• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE COUNTER-JET FORMATION IN AN AIR BUBBLE INDUCED BY THE IMPACT OF SHOCK WAVES*

    2011-06-27 05:54:08BAILixin

    BAI Li-xin

    Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China, E-mail: lixin.bai@gmail.com

    XU Wei-lin

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

    LI Chao

    Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

    GAO Yan-dong

    School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China

    THE COUNTER-JET FORMATION IN AN AIR BUBBLE INDUCED BY THE IMPACT OF SHOCK WAVES*

    BAI Li-xin

    Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China, E-mail: lixin.bai@gmail.com

    XU Wei-lin

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

    LI Chao

    Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

    GAO Yan-dong

    School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China

    The interaction of an air bubble (isolated in water or attached to a boundary) with shock waves induced by electric sparks is investigated by high-speed photography. The interaction is closely related to the counter-jet induced by the impact of shock waves. The formation of a counter-jet in an air bubble is related to the liquid jet formed in the same air bubble, but themechanism is different with that of the counter-jet formation in a collapsing cavitation bubble. The formation of a counter-jet in an air bubble is related to discharge energy, air bubble size and radius of shock wave. W ith a given energy of the spark discharge, the formation of a counter-jet in an air bubble is related to δ/ε (the ratio of the dimensionless bubble-bubble distance to the dimensionless air bubble radius). The counter-jet w ill only be produced when δ/ε is in the range of 1.2-2.2. The counter-jet in an air bubble is of an important nuclei-generatingmechanism.

    cavitation bubble, shock wave, counter-jet, high-speed photography

    Introduction

    Inmost practical situations, cavitation bubbles do not occur in isolation but coexist with cavitation bubbles or air bubbles in large numbers[1,2]. These cavitation bubbles grow and collapse continuously. The shock waves released by the cavitation bubblesmay interact with boundaries, air bubbles or other cavitation bubbles[3,4]. The interaction of shock waves with air bubbles was investigated as issues in the area ofmedical treatment and hydrodynamics. Brujan[5,6]measured the shock wave emission after the optical breakdown in water experimentally. Philipp et al.[7]investigated the shock wave-induced collapse and jet formation of pre-existing air bubbles using high-speed photography. Kodama and Tom ita[8]investigated the interaction of an air bubble attached to a gelatin surface with a shock wave. The interaction of an air bubble with a shock wave produces a liquid jet, with a speed of tens ofm/s, towards the gelatin surface. Ding and Gracewski[9]and Jamaluddin et al.[10]simulated the air bubble responses to shock waves. It is found that for a weak shock (P<30 MPa ), the air bubble w ill collapse spherically without jet formation, for a strong shock (500 MPa

    Fig.1 Schematic diagram of the experimental setup

    The abovementioned investigations focus on the liquid jet formation and the damage effect on the boundary, but the subsequent dynamic process of bubbles after the liquid jet formation is ignored. In fact, the bubbles w ill not break into pieces immediately. Kodama and Tomita[8]found a counter-jet in the opposite direction to themain jet in the experiment of the interaction of an air bubble with a shock wave. The counter-jet in an air bubble induced by the interaction of a shock wave is sim ilar to the counter-jet in a collapsing cavitation bubble near a solid boundary[17,18]. Kodama suggested that the bubble interacting with the shock wave expands after the rebound, while the liquid jet penetrating into the gelatin returns back to the upper stream to produce the counter-jet.

    In this article, an experimental investigation is carried out on the counter-jet formation in an air bubble (isolated in water or attached to a boundary) with shock waves induced by electric sparks bymeans of high-speed photography. Themechanism and the conditions of the counter-jet formation are investigated in detail. It is found that the counter-jet is not produced by the bounce of the penetrating liquid jet on the boundary as Kodama suggested, and the counter-jet is also different from the counter-jet in a collapsing cavitation bubble near a solid boundary. The counter-jet in an air bubble is of an important nucleigeneratingmechanism, in which the air bubble is split into smaller bubbles (nuclei) even if the air bubble is already as small as the cavitation nuclei and can not be split by a turbulent fluctuation. The research w ill provide some food of thought in the utilization of the cavitation phenomena and in the prevention of the cavitation erosion.

    1. Experimental facilities

    The experimental setup consists of a cavitation bubble generation system, imaging and illumination devices, and a device to adjust the relative position of air bubbles and electrodes. Cavitation bubbles are generated in a glass chamber (170mm3× 50mm3× 90mm3, (length × w idth × height)) filled with deionized water (at room temperature, T=291K , under atmospheric pressure, P =101.5 kPa ) by using highvoltage spark discharge.

    Air bubbles are carefully positioned on the surface of amovable waxed thread bymeans of a syringe. Because of the small size of air bubbles (with diameters generally smaller than 5mm), the deformation is small. The relative position of the air bubble and the cavitation bubble can be adjusted arbitrarily.

    Themovements of the cavitation bubble and the air bubble are recorded with a CMOS HG-LE highspeed camera (Redlake MASD Inc. USA) equipped with a long distancemicroscope (Zoom 6000, Navitar, USA). The pictures are taken in a framing rate of 10 000 fps (256 × 256 pixels and 12 μm pixel size) or 3 000 fps (512 × 512 pixels) and a exposure time of 28 μs-42 μs. The frames are illum inated with a cold light resource (150 W) and fibre bundle. A schematic diagram depicting the experimental arrangement used for investigating the interaction of an air bubble and shock waves is shown in Fig.1.

    2. The counter-jet in an isolated bubble

    The formation of the counter-jet induced by the interaction of a shock wave is shown in Fig.2. The shock waves are induced by electric sparks. When a cavitation bubble is generated, a shock wave termedthe primary shock wave is generated. When a cavitation bubble rebounds, a secondary shock wave is produced. Under the action of the primary shock wave, the bubble wall near the electrode shrinks rapidly and the bubble wall on the other side stays almost unchanged (Fig.2(a2) and Fig.7(a2)). The air bubble as a whole shrinks asymmetrically to produce a liquid jet on the side of the bubble in the direction of the shock wave propagation. The jet penetrates into the bubble and goes out from the far surface. When the cavitation bubble begins to collapse, the air bubble rebounds with an enlarged size (Fig.2(a3)). The secondary shock wave is produced when the cavitation bubble collapses. The air bubble splits into two air bubbles under the impact of the secondary shock wave. The air bubble near the electrode is a crater-shaped bubble (Fig.2(a4) and (Fig.4(b1))), which becomes an air jet with a speed as high as 5m/s within 0.6ms. The Fig.2(a) is sim ilar to Fig.2(b) except that the cratershaped bubble becomes a cone-shaped bubble in Fig.2(b4).

    Fig.2 Counter-jet formation induced by the interaction of a shock wave (Frame rate 3 000 fps. Exposure time 42 μs)

    Fig.3 Counter-jet formation induced by the interaction of a shock wave (Frame rate 10 000 fps. Exposure time 42 μs)

    In order to investigate in detail the formation ofthe crater-shaped bubble and the cone-shaped bubble, high-speed photographs (with frame rate of 10 000 fps) covering the whole period of the bubble-shock wave interaction are taken (as shown in Figs.3(a), 3(b)). Because of the high framing rate, the size of the pictures is small, and only part of the bubble can be seen in the pictures. The experiment condition and bubble dynamics as shown in Fig.3 are the same as those in Fig.2, so we can refer to these figures to get a full view. The first collapse occurs in Fig.3(a7) and the second collapse occurs in Fig.3(a9) and Fig.2(a4). The air bubble deformation in Fig.2(a4) is due to the secondary shock wave induced by the cavitation bubble collapse (as shown in Figs.3(a7), 3(a8)). The shape of the split bubble near the electrode in Fig.2(a4) is the same as what shown in Fig.3(a10). The coneshaped bubble grows up towards the electrode with its bubble wall on the left side remaining almost unchanged. It grows up into a crater-shaped bubble and then a tower-shaped bubble (as shown in Fig.2(a5) and Fig3(a12)) and then breaks up with a small bubble being ejected (as shown in Fig.2(a6) and Figs.3(a13), 3(a14)). The air bubble deformation in Fig.3(b) is the same as that in Fig.3(a). The cone-shaped bubble (as shown in Fig.3(b8)) becomes a tower-shaped bubble (as shown in Fig.3(b9)) after 100 μs -200 μs.

    Fig.4 Details of the counter-jet formation

    The pictures in Fig.2 and Fig.3 are small, where details can not be seen, so Fig.3(b7) and Fig3(b8) aremagnified as Fig.4(a1) and Fig.4(a2), and Fig.2(a4) and Fig.2(a5) aremagnified as Fig.4(b1) and Fig.4(b2). Figure 4(a1) shows that under the impact of the secondary shock wave, the air bubble tends to change the shape and becomes a cone-shaped bubble right in the root of the liquid jet. Then the second sock wave hits the air bubble, the bubble begins to contract. Because of the cone-shaped liquid jet in the air bubble, the air bubble contracts along the liquid jet and becomes a coreshaped bubble, whichmay have a liquid core. The air bubble collapses rapidly, and the fluid outside the bubblemoves towards the bubble and collides at the cone tip with a high speed. The cone tip becomes a high-pressure region (as shown in Fig.4(a2)). When the shock wave passes across the bubble and the bubble begins to rebound, the high pressure at the cone tip w ill push the cone-shaped bubble towards the electrode to become a crater-shaped bubble (as shown in Fig.4(b1)) and then a tower-shaped bubble (as shown in Fig.4(b2)).

    Figure 4(b1) shows that the left side of the cratershaped bubble is flat with sharp edges, however, the right side is concave with blur edges, whichmeans that the two sides of the cone-shaped bubble have been collided already. W ith the same exposure time,more blur edgesmeans higher speed of the bubble wall. The left side of the crater-shaped bubble stays unchanged and the right sidemoves rapidly in the negative direction of the shock wave. The counter-jet is thus formed. By the way, the tower-shaped bubble in Fig.4(b2) consistsmaybe of two parts: a vortex ring bubble on the left and a tower-shaped bubble with a liquid jet inside on the right.

    Figure 5 shows schematic diagrams of the air bubble deformation impacted by shock waves. The primary shock wave is induced by the electric spark in the early stage of the cavitation bubble generation. The primary shock wave hits the air bubble. The spherical air bubble shrinks asymmetrically to produce a liquid jet, formed by one side of the bubble in the direction of the shock wave propagation (as shown in Fig.5(b)). The jet penetrates the cavity and goes out from the far surface. When the shock wave passes across the bubble, the bubble rebounds in an enlarged size (as shown in Fig.5(c)). The secondary shock wave hits the bubble and the bubble shrinks again. Because of the cone-shaped liquid jet in the bubble, the dynam ics of the bubble is different from that of a spherical bubble. The air bubble contracts along the liquid jet to become a cone-shape small bubble (as shown in Figs.5(d), 5(e))). The air bubble collapses rapidly, and the fluid outside of the bubblemoves towards the bubble and collides at the cone tip at a high speed. The cone tip becomes a high-pressure region. When the secondary shock wave passes across the bubble and the bubble begins to rebound, the high pressure at the cone tip pushes the cone-shaped bubble towards the negative direction of the shock wave propagation (as shown in Fig.5(e)) to become a cratershaped bubble (as shown in Fig.5(f)) and then a tower-shaped bubble (as shown in Fig.5(g)). Finally the bubble breaks up with a small bubble, which is ejected (as shown in Fig.5(h)).

    Fig.5 Conceptual illustration of counter-jet formation induced by shock wave

    Fig.6 Deformation of an air bubble attached to a boundary impacted by a shock wave (Frame rate 3 000 fps. Exposure time 28 μs)

    Fig.7 The critical distance for the counter-jet formation (Frame rate 10 000 fps. Exposure time 42 μs)

    3. The counter-jet in a bubble attached to a boundary

    The deformation of an air bubble attached to a boundary impacted by a shock wave is similar to that of an isolated bubble. But the boundarymakes a little difference. The experiment condition and the bubble dynam ics in Fig.6(a) are the same as those in Fig.6(b), but the startingmoment of taking photos is different with photos in Fig.6(b) being taken earlier in time so we can cross-reference to get a full view. The primary shock wave is induced by the electric spark. It hits the air bubble, which contracts without liquid jet inside (as shown in Fig.6(b2)). The liquid jet is formed when the cavitation bubble begins to collapse and the air bubble begins to grow up (as shown in Fig.6(a2)), which is different from the air bubble in Fig.3 and Fig.5, whose liquid jet is formed in the early stage of cavitation bubble generation. This is because the air bubbles have different compressibility. Hit by the same shock wave, a big air bubble w ill deform slightly and slow ly because of the cushion effect as compared with a small air bubble. When the volume of the air bubble is infinitely large, i.e. it becomes a cavitation bubble, to grow and collapse near the free surface of liquid, the liquid jet is also formed in the collapse stage of the cavitation bubble[19]. The liquid jetmoves towards the boundary and forms a full developed liquid jet (as shown in Fig.6(b3)). The secondary shock wave is induced when the cavitation bubblecollapses. Under the impact of the secondary shock wave, the air bubble begins to contract to form a convex shape at the root of the liquid jet (as shown in Fig.6(a3) and Fig.6(b4)), as is comparable with the deformation of the air bubble in Fig.5(d). The shock wave is weak for the air bubble, that is why a coneshaped bubble with a sharp edge is not formed. The air bubble begins to rebound after the shock wave passes away (as shown in Fig.6(a4) and Fig.6(b5)). A smaller convex bubble is formed on the surface of the former convex bubble under the inertia and due to the oscillations of pressure (as shown in Fig.6(a5) and Fig.6(b6)). Figures 6(b6), 6(b9) show the process of ejecting a small bubble.

    4. The form ing conditions of counter-jet

    The counter-jet as a special physical phenomenon was largely neglected in consideration. Maybe the counter-jet was not observed in experiments inmany studies. The formation of a counter-jet requires some necessary conditions. The shock-wave pressure impulse and the compressibility of the air bubble influence the formation of the counter-jet. The formation of the counter-jet is related to the diameter of the air bubble with a given shock wave. A counter-jet w ill not be formed if the air bubble is too large. For example, when the volume of the air bubble is infinitely large, as a cavitation bubble grows and collapses near the free surface of liquid, no counter-jet w ill be formed. On other hand a counter-jet w ill not be formed if the air bubble is too small. For example, the air bubble is too small relative to the pressure impulse of the shock wave in Philipp’s experiment[3]and is too large relative to the pressure impulse of the shock wave in Kodama’s experiment[3]. Figure 7 shows the critical distance for the counter-jet formation when the diameter of the air bubble and the energy of the spark discharge are constant. The distance between the electrode and the bubble wall is 3mm in Fig.7(a) and 5mm in Fig.7(b). The distance is a little too large in Fig.7(a) and a little too small in Fig.7(b) to form a counter-jet. A embryonic form of cone-shape is formed in Fig.7(a7) and Fig.7(b7) like in Fig.5(d), but no counter-jet is formed.

    If the formation condition for the cavitatoin bubble is the same, i.e., the energy of the spark discharge is constant, the formation of the counter-jet is related to the radius of the shock wave1r (the distance between the electrode and the bubble wall) and the radius of the air bubble r2. The ratio of1r to r2defines the condition of the counter-jet formation. W ith dimensionless parameters as often used in describing the relative position of cavitation bubbles[20], a dimensionless formula for the condition of the counter-jet formation is,

    where R is themaximum cavitation bubble radius, δ the dimensionless bubble-bubble distance, and ε the dimensionless air bubble radius.

    More than seventy experiments were carried out to determine the conditions of the counter-jet formation. The Fig.8 shows that a liquid jet w ill be formed in an air bubble impact by a shock wave when δ/ ε<6, and no liquid jet is formed when δ/ε>8. A counter-jet w ill only be produced when a liquid is formed and δ/ε is in the range of 1.2-2.2.

    Fig.8 Conditions of counter-jet formation

    5. Conclusion

    The interaction of an air bubble (isolated in water or attached to a boundary) with shock waves induced by electric sparks is investigated by high-speed photography. These events are related to the counter-jet induced by the impact of shock waves. A counter-jet w ill only be produced when a liquid-jet is present, but themechanism is different from that of a counter-jet formation in a collapsing cavitation bubble. When a cavitation bubble is generated, the primary shock wave impacts the air bubble surface, which contracts and yields a liquid jet inside the bubble. When the cavitation bubble collapses, the secondary shock wave impacts the air bubble, which contracts again. Because of the influence of the cone-shaped liquid jet inside the air bubble, the deformation process is different from a spherical air bubble. The air bubble tends to attach to the liquid jet during the contraction. Because of the liquid jet, a cone-shaped small air bubble is produced with another big air bubble behind it. A high pressure is produced in the conic node. The coneshaped small air bubble is pushed in the opposite direction of the shock wave propagation and a counter-jet is produced. The formation of a counter-jet in an air bubble is related to discharge energy, air bubble size and radius of shock wave. W ith a given energy of the spark discharge, the formation of a counter-jet in anair bubble is related to δ/ε (the ratio of the dimensionless bubble-bubble distance to the dimensionless air bubble radius). The counter-jet w ill only be produced when δ/ε is in the range of 1.2-2.2. The counter-jet in an air bubble is of an important nucleigeneratingmechanism. The studymay help the utilizetion and prevention of cavitation.

    [1] BAI Li-xin, Xu Wei-lin and ZHANG Yi-chi et al. Experimental investigations on the collapse of cavity cluster in high power ultrasound fields[C]. Proceedings of IEEE Ultrasonics Sym posium. Beijing, 2008, 942-945.

    [2] YING Chong-fu, BAI Li-xin and LI Chao et al. Cavitation field from a horn–A newmodel[J]. Science in China Series G: Physics, Mechanics and Astronom y, 2010, 53(12): 1-5.

    [3] BAI Li-xin, XU Wei-lin and TIAN Zhong et al. A high-speed photographic study of ultrasonic cavitation near rigid boundary[J]. Journal of Hydrodynam ics, 2008, 20(5): 637-644.

    [4] BAI Li-xin, XU Wei-lin. Spatial distribution of two splitted bubbles produced during the collapse in an ultrasonic field[C]. Proceedings of 2010 Chinese Conference on Acoustics. Harbin, 2010(in Chinese).

    [5] BRUJAN E. A., VOGEL A. Stress wave em ission and cavitation bubble dynam ics by nanosecond optical breakdown in a tissue phantom[J]. Journal of Fluid Mechanics, 2006, 558: 281-308.

    [6] BRUJAN E. A. Shock wave emission from laserinduced cavitation bubbles in polymer solutions[J]. Ultrasonics, 2008, 48(5): 423-426.

    [7] PHILLIP A., DELIUS E. and SCHEFFCZYK C. et al. Interaction of lithotripter-generated shock waves with air bubbles[J]. Journal of the Acoustical Society of America, 1993, 93(5): 2496-2509.

    [8] KODAMA T., TOMITA Y. Cavitation bubble behavior and bubble-shock wave interaction near a gelatin surface as a study of in vivo bubble dynam ics[J]. Applied Physics B, 2000, 70(1): 139-149.

    [9] DING Z., GRACEWSKI S. M. The behavior of a gas cavity impacted by a weak or strong shock wave[J]. Journal of Fluid Mechanics, 1996, 309: 183-210.

    [10] JAMALUDDIN A. R., BALL G. J. and LEIGHTON T. J. Free-lagrange simulations of shock/bubble interaction in shock wave lithotripsy[C]. The 24th International Sym posium on Shock W aves. Beijing, 2005.

    [11] TOMITA Y., SHIMA A. and OHNO T. Collapse ofmultiple gas bubbles by a shock wave and induced impulsive pressure[J]. Journal of App lied Physics, 1984, 56(1): 125-131.

    [12] KODAMA T., TAKAYAMA K. and NAGAYASU N. The dynamics of two air bubbles loaded by an underwater shock wave[J]. Journal of App lied Physics, 1996, 80(10): 5587-5592.

    [13] DEAR J. P., FIELD J. E. A study of the collapse of arrays of cavities[J]. Journal of Fluid Mechanics, 1988, 190: 409-425.

    [14] BOURNE N. K., FIELD J. E. Shock-induced collapse of single cavities in liquids[J]. Journal of Fluid Mechanics, 1992, 244: 225-240.

    [15] GUO Wen-can, LIU Cang-li and TAN Dou-wang et al. Experimental investigation on spherical bubble evolution loaded by a weak planar shock wave[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 460-466(in Chinese).

    [16] HUANG Jia, JIA Hong-yin and LUO Xi-sheng et al. Experimental and numerical study on the interaction of shock wave with helium bubble in shock tube[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(2): 10-14(in Chinese).

    [17] BAI Li-xin, XU Wei-lin and ZHANG Fa-xing et al. Cavitation characteristics of pit structure in ultrasonic field[J]. Science in China Series E: Technological Sciences, 2009, 52(7): 1974-1980.

    [18] LINDAU O., LAUTERBORN W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall[J]. Journal of Fluid Mechanics, 2003, 479: 327-348.

    [19] BLAKE J. R., GIBSON D. C. Grow th and collapse of a vapour cavity near a free surface[J]. Journal of Fluid Mechanics, 1981, 111: 123-140.

    [20] XU Wei-lin, BAI Li-xin and ZHANG Fa-xing. Interaction of a cavitation bubble and an air bubble with a rigid boundary[J]. Journal of Hydrodynam ics, 2010, 22(4): 503-512.

    January 6, 2011, Revised March 29, 2011)

    10.1016/S1001-6058(10)60150-3

    * Project supported by the National Science and Technology Support Plan of China (Grant No. 2008BAB29B04), the National Basic Research Program of China (973 Program, Grant No. 2007CB714105), the National Natural Science Foundation of China (Grant No. 11174315) and the National Science and Technology Major Project of China (Grant No. 2011ZX05032-003).

    Biography: BAI Li-xin (1977-), Male, Ph. D.

    XU Wei-lin, E-mail: xu_w l@sina.com

    一级a爱片免费观看的视频| 极品教师在线免费播放| 国产欧美日韩一区二区精品| 日本在线视频免费播放| netflix在线观看网站| 久久国产精品影院| 一区福利在线观看| 日本a在线网址| 在线观看免费午夜福利视频| 99精品在免费线老司机午夜| 悠悠久久av| 国产91精品成人一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | av有码第一页| 中文字幕人妻熟女乱码| 丁香六月欧美| 亚洲一区二区三区色噜噜| 国产精品久久久久久精品电影 | 97超级碰碰碰精品色视频在线观看| 看免费av毛片| 此物有八面人人有两片| 亚洲精品国产精品久久久不卡| 午夜福利视频1000在线观看 | 黄色视频不卡| 人人妻人人澡人人看| 免费观看精品视频网站| 午夜视频精品福利| 亚洲精品美女久久av网站| 在线观看免费日韩欧美大片| 黄片播放在线免费| 悠悠久久av| 亚洲精品美女久久久久99蜜臀| 久久久久九九精品影院| www.熟女人妻精品国产| 亚洲中文字幕日韩| 亚洲久久久国产精品| 久久久久国内视频| www.熟女人妻精品国产| 国产一区二区三区视频了| 欧美午夜高清在线| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 丝袜在线中文字幕| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 免费在线观看日本一区| 嫩草影视91久久| 国产三级黄色录像| 日本vs欧美在线观看视频| 丝袜美足系列| 97人妻精品一区二区三区麻豆 | 亚洲精品久久国产高清桃花| 国内久久婷婷六月综合欲色啪| 欧美日韩瑟瑟在线播放| 国产精品香港三级国产av潘金莲| 久久久久国内视频| 亚洲 欧美一区二区三区| 国产成人欧美| 日韩视频一区二区在线观看| 亚洲免费av在线视频| 亚洲九九香蕉| 熟女少妇亚洲综合色aaa.| 又黄又爽又免费观看的视频| 日韩欧美一区二区三区在线观看| 成人手机av| 欧美久久黑人一区二区| 999久久久精品免费观看国产| 亚洲第一青青草原| 亚洲人成电影免费在线| 国产亚洲精品综合一区在线观看 | 九色亚洲精品在线播放| 欧美激情 高清一区二区三区| 国产精品 国内视频| 久久伊人香网站| 777久久人妻少妇嫩草av网站| 日韩精品免费视频一区二区三区| av网站免费在线观看视频| 午夜福利成人在线免费观看| 久热爱精品视频在线9| 两个人免费观看高清视频| 久久天躁狠狠躁夜夜2o2o| 亚洲第一电影网av| 久久精品91蜜桃| 岛国视频午夜一区免费看| 两性夫妻黄色片| 日韩大尺度精品在线看网址 | 最新在线观看一区二区三区| 免费无遮挡裸体视频| 久久精品aⅴ一区二区三区四区| 久久久久久久久久久久大奶| 国产成人av激情在线播放| 久久婷婷成人综合色麻豆| 在线天堂中文资源库| 国产极品粉嫩免费观看在线| 咕卡用的链子| 国产精品久久久久久精品电影 | 淫妇啪啪啪对白视频| 国产成人欧美| 黄频高清免费视频| 亚洲天堂国产精品一区在线| 悠悠久久av| 琪琪午夜伦伦电影理论片6080| 99久久国产精品久久久| 超碰成人久久| 一区二区日韩欧美中文字幕| 男人的好看免费观看在线视频 | www.熟女人妻精品国产| 亚洲精品国产区一区二| 国产精品精品国产色婷婷| 欧美丝袜亚洲另类 | 久久精品成人免费网站| 一级毛片女人18水好多| 亚洲美女黄片视频| 一本久久中文字幕| 精品卡一卡二卡四卡免费| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 久久影院123| 黄色 视频免费看| videosex国产| 日韩一卡2卡3卡4卡2021年| 咕卡用的链子| 国产91精品成人一区二区三区| 给我免费播放毛片高清在线观看| 欧美日本视频| 国产私拍福利视频在线观看| 国产精品秋霞免费鲁丝片| 搞女人的毛片| 精品一品国产午夜福利视频| 久9热在线精品视频| 一区二区三区国产精品乱码| 男女下面进入的视频免费午夜 | x7x7x7水蜜桃| 国产精品国产高清国产av| 国产av一区二区精品久久| a在线观看视频网站| 中文字幕久久专区| 美女大奶头视频| 日本 欧美在线| 两个人看的免费小视频| 人人妻人人澡欧美一区二区 | 身体一侧抽搐| 男女之事视频高清在线观看| 九色国产91popny在线| 久久久久久人人人人人| av在线天堂中文字幕| 色av中文字幕| 亚洲成人久久性| 成人亚洲精品一区在线观看| 高清在线国产一区| 国产精品久久久久久亚洲av鲁大| 久久久久久久久久久久大奶| 亚洲中文日韩欧美视频| 日本欧美视频一区| 欧美成狂野欧美在线观看| 精品久久久久久久人妻蜜臀av | 国产成人av教育| 亚洲专区字幕在线| 1024香蕉在线观看| 国产亚洲欧美98| 老熟妇乱子伦视频在线观看| 91成年电影在线观看| 亚洲avbb在线观看| 精品电影一区二区在线| a级毛片在线看网站| 黄片播放在线免费| 亚洲国产看品久久| 免费在线观看黄色视频的| 国产精品乱码一区二三区的特点 | 热re99久久国产66热| 亚洲第一av免费看| 这个男人来自地球电影免费观看| 久久精品国产综合久久久| 男人舔女人下体高潮全视频| 大香蕉久久成人网| 国产成+人综合+亚洲专区| 一区二区日韩欧美中文字幕| 两人在一起打扑克的视频| 精品福利观看| 一个人免费在线观看的高清视频| 熟女少妇亚洲综合色aaa.| 999精品在线视频| 叶爱在线成人免费视频播放| 九色国产91popny在线| 亚洲精品在线观看二区| 亚洲五月婷婷丁香| 又黄又爽又免费观看的视频| 淫秽高清视频在线观看| 天堂影院成人在线观看| 亚洲全国av大片| 国产高清有码在线观看视频 | 欧美人与性动交α欧美精品济南到| 国产熟女xx| 男女做爰动态图高潮gif福利片 | 每晚都被弄得嗷嗷叫到高潮| 亚洲人成电影观看| 午夜福利影视在线免费观看| 国产精品二区激情视频| 婷婷丁香在线五月| 亚洲欧美激情在线| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 好看av亚洲va欧美ⅴa在| av视频免费观看在线观看| 在线观看日韩欧美| 国产精品一区二区精品视频观看| or卡值多少钱| 亚洲情色 制服丝袜| 人人妻人人澡欧美一区二区 | 日韩欧美国产一区二区入口| 青草久久国产| 免费在线观看视频国产中文字幕亚洲| 国产一卡二卡三卡精品| 精品国产一区二区久久| 妹子高潮喷水视频| a级毛片在线看网站| 热re99久久国产66热| 国产免费av片在线观看野外av| 69精品国产乱码久久久| 变态另类成人亚洲欧美熟女 | 一本大道久久a久久精品| 国产私拍福利视频在线观看| 中文字幕色久视频| 自线自在国产av| 亚洲五月天丁香| 看片在线看免费视频| 久久婷婷人人爽人人干人人爱 | avwww免费| 可以在线观看的亚洲视频| 午夜激情av网站| 国产亚洲欧美在线一区二区| 91大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| bbb黄色大片| 国产精品98久久久久久宅男小说| 91av网站免费观看| 国产成人精品久久二区二区免费| 日韩欧美一区二区三区在线观看| 女人精品久久久久毛片| 国产欧美日韩一区二区三区在线| 丝袜人妻中文字幕| 色婷婷久久久亚洲欧美| 丝袜美腿诱惑在线| 怎么达到女性高潮| 日韩欧美一区二区三区在线观看| 欧美一级毛片孕妇| 伊人久久大香线蕉亚洲五| 亚洲国产精品成人综合色| 麻豆一二三区av精品| 少妇被粗大的猛进出69影院| 狂野欧美激情性xxxx| 欧美日韩黄片免| 少妇裸体淫交视频免费看高清 | 后天国语完整版免费观看| 一边摸一边抽搐一进一出视频| 欧美激情极品国产一区二区三区| 最近最新中文字幕大全电影3 | 一进一出好大好爽视频| 91麻豆av在线| 日韩成人在线观看一区二区三区| 人人妻人人澡人人看| 在线观看免费视频日本深夜| 欧美日韩乱码在线| 在线国产一区二区在线| 国产精品九九99| 国产片内射在线| 国产成人系列免费观看| 欧美色欧美亚洲另类二区 | av片东京热男人的天堂| 97碰自拍视频| 男人的好看免费观看在线视频 | 成人精品一区二区免费| www.999成人在线观看| 免费久久久久久久精品成人欧美视频| 搡老岳熟女国产| 三级毛片av免费| 亚洲人成网站在线播放欧美日韩| 中亚洲国语对白在线视频| 女人爽到高潮嗷嗷叫在线视频| 男女床上黄色一级片免费看| av天堂久久9| 在线视频色国产色| 国产精品美女特级片免费视频播放器 | 精品国产亚洲在线| 午夜福利在线观看吧| 超碰成人久久| 黄频高清免费视频| 中文字幕精品免费在线观看视频| 亚洲性夜色夜夜综合| 免费观看精品视频网站| 国产一卡二卡三卡精品| 国产人伦9x9x在线观看| 色综合亚洲欧美另类图片| 精品欧美一区二区三区在线| 波多野结衣av一区二区av| 精品熟女少妇八av免费久了| 999久久久精品免费观看国产| a级毛片在线看网站| 日韩国内少妇激情av| 亚洲无线在线观看| 国产精品一区二区免费欧美| 免费在线观看完整版高清| 老司机福利观看| 亚洲少妇的诱惑av| 性少妇av在线| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片 | 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区不卡视频| 久久精品影院6| 最近最新中文字幕大全电影3 | 一进一出好大好爽视频| 亚洲国产中文字幕在线视频| 国产又色又爽无遮挡免费看| 在线av久久热| 男女午夜视频在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲伊人色综图| 久久久国产成人免费| 动漫黄色视频在线观看| 两性夫妻黄色片| 一边摸一边做爽爽视频免费| 又大又爽又粗| 变态另类成人亚洲欧美熟女 | 午夜视频精品福利| 久久九九热精品免费| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人性av电影在线观看| 亚洲一区中文字幕在线| 男女下面插进去视频免费观看| 亚洲国产日韩欧美精品在线观看 | 国产成人影院久久av| 在线十欧美十亚洲十日本专区| 一个人免费在线观看的高清视频| 色播在线永久视频| 国产精品精品国产色婷婷| 久久久久久久久中文| 美女高潮到喷水免费观看| 两个人看的免费小视频| 1024香蕉在线观看| 久久人人爽av亚洲精品天堂| 日本精品一区二区三区蜜桃| 精品国产乱子伦一区二区三区| 久久精品国产清高在天天线| 成人18禁高潮啪啪吃奶动态图| 免费av毛片视频| 欧美国产日韩亚洲一区| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 深夜精品福利| 淫妇啪啪啪对白视频| 亚洲黑人精品在线| 午夜激情av网站| 免费人成视频x8x8入口观看| 亚洲午夜精品一区,二区,三区| av视频在线观看入口| 两性午夜刺激爽爽歪歪视频在线观看 | 伊人久久大香线蕉亚洲五| av福利片在线| 神马国产精品三级电影在线观看 | 欧美乱妇无乱码| 亚洲欧美激情在线| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 成人手机av| 激情视频va一区二区三区| 久久精品成人免费网站| 精品一区二区三区视频在线观看免费| 成年人黄色毛片网站| 精品一区二区三区视频在线观看免费| 久9热在线精品视频| 免费在线观看影片大全网站| 欧美色视频一区免费| 黄网站色视频无遮挡免费观看| 在线观看午夜福利视频| 天天一区二区日本电影三级 | netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品电影一区二区三区| 淫秽高清视频在线观看| 中文字幕精品免费在线观看视频| 69av精品久久久久久| 欧美国产精品va在线观看不卡| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频| 亚洲国产精品成人综合色| 免费无遮挡裸体视频| av超薄肉色丝袜交足视频| 97人妻天天添夜夜摸| 夜夜爽天天搞| 女同久久另类99精品国产91| 波多野结衣一区麻豆| 12—13女人毛片做爰片一| 欧美日韩福利视频一区二区| 日韩欧美国产一区二区入口| 少妇的丰满在线观看| 99re在线观看精品视频| 正在播放国产对白刺激| 在线免费观看的www视频| 欧美久久黑人一区二区| 美女高潮到喷水免费观看| 亚洲中文日韩欧美视频| 午夜亚洲福利在线播放| 九色亚洲精品在线播放| 成年人黄色毛片网站| 12—13女人毛片做爰片一| 18禁黄网站禁片午夜丰满| 久久久久亚洲av毛片大全| 老司机午夜十八禁免费视频| 国产成人系列免费观看| 国产激情久久老熟女| 国产av一区二区精品久久| 国产aⅴ精品一区二区三区波| 亚洲,欧美精品.| 看免费av毛片| 国产精品精品国产色婷婷| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品男人的天堂亚洲| 国产精品久久电影中文字幕| 午夜福利,免费看| 国产激情欧美一区二区| av在线天堂中文字幕| 亚洲最大成人中文| 中国美女看黄片| 精品不卡国产一区二区三区| 一级作爱视频免费观看| 99国产极品粉嫩在线观看| www国产在线视频色| 如日韩欧美国产精品一区二区三区| 欧美亚洲日本最大视频资源| 国内精品久久久久久久电影| 国产成人系列免费观看| 国产高清videossex| 国产精品香港三级国产av潘金莲| 久久人妻av系列| 一二三四社区在线视频社区8| 一级毛片高清免费大全| 91av网站免费观看| 侵犯人妻中文字幕一二三四区| 香蕉国产在线看| 国产精品综合久久久久久久免费 | 老司机靠b影院| 国产精品秋霞免费鲁丝片| 欧美av亚洲av综合av国产av| 亚洲精品国产色婷婷电影| 国产欧美日韩精品亚洲av| 亚洲午夜理论影院| 夜夜爽天天搞| 亚洲国产欧美日韩在线播放| 亚洲欧美激情综合另类| 国产主播在线观看一区二区| 日韩大尺度精品在线看网址 | 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区精品| 国产三级在线视频| 高清在线国产一区| av有码第一页| 757午夜福利合集在线观看| 午夜福利在线观看吧| 老汉色∧v一级毛片| 性少妇av在线| 男女做爰动态图高潮gif福利片 | 欧美老熟妇乱子伦牲交| 热re99久久国产66热| 久久精品国产亚洲av高清一级| 精品少妇一区二区三区视频日本电影| 国产极品粉嫩免费观看在线| 久久国产精品男人的天堂亚洲| 级片在线观看| 国产一区二区激情短视频| 好看av亚洲va欧美ⅴa在| 母亲3免费完整高清在线观看| 激情视频va一区二区三区| 精品国产一区二区久久| 在线观看免费视频网站a站| 久久久久久久久免费视频了| 99国产综合亚洲精品| 国产精品国产高清国产av| 青草久久国产| 午夜影院日韩av| 国产激情久久老熟女| 一二三四社区在线视频社区8| 欧美日本视频| 久久精品成人免费网站| 97碰自拍视频| 国产成人啪精品午夜网站| 欧美黄色片欧美黄色片| 女人爽到高潮嗷嗷叫在线视频| 亚洲精华国产精华精| 久久久久久人人人人人| 精品日产1卡2卡| 男女床上黄色一级片免费看| 一本综合久久免费| 十八禁人妻一区二区| 久久人人97超碰香蕉20202| 大码成人一级视频| 国产精品一区二区三区四区久久 | 变态另类成人亚洲欧美熟女 | 久久狼人影院| 我的亚洲天堂| 男女之事视频高清在线观看| 亚洲精品在线美女| 女人被狂操c到高潮| 国产免费av片在线观看野外av| 日日摸夜夜添夜夜添小说| 少妇裸体淫交视频免费看高清 | 亚洲在线自拍视频| 91av网站免费观看| 日本黄色视频三级网站网址| 十分钟在线观看高清视频www| 亚洲激情在线av| 精品卡一卡二卡四卡免费| 亚洲精华国产精华精| 国产欧美日韩一区二区三区在线| 亚洲av电影不卡..在线观看| 久久久水蜜桃国产精品网| 亚洲最大成人中文| 久久久国产成人免费| 日本欧美视频一区| 免费观看精品视频网站| 高清黄色对白视频在线免费看| 久久久久久免费高清国产稀缺| 极品人妻少妇av视频| 免费av毛片视频| 亚洲国产欧美网| 亚洲精华国产精华精| 嫩草影视91久久| 成人18禁在线播放| 免费高清在线观看日韩| 国产视频一区二区在线看| 性少妇av在线| 欧美激情 高清一区二区三区| 好看av亚洲va欧美ⅴa在| 久久精品91无色码中文字幕| 一进一出抽搐gif免费好疼| 国产亚洲欧美精品永久| av有码第一页| 一级a爱视频在线免费观看| 国产欧美日韩综合在线一区二区| avwww免费| 成人精品一区二区免费| 中国美女看黄片| av中文乱码字幕在线| 成人18禁高潮啪啪吃奶动态图| 叶爱在线成人免费视频播放| 精品国产亚洲在线| 99久久综合精品五月天人人| 日韩三级视频一区二区三区| 9热在线视频观看99| 人人妻人人澡人人看| 国产蜜桃级精品一区二区三区| 亚洲av成人一区二区三| 99riav亚洲国产免费| 午夜福利18| 怎么达到女性高潮| 国产精品久久久久久人妻精品电影| 色综合站精品国产| 国产精品1区2区在线观看.| 美女 人体艺术 gogo| 国产精品久久久人人做人人爽| netflix在线观看网站| 午夜福利在线观看吧| av天堂在线播放| 成人18禁高潮啪啪吃奶动态图| 香蕉丝袜av| 欧美日韩黄片免| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久国产a免费观看| 少妇 在线观看| 十分钟在线观看高清视频www| 欧美黑人欧美精品刺激| 欧美激情久久久久久爽电影 | 男人舔女人下体高潮全视频| 中文字幕高清在线视频| 在线观看午夜福利视频| 亚洲成人精品中文字幕电影| 脱女人内裤的视频| 亚洲五月天丁香| 男女午夜视频在线观看| 国内精品久久久久精免费| 免费人成视频x8x8入口观看| 久久久久亚洲av毛片大全| 黄片播放在线免费| 人成视频在线观看免费观看| 此物有八面人人有两片| 欧美久久黑人一区二区| 亚洲一码二码三码区别大吗| 日韩欧美国产一区二区入口| 欧美久久黑人一区二区| 99国产精品一区二区蜜桃av| 成人av一区二区三区在线看| 国产亚洲欧美精品永久| 亚洲人成77777在线视频| 国产亚洲精品久久久久久毛片| 可以免费在线观看a视频的电影网站| 国产黄a三级三级三级人| 老司机在亚洲福利影院| 夜夜夜夜夜久久久久| www.999成人在线观看| 国语自产精品视频在线第100页| 97超级碰碰碰精品色视频在线观看| 91精品三级在线观看| 国产精品98久久久久久宅男小说| 亚洲免费av在线视频| 国产黄a三级三级三级人| 亚洲五月色婷婷综合| 欧美一级毛片孕妇| 国产精品爽爽va在线观看网站 | 国产亚洲精品第一综合不卡| 99精品在免费线老司机午夜|