μmol/L. The fluorescence emission spectrum was measured at the excitation wavelength of 356 nm, where the emission wavelength was 505 nm for ZnO QDs and 615 nm for Eu/ZIF-67@ZnO QDs.The slit of the instrument was 5 nm in all fluorescence tests.

    2.2 Performance and Characterization of Samples

    The chemical structure of the samples was characterized by potassium bromide compression and scanned on a Fourier transform infrared spectroscopy (FT-IR) SPECTRUM 100 FT-IR spectrophotometer (Perkin Elmer, USA) at 4 000-400 cm-1. Scanning electron microscopy (SEM) was performed on a ZEISS Sigma 300 (Germany) with acceleration voltageEHT= 3.0 kV. Powder X-ray diffraction (XRD)was determined on a D8 ADVANCE X-ray diffractometer. The UV-Vis absorption spectra of the samples were obtained by analysis on a UV-Vis spectrometer(Lambda FEG450). The samples were analyzed for elemental content and functional group types using X-ray photoelectron spectroscopy (XPS)with a Thermo Scientific K-Alpha+, monochromatic AI Kα X-ray source(1 486.6 eV) at 12 kV and 72 W, respectively, instrument model and parameters.Fluorescence spectroscopy tests were obtained on a Shimadzu S220 V fluorescence spectrophotometer and an Edinburgh FLS920 fluorescence spectrometer with excitation sources of 450 W xenon lamp, μF 920H pulsed light source and EPL-375 nanosecond light source.

    3 Results and Discussion

    3.1 Structural Characterization of ZnO QDs,Eu/ZIF-67 and Eu/ZIF-67@ZnO QDs

    The surface morphology before and after the Eu/ZIF-67 composite ZnO QDs was characterized by scanning electron microscopy (EHT=3.00 kV,Mag=50.00 KX, SignalA=SE2,WD=7.9 mm). As the Fig.2(a) describes, the surface of the Eu-doped ZIF-67 is richly folded and has an overall spherical shape with a diameter of about 1.2 μm. The introduction of ZnO QDs resulted in fewer folds on the surface of the irregular spheres and many particles loaded on the surface, leading to a slight increase in the particle size of the spheres. The above results suggest that the ZnO QDs are probably loaded on the surface of the Eu/ZIF-67 skeleton by chemical bonding, and their introduction would not cause the collapse of the skeleton structure.

    Fig.2 The SEM images of Eu/ZIF-67(a) and Eu/ZIF-67@ZnO QDs(b)

    The chemical structures of ZnO QDs (a), ZIF-67 (b), Eu/ZIF-67 (c) and Eu/ZIF-67@ZnO QDs(d) were characterized by FT-IR. As Fig.3 suggests, where the broadband at 3 469 cm-1is attributed to the O—H stretching vibration and the absorption peaks at 2 925 cm-1and 3 134 cm-1are attributed to the C—H stretching vibration. Line a corresponds to ZnO QDs, where the absorption peak at 1 595 cm-1is attributed to N—H and the absorption band near 1 000 cm-1is attributed to the Si—O band from APTES. These characteristic peaks indicate that APTES was successfully encapsulated on the surface of ZnO QDs and ZnO QDs were successfully amino-functionalized[34-36]. Among the lines b, c and d, the peak clusters in the range of 680-1 500 cm-1are attributed to the stretching and bending vibrations of the imidazole ring, the absorption peak at 1 598 cm-1is attributed to the stretching vibrations of C—N, and the broad absorption band at 1 044 cm-1in d is attributed to Si—O in ZnO QDs[37-38]. The above results indicate the successful preparation of ZnO QDs and zeolite-like imidazole ester frameworks, and the introduction of ZnO QDs didn't destroy the skeleton structure of Eu/ZIF-67.

    Fig.3 FT-IR spectrum of ZnO QDs(a), ZIF-67(b), Eu/ZIF-67(c) and Eu/ZIF-67@ZnO QDs(d).

    The crystal structures of ZnO QDs, ZIF-67,Eu/ZIF-67 and Eu/ZIF-67@ZnO QDs were characterized by X-ray powder diffraction. As described in Fig.4, Eu/ZIF-67 and Eu/ZIF-67@ZnO QDs exhibit the same crystal structure at 2θ=7.39°(011),10.38°(002), 12.75°(112), 14.70°(022), 16.47°(013), 18.06°(222), 22.14°(114), 24.50°(233),26.70°(134) , which corresponds exactly to the ZIF-67 in the literature[37-38]. They demonstrate that the introduction of ZnO QDs did not cause the collapse of the crystal structure of Eu/ZIF-67. The ZnO QDs exhibit broad peaks at 31.78°(001),34.47°(002), 36.15°(101), demonstrating the successful preparation of ZnO QDs. Furthermore,the characteristic peaks at 36.46° and 34.54° for Eu/ZIF-67@ZnO QDs are attributed to the combination of ZnO QDs with Eu/ZIF-67, further demonstrating the successful preparation of europium iondoped zeolite-like imidazolium-based frameworks and Eu/ZIF-67 with ZnO QDs.

    Fig.4 XRD spectrum of ZnO QDs, ZIF-67, Eu/ZIF-67, Eu/ZIF-67@ZnO QDs and stimulated ZIF-67.

    The elemental composition of the prepared Eu/ZIF-67@ZnO QDs was analyzed by XPS. This material shows the characteristic peaks of C, O, N,Co, and Eu at 284.73, 530.95, 398.82, 781.03,1 134.71 eV, respectively. The contents of these five elements are 46.93%(C), 21.94%(O), 13.81%(N), 4.33%(Co), and 0.79%(Eu). Fig.5(b)-(f) represents the fine spectrum of C 1s, O 1s, N 1s, Co 2p, and Eu 3d, respectively. For the C 1s spectrum, three peaks appear at 284.3, 284.9,285.6 eV, which correspond to the characteristic peaks of C—C/C=C, N—C=N and C—O, respectively; for the O 1s spectrum, there are three peaks at 530.1, 531.1, 531.9 eV, indicating the presence ofM—O(Mfor Zn, Co, Eu), Si—O and materials in the sample that indicate the possible adsorption of presence of water, and also demonstrates the successful introduction of ZnO QDs[36,39]. For the N 1s spectrum, the peaks at 398.4, 398.9, 399.4,400.4 eV can be attributed to C=N—C, Co—N,C—NH—C and N—O, respectively. the Co 2p spectrum is composed of two energy levels concentrated at 780.9 eV and 796.9 eV, respectively, attributed to Co 2p3/2and Co 2p1/2. The peaks at 780.7, 782.3, 786.5 eV can be attributed to Co2+,Co3+and a satellite peak, respectively[37-38]. For the Eu 3d spectrum, 1 134.7 eV and 1 164.9 eV correspond to the Eu 3d5/2and Eu 3d3/2energy levels, respectively[40]. For the Zn 2p spectrum, 1 021.6 eV and 1 044.6 eV correspond to two energy levels, Zn 2p3/2and Zn 2p2/1, respectively. The above results are consistent with the FT-IR spectral results, further indicating the successful synthesis of Eu/ZIF-67@ZnO QDs.

    Fig.5 (a)XPS spectrum of Eu/ZIF-67@ZnO QDs. (b)C 1s spectrum of Eu/ZIF-67@ZnO QDs. (c)O 1s spectrum of Eu/ZIF-67@ZnO QDs. (d)N 1s spectrum of Eu/ZIF-67@ZnO QDs. (e)Co 2p spectrum of Eu/ZIF-67@ZnO QDs. (f)Eu 3d spectrum of Eu/ZIF-67@ZnO QDs.

    Tab.1 The XPS survey of Eu/ZIF-67@ZnO QDs of each element

    3.2 Fluorescent Properties of Eu/ZIF-67@ZnO QDs

    The excitation and generation spectra of the prepared ZnO QDs and Eu/ZIF-67@ZnO QDs were measured using a fluorescence spectrometer at room temperature. As shown in Fig.6(a), the optimal emission spectrum, and the optimal excitation spectrum of the ZnO QDs were determined at the excitation wavelength of 356 nm and the emission wavelength of 572 nm, respectively. Fig.6(b) indicates that the optimal emission spectra and the optimal excitation spectra of Eu/ZIF-67@ZnO QDs were determined at 356 nm excitation wavelength and 615 nm emission wavelength, respectively, where the emission peak at 554 nm was attributed to the yellow emission of ZnO QDs and the emission peak at 615 nm was attributed to the characteristic jump of Eu at5D0-7F2. The two emission peaks surface the successful doping of Eu and the successful introduction of ZnO QDs.

    Fig.6 (a)The optimal excitation and emission spectrum of ZnO QDs(inset is a photograph of aqueous ZnO QDs under a 365 nm UV lamp). (b)The optimal excitation and emission spectrum of Eu/ZIF-67@ZnO QDs.

    To investigate the sensitivity of Eu/ZIF-67@ZnO QDs for the detection of TA, the fluorescence response of this fluorescent probe to different concentrations of TA was carried out. Firstly, time and temperature conditions optimization experiments were carried out for the detection of TA. Fig.7(c)-(d) illustrate that, when TA was added, the fluorescence response value of Eu/ZIF-67@ZnO QDs completed the response within 1 min with little subsequent change as the time increased. Then the response of Eu/ZIF-67@ZnO QDs to TA was investigated at different incubation temperatures. The fluorescence response decreases continuously as the temperature increases. Considering the environmental temperature of 20-28 ℃ for TA in beer brewing,25 ℃ was chosen as the real-time detection temperature. Fig.7(a) reveals that the fluorescence intensity of Eu/ZIF-67@ZnO QDs at both quantum dots and rare earth ions gradually decreases with the increase of TA concentration, we selected the fluorescence intensity change at ZnO QDs as the response signal.As shown in Fig.7(b), it can be analyzed that the probe has a good fluorescence response to TA in the concentration range of 0-0.2 μmol/L, and its weakening trend is well in line with the first order exponential decay, and the fluorescence response value(F/F0) shows a good linear relationship with the concentration of TA. A linear fit was performed to obtain a linear regression equation ofy= -0.8471x+0.9699(R2= 0.996). The fit was calculated using the Stern-Volmer equation as follows.

    Fig.7 The fluorescence response values(F/F0) of Eu/ZIF-67@ZnO QDs to TA with respect to temperature(a) and reaction times(b). The fluorescence emission spectrum of Eu/ZIF-67@ZnO QDs after the addition of different concentrations of TA(λex=356 nm)(c) and fluorescence response values(F/F0) versus TA concentration(inset is a linear plot)(d).

    whereCis the concentration of tannic acid (TA),KSVis the Stern-Volmer constant,Fis the fluorescence intensity at ZnO QDs after the addition of TA,andF0is the fluorescence intensity of blank Eu/ZIF-67@ZnO QDs at ZnO QDs. The detection limit(LOD)Dof the probe for TA can be calculated from the 3σequation as 0.029 9 μmol/L:

    σis the standard deviation obtained from 20 consecutive scans of the probe blank solution, andSis the slope of the linear regression equation.

    We compared the Eu/ZIF-67@ZnO constructed in this work with the recent related work. As shown in Tab.2, it is observed that the Eu/ZIF-67@ZnO fluorescent probe prepared in this work possesses better sensitivity and lower detection limit for the detection of TA. From the above results, it is concluded that the Eu/ZIF-67@ZnO QDs probe has good fluorescence sensing properties for TA and can be used as an excellent sensor to measure the concentration level of TA.

    Tab.2 The comparison table of Eu/ZIF-67@ZnO for detecting TA with other works

    To further investigate the specificity and selectivity of Eu/ZIF-67@ZnO QDs probes for the detection of TA, anti-interference tests were performed for common substances, including Mg2+, Na+, Cu2+, Ca2+,Zn2+, Fe2+, Fe3+, Cl-; the common amino acids L-arginine, L-ascorbic acid (AA), L-alanine, glycine, L-aspartic acid, gallic acid, and ellagic acid; sugars such as glucose, sucrose. The concentration of TA was 0.01 μmol/L and the concentration of all other interfering substances was 1 μmol/L. We examined the fluorescence response changes of the Eu/ZIF-67@ZnO QDs probes for these substances. Compared with other anti-interference substances, tannic acid can effectively burst the fluorescence of Eu/ZIF-67@ZnO QDs(Fig.8). These results demonstrate that Eu/ZIF-67@ZnO QDs can be used as a fluorescent sensor with good sensitivity and specificity for the selective detection of TA.

    Fig.8 The fluorescence emission spectrum of Eu/ZIF-67@ZnO QDs after dropwise addition of different antiinterference substances at 356 nm(F is the fluorescence intensity at ZnO QDs after the addition of different anti-interference substances, and F0 is the fluorescence intensity of blank Eu/ZIF-67@ZnO QDs at ZnO QDs).

    3.3 Possible Mechanism of Fluorescence Quenching of Eu/ZIF-67@ZnO QDs

    The UV absorption spectra of Eu/ZIF-67@ZnO QDs and the detection substance tannic acid (TA)were scanned by UV-Vis spectrophotometer. From the absorption spectrum of TA, it can be clearly seen that TA has a broad absorption peak within 200-350 nm, while the fluorescence emission characteristic peak of ZnO QDs of Eu/ZIF-67@ZnO QDs is at 505 nm, and its absorption spectrum does not match with the luminescence spectrum of Eu/ZIF-67@ZnO QDs. According to the above results, we speculate that the fluorescence quenching of ZnO QDs is not caused by TA absorption, which excluding the fluorescence quenching caused by the fluorescence resonance energy transfer. In addition, the position of the UV absorption peak almost did not change before and after adding TA(Fig.9(a)). As illustrated in Fig.9(b), the UV absorption peak of Eu/ZIF-67@ZnO QDs occurs a blue-shift trend with the increase of the concentration of TA. So, it can be inferred that the formation of zincate complexes between TA and quantum dots due to the charge transfer. And it can be attributed to the dynamic collision between quantum dots and TA, resulting in electron transfer between quantum dots and aromatic groups of TA.As shown in Fig.9(c), there is a good overlap between the UV absorption spectra and the fluorescence excitation and emission spectra of Eu/ZIF-67@ZnO QDs, therefore, we speculate that the internal filtration effect is also one of the possible causes of the fluorescence burst. In summary, the fluorescence quenching of Eu/ZIF-67@ZnO QDs by TA may be generated based on the synergistic effects of both charge transfer and internal filtration effects[47].

    Fig.9 (a)UV-Vis spectroscopic of TA, Eu/ZIF-67@ZnO QDs, and Eu/ZIF-67@ZnO QDs +TA. (b)UV-Vis spectroscopic of Eu/ZIF-67@ZnO QDs with different concentrations of TA added. (c)The UV-Vis spectroscopic, excitation and emission spectrum of Eu/ZIF-67@ZnO QDs. (d)The mechanism of tannic acid detection by Eu/ZIF-67@ZnO QDs.

    4 Conclusion

    In summary, a new pleated spherical zeolitelike imidazole ester skeleton material Eu/ZIF-67 was prepared by doping with lanthanide Eu, and aminofunctionalized quantum dots ZnO QDs were successfully loaded on the surface to obtain a fluorescent hybrid material Eu/ZIF-67@ZnO QDs with double emission. It was found that this fluorescent hybrid material could achieve fluorescence detection of TA with good selective specificity and detection sensitivity, and the detection limit was as low as 0.029 9 μmol/L, and the fluorescence response could occur rapidly within 1 min. It provides a new idea for the economical and efficient measurement of TA concentration levels.

    Response Letter is available for this paper at:http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20230048.

    99久久精品一区二区三区| 精品乱码久久久久久99久播| 日本-黄色视频高清免费观看| 成人综合一区亚洲| 99久久精品国产国产毛片| 国产黄a三级三级三级人| 国产精品福利在线免费观看| 久久欧美精品欧美久久欧美| 亚洲欧美成人精品一区二区| 欧美丝袜亚洲另类| 黑人高潮一二区| 高清日韩中文字幕在线| 精品少妇黑人巨大在线播放 | 男插女下体视频免费在线播放| 国产色婷婷99| 欧美性感艳星| 国产精品亚洲一级av第二区| 国产一区二区三区在线臀色熟女| 联通29元200g的流量卡| 黄色视频,在线免费观看| 3wmmmm亚洲av在线观看| 天天躁夜夜躁狠狠久久av| av天堂中文字幕网| 免费一级毛片在线播放高清视频| 久久99热6这里只有精品| 国产黄色小视频在线观看| 天堂动漫精品| 搡老岳熟女国产| 九九在线视频观看精品| 乱码一卡2卡4卡精品| 久久久国产成人精品二区| 99久国产av精品国产电影| 国产精品三级大全| 国产精品福利在线免费观看| 国产午夜福利久久久久久| 熟妇人妻久久中文字幕3abv| 九九爱精品视频在线观看| 日韩 亚洲 欧美在线| 欧美激情在线99| 久久精品影院6| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品av视频在线免费观看| 一区二区三区高清视频在线| 亚洲国产日韩欧美精品在线观看| 成年av动漫网址| 国产精品一区www在线观看| 久久久久国内视频| 成人午夜高清在线视频| 听说在线观看完整版免费高清| 久久中文看片网| 欧美日韩精品成人综合77777| 人人妻人人澡欧美一区二区| 亚洲欧美精品自产自拍| 变态另类成人亚洲欧美熟女| 国产成人freesex在线 | 亚洲av.av天堂| 日韩欧美精品v在线| 网址你懂的国产日韩在线| 看黄色毛片网站| 内地一区二区视频在线| 国产麻豆成人av免费视频| videossex国产| 在线观看美女被高潮喷水网站| 日韩三级伦理在线观看| 亚洲精品一区av在线观看| 三级国产精品欧美在线观看| 免费av不卡在线播放| 欧美+日韩+精品| 欧美极品一区二区三区四区| 日韩 亚洲 欧美在线| 卡戴珊不雅视频在线播放| 卡戴珊不雅视频在线播放| 校园人妻丝袜中文字幕| 噜噜噜噜噜久久久久久91| 97超视频在线观看视频| 一本一本综合久久| 韩国av在线不卡| 美女cb高潮喷水在线观看| 久久久久九九精品影院| 两个人视频免费观看高清| 91久久精品国产一区二区三区| 久久久久久久久久黄片| 高清日韩中文字幕在线| 国产一区二区三区av在线 | 国产又黄又爽又无遮挡在线| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩高清专用| 日韩高清综合在线| videossex国产| av卡一久久| 日本a在线网址| 黄色视频,在线免费观看| 一级毛片电影观看 | 秋霞在线观看毛片| 国产成人影院久久av| 亚洲精品影视一区二区三区av| 天天躁日日操中文字幕| 免费av毛片视频| 看非洲黑人一级黄片| 日韩精品有码人妻一区| 国产爱豆传媒在线观看| 国产午夜福利久久久久久| 久久久久免费精品人妻一区二区| 欧美潮喷喷水| 日本在线视频免费播放| av卡一久久| 色播亚洲综合网| 国产一级毛片七仙女欲春2| 成人欧美大片| 亚洲av免费高清在线观看| 18禁在线无遮挡免费观看视频 | 久久久久精品国产欧美久久久| 国产视频内射| 久久久色成人| 欧美zozozo另类| 亚洲国产欧洲综合997久久,| 国产 一区精品| 在线观看av片永久免费下载| 不卡视频在线观看欧美| 天堂av国产一区二区熟女人妻| 亚洲av不卡在线观看| 精品人妻熟女av久视频| 美女cb高潮喷水在线观看| 成人漫画全彩无遮挡| 亚洲自偷自拍三级| 久久精品久久久久久噜噜老黄 | 嫩草影院入口| 欧美性感艳星| 露出奶头的视频| 波多野结衣高清作品| 久久精品国产清高在天天线| 美女黄网站色视频| 男人舔女人下体高潮全视频| 人人妻人人澡欧美一区二区| 亚洲欧美精品自产自拍| 国产精品不卡视频一区二区| 精品久久久噜噜| 久久久a久久爽久久v久久| 色av中文字幕| 人妻少妇偷人精品九色| 好男人在线观看高清免费视频| 搡老妇女老女人老熟妇| 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品亚洲av| 搡女人真爽免费视频火全软件 | 九九热线精品视视频播放| 3wmmmm亚洲av在线观看| 亚洲av中文av极速乱| 亚洲国产高清在线一区二区三| 日本成人三级电影网站| 特级一级黄色大片| 精品久久久久久久人妻蜜臀av| 黄色欧美视频在线观看| 免费黄网站久久成人精品| 热99在线观看视频| 国产黄a三级三级三级人| 国产伦精品一区二区三区视频9| 国产精品福利在线免费观看| 国产伦精品一区二区三区四那| 国产在视频线在精品| 男女下面进入的视频免费午夜| 精品一区二区三区人妻视频| 亚洲最大成人中文| 麻豆一二三区av精品| 亚洲第一电影网av| 女人被狂操c到高潮| videossex国产| 亚洲av第一区精品v没综合| 色吧在线观看| 亚洲国产精品sss在线观看| 亚洲一区二区三区色噜噜| 国产午夜精品论理片| 国产高清三级在线| 国产91av在线免费观看| 免费看av在线观看网站| 熟女人妻精品中文字幕| 成年女人毛片免费观看观看9| 男人的好看免费观看在线视频| 亚洲av一区综合| 国产精品人妻久久久影院| 午夜久久久久精精品| 少妇熟女欧美另类| 夜夜爽天天搞| 波多野结衣高清作品| 草草在线视频免费看| 色哟哟哟哟哟哟| 成人高潮视频无遮挡免费网站| 午夜日韩欧美国产| 99热这里只有是精品50| 特大巨黑吊av在线直播| 毛片一级片免费看久久久久| 日本精品一区二区三区蜜桃| 搡老岳熟女国产| 一进一出抽搐gif免费好疼| 国产精品一区二区三区四区免费观看 | 极品教师在线视频| 亚洲av不卡在线观看| 蜜桃久久精品国产亚洲av| 精品日产1卡2卡| 又爽又黄a免费视频| 亚洲在线观看片| 啦啦啦韩国在线观看视频| 18+在线观看网站| 色综合色国产| 网址你懂的国产日韩在线| 国产午夜福利久久久久久| 蜜臀久久99精品久久宅男| 五月伊人婷婷丁香| 日本精品一区二区三区蜜桃| 成人漫画全彩无遮挡| 午夜亚洲福利在线播放| 久久6这里有精品| 男插女下体视频免费在线播放| 男人和女人高潮做爰伦理| 免费看av在线观看网站| 男女那种视频在线观看| 亚洲av成人精品一区久久| 91狼人影院| 国产高清视频在线播放一区| 搡老岳熟女国产| 日韩三级伦理在线观看| 露出奶头的视频| 给我免费播放毛片高清在线观看| 美女高潮的动态| 成年av动漫网址| 美女被艹到高潮喷水动态| 少妇高潮的动态图| 国产精品一区二区性色av| 亚洲成人中文字幕在线播放| 色吧在线观看| 免费大片18禁| 最近在线观看免费完整版| 人妻久久中文字幕网| 亚洲精华国产精华液的使用体验 | 亚洲中文日韩欧美视频| 久久久久久久久久成人| 亚洲第一区二区三区不卡| 久久人人精品亚洲av| 久久久久久久久大av| 久久久精品欧美日韩精品| 久久久久国内视频| 可以在线观看的亚洲视频| 国产精品一二三区在线看| 欧美高清性xxxxhd video| 久久久久免费精品人妻一区二区| 大香蕉久久网| 亚洲成人久久性| 亚洲美女视频黄频| 老熟妇仑乱视频hdxx| 亚洲自拍偷在线| 九九久久精品国产亚洲av麻豆| 少妇的逼好多水| 国产精品精品国产色婷婷| 99riav亚洲国产免费| 国产中年淑女户外野战色| 国产69精品久久久久777片| 乱码一卡2卡4卡精品| 美女被艹到高潮喷水动态| 国产毛片a区久久久久| 夜夜看夜夜爽夜夜摸| 日产精品乱码卡一卡2卡三| avwww免费| 麻豆国产97在线/欧美| 少妇裸体淫交视频免费看高清| 午夜免费激情av| 午夜激情福利司机影院| 久久久a久久爽久久v久久| 午夜视频国产福利| 国产高清不卡午夜福利| 午夜福利在线在线| 草草在线视频免费看| 国国产精品蜜臀av免费| 国产精品久久久久久av不卡| 一本一本综合久久| 色av中文字幕| 亚洲国产精品合色在线| 男人舔奶头视频| 亚洲美女视频黄频| 日韩成人av中文字幕在线观看 | 人人妻人人澡人人爽人人夜夜 | 最新中文字幕久久久久| 久久久久久久久久黄片| 亚洲熟妇熟女久久| 综合色丁香网| 精品一区二区三区视频在线| 日本在线视频免费播放| 搡老熟女国产l中国老女人| 一个人看的www免费观看视频| 亚洲精品亚洲一区二区| 色吧在线观看| 99久久无色码亚洲精品果冻| 国产美女午夜福利| 又黄又爽又刺激的免费视频.| 欧美不卡视频在线免费观看| 1000部很黄的大片| 免费电影在线观看免费观看| 美女xxoo啪啪120秒动态图| 欧美丝袜亚洲另类| 欧美潮喷喷水| 两个人的视频大全免费| 五月玫瑰六月丁香| 性色avwww在线观看| 蜜桃亚洲精品一区二区三区| 久久亚洲国产成人精品v| 久久人人精品亚洲av| 国产精品精品国产色婷婷| 可以在线观看的亚洲视频| 亚洲欧美日韩高清在线视频| 九九在线视频观看精品| 草草在线视频免费看| 97热精品久久久久久| 91精品国产九色| 波多野结衣巨乳人妻| 亚洲色图av天堂| 久久婷婷人人爽人人干人人爱| 国产一区二区三区在线臀色熟女| 国产精品嫩草影院av在线观看| 成人鲁丝片一二三区免费| 麻豆一二三区av精品| 久久热精品热| 男人舔女人下体高潮全视频| 日韩成人av中文字幕在线观看 | 人妻夜夜爽99麻豆av| 国产成年人精品一区二区| av卡一久久| 亚洲图色成人| 国产精品亚洲一级av第二区| 日本色播在线视频| 在线观看美女被高潮喷水网站| 麻豆av噜噜一区二区三区| 91狼人影院| 午夜福利18| 国产国拍精品亚洲av在线观看| 欧美xxxx黑人xx丫x性爽| 色尼玛亚洲综合影院| 亚洲成人av在线免费| 久久国产乱子免费精品| 亚洲熟妇熟女久久| 亚洲国产精品成人久久小说 | 亚洲在线观看片| 国产精品亚洲一级av第二区| 男女做爰动态图高潮gif福利片| 综合色丁香网| 久久人人爽人人片av| 国产伦在线观看视频一区| 日本黄大片高清| 亚洲自偷自拍三级| 国模一区二区三区四区视频| 麻豆乱淫一区二区| 真人做人爱边吃奶动态| 人妻夜夜爽99麻豆av| 精品久久久久久久久av| 乱系列少妇在线播放| 午夜精品一区二区三区免费看| 日本-黄色视频高清免费观看| 久久久久久久久久黄片| 午夜福利视频1000在线观看| 精品人妻一区二区三区麻豆 | 在线观看一区二区三区| 国产高清有码在线观看视频| 日本撒尿小便嘘嘘汇集6| 日韩一区二区视频免费看| 免费观看在线日韩| 免费电影在线观看免费观看| 国产精品久久视频播放| 国产久久久一区二区三区| 亚洲av二区三区四区| 精品国产三级普通话版| 性插视频无遮挡在线免费观看| 久久久久性生活片| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品v在线| 69av精品久久久久久| 女的被弄到高潮叫床怎么办| 成年版毛片免费区| 男人舔女人下体高潮全视频| 69av精品久久久久久| 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 久久久久久久久大av| 日本一二三区视频观看| 国产成人a区在线观看| 你懂的网址亚洲精品在线观看 | 久久久欧美国产精品| 男人舔奶头视频| av在线天堂中文字幕| 欧美成人精品欧美一级黄| 亚洲国产精品合色在线| 国产蜜桃级精品一区二区三区| 在现免费观看毛片| 看片在线看免费视频| 亚洲精品日韩av片在线观看| 一边摸一边抽搐一进一小说| 淫妇啪啪啪对白视频| 亚洲欧美精品自产自拍| 国产一区亚洲一区在线观看| 可以在线观看的亚洲视频| 久久久久精品国产欧美久久久| 伊人久久精品亚洲午夜| 精品久久久久久久久亚洲| 18禁在线无遮挡免费观看视频 | 色尼玛亚洲综合影院| 免费看光身美女| 看非洲黑人一级黄片| 中国美女看黄片| 99精品在免费线老司机午夜| 亚洲精品亚洲一区二区| 我要搜黄色片| 久久精品国产亚洲av天美| 亚洲欧美精品自产自拍| 床上黄色一级片| 最近的中文字幕免费完整| 亚洲无线观看免费| 搡女人真爽免费视频火全软件 | 最近最新中文字幕大全电影3| 日本成人三级电影网站| 亚州av有码| 一区二区三区免费毛片| 简卡轻食公司| 亚洲精华国产精华液的使用体验 | 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩无卡精品| 久久精品影院6| 两个人视频免费观看高清| 蜜桃久久精品国产亚洲av| 身体一侧抽搐| 99九九线精品视频在线观看视频| 女的被弄到高潮叫床怎么办| 高清午夜精品一区二区三区 | 国产一区二区激情短视频| 韩国av在线不卡| 国产精品国产高清国产av| 免费av毛片视频| 午夜激情欧美在线| 久久久久国产精品人妻aⅴ院| 日韩制服骚丝袜av| 亚洲成人久久爱视频| 日本熟妇午夜| 色吧在线观看| 一级黄片播放器| .国产精品久久| 亚洲内射少妇av| 日本黄色片子视频| 婷婷精品国产亚洲av| 国产精品人妻久久久影院| 日本撒尿小便嘘嘘汇集6| 婷婷亚洲欧美| 天堂√8在线中文| 老司机福利观看| 精品一区二区三区人妻视频| 国产精品精品国产色婷婷| 国产乱人偷精品视频| 此物有八面人人有两片| 日日摸夜夜添夜夜爱| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡欧美一区二区| 特大巨黑吊av在线直播| 岛国在线免费视频观看| 国内久久婷婷六月综合欲色啪| 日本黄大片高清| 国产精品女同一区二区软件| 99热这里只有精品一区| av.在线天堂| 国产一区二区亚洲精品在线观看| 亚洲成a人片在线一区二区| 国产黄片美女视频| 亚洲av成人av| 麻豆av噜噜一区二区三区| 一级黄色大片毛片| 亚洲av.av天堂| 国产中年淑女户外野战色| 尾随美女入室| 日韩精品有码人妻一区| 亚洲av成人精品一区久久| 看十八女毛片水多多多| 国产精品一区二区三区四区久久| 日本撒尿小便嘘嘘汇集6| av福利片在线观看| 国产精品三级大全| 欧美成人精品欧美一级黄| ponron亚洲| 日日摸夜夜添夜夜爱| 欧美一级a爱片免费观看看| 日韩精品青青久久久久久| 欧美zozozo另类| 啦啦啦观看免费观看视频高清| 久久人人精品亚洲av| 夜夜爽天天搞| 国产精品人妻久久久久久| 婷婷六月久久综合丁香| 亚洲av免费高清在线观看| 天天一区二区日本电影三级| 久久久久久久久久黄片| 免费看日本二区| 亚洲精品亚洲一区二区| 亚洲高清免费不卡视频| 看黄色毛片网站| 97超视频在线观看视频| 极品教师在线视频| 成人毛片a级毛片在线播放| 亚洲婷婷狠狠爱综合网| 成人精品一区二区免费| 国产精品久久久久久精品电影| 麻豆精品久久久久久蜜桃| 精品一区二区三区视频在线观看免费| 久久综合国产亚洲精品| 久久久精品大字幕| 一a级毛片在线观看| 午夜激情福利司机影院| 99视频精品全部免费 在线| 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| 草草在线视频免费看| 免费在线观看成人毛片| 99视频精品全部免费 在线| av视频在线观看入口| 成人精品一区二区免费| 国产精品,欧美在线| 精品久久久久久成人av| 国产精品综合久久久久久久免费| 露出奶头的视频| 国产精品一区二区免费欧美| 一区福利在线观看| 别揉我奶头~嗯~啊~动态视频| 成人亚洲欧美一区二区av| 国产成人福利小说| 精品午夜福利视频在线观看一区| 日产精品乱码卡一卡2卡三| 简卡轻食公司| 欧美日韩综合久久久久久| 久久精品久久精品一区二区三区| 亚洲av成人精品一区久久| 亚洲美女视频黄频| 韩国av在线不卡| 日本黄大片高清| 最后的刺客免费高清国语| 大香蕉久久网| 91久久精品国产一区二区三区| 国产精品麻豆人妻色哟哟久久| 日韩精品有码人妻一区| 妹子高潮喷水视频| 最新的欧美精品一区二区| 中文字幕精品免费在线观看视频 | 在线观看美女被高潮喷水网站| 日本91视频免费播放| 国产伦精品一区二区三区视频9| 超碰97精品在线观看| 91午夜精品亚洲一区二区三区| 久久人人爽av亚洲精品天堂| h视频一区二区三区| 久久久久视频综合| 亚洲精品乱码久久久v下载方式| 哪个播放器可以免费观看大片| 97精品久久久久久久久久精品| 我的老师免费观看完整版| 99久久精品国产国产毛片| 女性生殖器流出的白浆| 久久综合国产亚洲精品| 黄色欧美视频在线观看| 日韩精品有码人妻一区| 国产无遮挡羞羞视频在线观看| 天天躁夜夜躁狠狠久久av| 五月天丁香电影| 一级毛片黄色毛片免费观看视频| 卡戴珊不雅视频在线播放| 国产成人freesex在线| 91久久精品国产一区二区三区| 久久狼人影院| 97超视频在线观看视频| 新久久久久国产一级毛片| 极品人妻少妇av视频| 中文字幕免费在线视频6| 国产精品偷伦视频观看了| 人妻系列 视频| 国产黄色免费在线视频| 曰老女人黄片| 肉色欧美久久久久久久蜜桃| 大片免费播放器 马上看| 欧美激情极品国产一区二区三区 | av网站免费在线观看视频| 热99国产精品久久久久久7| 全区人妻精品视频| 久久精品久久精品一区二区三区| 伦精品一区二区三区| 国产亚洲最大av| 成人综合一区亚洲| 黑人高潮一二区| 亚洲av成人精品一区久久| 最近最新中文字幕免费大全7| 丝瓜视频免费看黄片| 精品国产一区二区久久| 精品99又大又爽又粗少妇毛片| av播播在线观看一区| 三级国产精品片| 成人毛片a级毛片在线播放| 在线 av 中文字幕| 亚洲欧美精品自产自拍| 亚洲av免费高清在线观看| 亚洲欧美一区二区三区黑人 | 热re99久久精品国产66热6| 成人毛片60女人毛片免费| 女性被躁到高潮视频| .国产精品久久| 国模一区二区三区四区视频| 色94色欧美一区二区| 精品卡一卡二卡四卡免费| 黄色一级大片看看| av在线播放精品| 大香蕉久久网| 亚洲婷婷狠狠爱综合网| 老司机影院毛片| 男男h啪啪无遮挡| 国产成人精品福利久久| 亚洲欧美日韩卡通动漫| 十八禁网站网址无遮挡 |