• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of flow separation control on an airfoil usingDBD plasma actuators

    2011-06-15 01:26:18WANGXunnianWANGWanboHUANGYongZHANGXinHUANGZongbo
    實(shí)驗(yàn)流體力學(xué) 2011年4期
    關(guān)鍵詞:迎角升力等離子體

    WANG Xun-nian,WANG Wan-bo,HUANG Yong,ZHANG Xin,HUANG Zong-bo

    (1.School of Aeronautics,Northwestern Polytechnical University,Xi'an 710072,China;2.China Aerodynamics Research and Development Center,Mianyang Sichuan 621000,China)

    Investigation of flow separation control on an airfoil usingDBD plasma actuators

    WANG Xun-nian1,WANG Wan-bo2,HUANG Yong2,ZHANG Xin2,HUANG Zong-bo2

    (1.School of Aeronautics,Northwestern Polytechnical University,Xi'an 710072,China;2.China Aerodynamics Research and Development Center,Mianyang Sichuan 621000,China)

    Influence of plasma actuators on the flow separation control of NACA 0015airfoil was investigated in an open-circuit low-speed wind tunnel.Particle Image Velocimetry (PIV)technology was applied to visualize the modification of the flow structure over the airfoil by the plasma actuators.Lift and drag were measured by a five-component strain gauge balance to investigate the separation control effect of the actuator voltage and excitation frequency.The results show that the leading-edge plasma actuators are effective in controlling the flow separation over the airfoil at low wind speeds.The maximum lift coefficient and stall angle are increased by 11%and 6deg respectively at the free-stream velocity of 20m/s.However,at a given flow state,there exists threshold values for both the actuator voltage and excitation frequency on the actuators.The threshold values are different with the changing attack angles.At the higher attack angles,the plasma actuator's authority must be increased due to the much stronger flow separation on the airfoil.

    plasma;flow control;actuator;flow separation

    0 Introduction

    The maximum lift and stall characteristics of a wing decide many performance aspects of an aircraft,including takeoff and landing distance,maximum and sustained turn rates,climb and glide rates,and flight ceiling[1]etc.Therefore,how to increase the maximum lift and improve stall characteristics is an important issue for aerodynamics.

    As an important branch and research frontier of aerodynamics,flow control is to improve aerodynamic characteristics,such as reducing drag and increasing lift.Methods of flow control can be divided into two types:passive flow control that modifies the main flow structure and active flow control that modifies the local flow by introducing external energy.Active flow control includes blowing and suction,micro-jet[2],synthetic jet[3],plasma actuation,micro-electro-mechanical systems(MEMS)[4]etc.

    Plasma technique has received much attention in recent decades due to its prospective applications in flow control.The popular DBD(Dielectric Barrier Discharge)plasma actuator consists of two electrodes that are located on the surface separated by a dielectric material.A high-voltage AC supplied to the electrodes causes the air in their vicinity to weakly ionize.The ionized air(plasma)in the presence of the electric field gradient produced by the electrodes results in a body force vector acting on the external flow that can induce steady or unsteady velocity components.In this way,it can effectively control boundary layer transition and separation,significantly improve lift-to-drag ratio and stall angle of the aircraft.

    In recent years,there have been a great deal of researches focusing on plasma flow control due to the advantage of no moving parts,quick response,very low mass,low input power and low parasitic drag when not in operating,such as boundary layer control[5-6],lift augmentation and separation control for airfoils[7-12],low-pressure turbine blade separation control[13]etc.

    Chuan He and Thomas C.Corke[11]used the DBD plasma actuators to validate application of weakly-ionized plasma actuators for improved aerodynamic performance on NACA0015airfoil.Force balance results showed that the leading plasma resulted in an increase in both the maximum lift coefficient and the stall angle of attack and a lift-to-drag improvement of as much as 340%.Patrick Nguyen Huu et al.[14]found that the plasma actuator could increase the lift coefficient by an average of 5%,and up to 10%,while has no major effect on the stall condition,at a free stream speed of 20m/s.N.Yurchenko and Yu.Paramonov[15]used localized plasma discharges generated by microwave radiation for boundary-layer control.Experiments showed that lift coefficients raised by 15%and drag dropped by 5%.P.F.Zhang et al.[12]investigated the effect of the plasma actuator in different chordwise locations on the aerodynamic characteristics of a 75deg swept delta wing.The force measurement results demonstrated that the maximum lift and lift-to-drag ratios were increased by 10.6%and 11.7%at the Reynolds number of 2.82×105.

    In this paper,the whole metal airfoil model was applied as an electrode audaciously.Particle Image Velocimetry(PIV)technology was applied to visualize the modification of the flow structure over the airfoil by the plasma actuators.Force measurement was carried out in the wind tunnel to investigate the effect of the plasma actuator in different actuator voltages and excitation frequencies on the aerodynamic characteristics of the airfoil.

    1 Experimental setup

    1.1 Wind tunnel

    The experiment was conducted in the drawdown open-circuit low-speed wind tunnel.The main parts of the tunnel include diffuser,contraction section,plenum chamber and blower etc.The test section of the tunnel is nominally 700mm high,700mm wide and 1050mm long.The junction of the diffuser,contraction section and the plenum chamber is made of flexible material,which can prevent resonance.The diffuser and contraction section are made of fiberglass.The plenum chamber adopts point-supporting glass curtain wall structure.A photograph of the tunnel with the airfoil in the test section is shown in Fig.1.

    Fig.1 The wind tunnel圖1 風(fēng)洞

    1.2 Power system

    Multi-phase power system consists of multiphase signal generator,SPWM (Sine Pulse Wave Modulator),multi-phase power amplifier and low frequency high voltage transformers.The voltage in this paper is adopted one phase.The photographs of the power are shown in Fig.2.

    Fig.2 The high voltage DC圖2 電源內(nèi)部及面板分布圖

    1.3 Model and plasma actuator

    The airfoil used in this study is a NACA0015.This generic shape is chosen due to its well known steady characteristics.The airfoil has a 100mm chord and a 480mm span.The photograph of the model is shown in Fig.3.

    Fig.3 NACA0015airfoil model圖3 NACA0015翼型模型

    The plasma actuator consists of two electrodes separated by three layers of 0.1mm thick Kapton film.One of the electrodes is made of 0.05mm thick copper foil tape and the other one is the whole airfoil model.The upper electrode is arranged along span wise with a width of 2mm and a length of 440mm.Fig.4shows the illustration of the plasma actuator arrangement.

    Fig.4 Plasma flow control layout圖4 等離子體流動控制布局示意圖

    The surface of the model is not very smooth and flush when bonded the plasma actuator.Since we only study the basic concept of the flow control effect on the airfoil,it is not necessary to treat the model further more.

    1.4 Data acquisition and control system

    Data acquisition utilizes data acquisition and control system in the wind tunnel.The system include balance,manostat,data processing software,computer,and angle controller.

    The time-averaged lift and drag forces of the airfoil are measured by a five-component strain gauge balance.The range of the angle of attack in this experiment varies from 0to 28deg.

    1.5 PIV system

    Particle Image Velocimetry(PIV)technology is applied to measure the flow field.The PIV system includes laser system,recording system,synchronizer,smoke generator,data processing software,and computer etc.

    2 Results and discussion

    The lift coefficients of the airfoil versus angle of attack controlled by the plasma actuator are presented in Fig.5(a).The lift and drag coefficients have not been corrected by accounting for the flow blockage effects.

    Fig.5 Lift coefficient versus angle of attack and drag polar for the airfoil圖5 翼型升力系數(shù)和極曲線

    The corresponding data of the airfoil without control are also included in the plot.There is no visible lift enhancement on the airfoil at low angles of attack,but significantly lift increment at natural post stall conditions.Without control,the flow separates at an angle of attack of 15deg,which is observed as a sharp decrease in lift and increase in drag.With control,the actuator is able to reattach the flow for angles of attack up to 21deg,which is 6 deg higher than the normal stall angle.The maximum lift coefficient of the airfoil is increased by 11%from 0.90without control to 1.0with control.The control results in an increase in both maximum lift and stall angle.It results in a lift-to-drag ratio improvement of as much as 199%.

    Fig.6 PIV results at angle of attack of 18deg圖6 迎角為18°時的PIV測量結(jié)果

    The results of the PIV show that the drop in lift at large angles of attack is due to separation of the flow at the leading edge.Fig.6(a)shows the flow field of the airfoil at a post stall of 18deg without control.A large separation region covers the whole upper surface of the airfoil.With control,the flow is observed to be attached all over the upper surface,shown in Fig.6(b).The PIV tests are in good agreement with the force measurements.

    When the free-stream velocity and the actuator are fixed,the actuator voltage and excitation frequency are the most important factors interested.Firstly,the control effect of actuator voltage was investigated.The lift coefficients at different actuator voltages and fixed excitation frequency of 3.0kHz are shown in Fig.7.Without control,the flow separates at an angle of attack of 15deg.When the actuator voltage is 2.0kV,the flow separates at an angle of attack of 16deg and the stall angle is increased by 1deg.When the actuator voltage is 3.0kV,the flow separates at an angle of attack of 20deg.which is 5 deg higher than the normal stall angle.When the actuator voltage is 4.0kV,the result is more significant that the stall angle delays 6deg.

    Fig.7 Lift coefficient versus angle of attack for the airfoil at different voltages圖7 不同電壓下的翼型升力曲線

    Further study of the control effect of actuator voltage at a fixed angle was carried out.The results at attack angle of 15~19deg at free-stream velocity of 20m/s and excitation frequency of 3.0kHz are shown in Fig.8.This documents the lift and drag coefficients as a function of the actuator voltage.At attack angle of 15deg,the flow over the airfoil has been naturally separated and the lift coefficient is low and the drag coefficient is high.When the actuator voltage is not high enough,the flow remains separated and there is no improvement in the lift and drag,like the left edge of the plot.However,once a threshold voltage to the actuator is reached,the flow dramatically reattached.This is observed as a large increase in the lift and decrease in the drag,marked by the dashed line in the plot.Above this voltage,there is very little change in the lift and drag coefficients.It is concluded that the actuator voltage has an optimum value and once the actuator voltage is higher than the value,the control is effective.

    Fig.8shows that the threshold value is 1.6kV for the attack angles of 15,16and 17deg,while the value is 2.4kV for the angle of 18deg.At higher attack angle the flow separation is much stronger and flow control is more difficult,resulting in higher actuator voltage threshold value.

    Fig.8 Effect of the actuator voltages on the lift and drag coefficient at different angles of attack圖8 不同迎角下電壓對升阻力系數(shù)的影響

    Similar experiments have been done for different excitation frequencies.At a fixed actuator voltage of 4.0kV,the lift coefficients at different frequencies are shown in Fig.9.The stall angle is increased by 5deg at the frequency of 2.0kHz,while the stall angle increased by 6deg at the frequencies of 3.0kHz and 4.0kHz.Moreover,the control effects at the frequencies of 3.0kHz and 4.0kHz have no visible difference.

    Fig.9 Lift coefficient versus angle of attack for the airfoil at different frequencies圖9 不同頻率下的翼型升力曲線

    The more particular investigation has been done to find an optimum frequency value at different angles.Same as the actuator voltage,different attack angles have different threshold values.As seen in Fig.10,when the actuator voltage is fixed at 4.0kV,the value is 150Hz at angles of 15,16and 17deg.While the value is a sudden break at angle of 18 deg,which is very similar to the actuator voltage and the value is 800Hz.The reason is the same as the actuator voltage.

    Fig.10 Effect of the excitation frequencies on the lift and drag coefficient at different angles圖10 不同迎角下頻率對升阻力系數(shù)的影響

    3 Conclusions

    The force measurement and PIV experiments were carried out in the wind tunnel to investigate the influence of plasma actuators on the flow separation control of NACA0015airfoil.The results show that the leading-edge plasma actuators can be effective in controlling the flow separation over the airfoil at low wind speeds.The maximum lift coefficient and stall angle are increased by 11%and 6deg respectively at free-stream velocity of 20m/s.

    At a given flow state,there exists threshold values for both the actuator voltage and excitation frequency on the actuators.The threshold values are different with the changing attack angles.At the higher attack angles,the plasma actuator's authority must be increased due to the much stronger flow separation on the airfoil.

    [1]CORKE,T C.Design of aircraft[M].New York:Prentice-Hall,2002:38-59.

    [2]MCMICAWL J M.Progress and prospects for active flow control using microfabricated electro-mechanical system (MEMS)[R].AIAA 96-0306.

    [3]WILTSE J,GLEZER A.Manipulation of free shear flows using piezoelectric actuators[J].J Fluid Mech.,1993,249:261-285.

    [4]WARSOP C.AeromemsII:A European research effort to develop MEMS based flow control technologies[R].AIAA Paper 2004-22209,2004.

    [5]ROTH J R,SHERMAN D M,WLIKINSON S R.Electrohydrodynamic flow control with a glow-discharge surface plasma[J].AIAA Journal,2000,38(7).

    [6]JACOB J,RIVIR R,CAMPBELL C,et al.Boundary layer flow control using AC discharge plasma actuators[R].AIAA 2004-2128.

    [7]CORKE T C,JUMPER E J,POST M L,et al.Application of weakly-ionized plasmas as wing flow-control devices[R].AIAA 2002-0350,2002.

    [8]POST M L,and CORKE T C.Separation control on high angle of attack airfoil using plasma actuators[J].AIAA Journal,2004,42(11):2177-2184.

    [9]CORKE T C,MERTZ B,and PATEL M P.Plasma flow control optimized airfoil[R].AIAA 2006-1208,2006.

    [10]PATEL M P,SOWLE Z H,CORKE T C,et al.Autonomous sensing and control of wing stall using a smart plasma slat[R].AIAA 2006-1207,2006.

    [11]HE C,CORKE T C,et al.Plasma flaps and slats:an application of weakly ionized plasma actuators [J].Journal of Aircraft,2009,46(3).

    [12]ZHANG P F,WANG J J,et al.Experimental study of plasma flow control on highly swept delta wing [J].AIAA Journal,2010,48(1).

    [13]HUANG J,CORKE T C,and THOMAS F O.Plasma actuators for separation control of low pressure turbine blades[R].AIAA2003-1027,2003.

    [14]HUU P N,et al.Plasma-assisted high lift systems[R].AIAA2009-3943,2009.

    [15]YURCHENKOV N and PARAMONOV Yu.Boundary-layer control based on localized plasma generation:wind-tunnel investigations[R].AIAA2010-1007,2010.

    Author biography:

    WANG Xun-nian(1962-),male,born in Longnan of Jiangxi province,Doctor of Northwestern Polytechnical University.Research field:low speed aerodynamics and experiments in fluid.Address:China Aerodynamics Research &Development Center,Mianyang,Sichuan(621000).Telephone:(0816)2461070,E-mail:xunnian@sohu.com.

    1672-9897(2011)04-0009-06

    介質(zhì)阻擋放電等離子體對翼型流動分離控制的實(shí)驗(yàn)研究

    王勛年1,王萬波2,黃 勇2,張 鑫2,黃宗波2
    (1.西北工業(yè)大學(xué)航空學(xué)院,西安710072;2.中國空氣動力研究與發(fā)展中心,四川 綿陽 621000)

    在低速開口風(fēng)洞中進(jìn)行了等離子體激勵器對NACA0015翼型流動分離控制的實(shí)驗(yàn)研究。采用PIV技術(shù),對翼型繞流流場進(jìn)行了測量,顯示了施加等離子體激勵后流場的變化。通過五分量天平對升力和阻力的測量,研究了激勵電壓和激勵頻率對翼型流動分離控制的規(guī)律。研究表明,低風(fēng)速下在翼型前緣施加等離子體激勵,能夠有效地控制翼型流動分離,在來流為20m/s時,最大升力系數(shù)增加11%,失速迎角增加6°;在給定的流動狀態(tài)下,激勵電壓和激勵頻率存在一個閾值,不同迎角下該閾值不同,迎角越大,分離越嚴(yán)重,對激勵強(qiáng)度的要求也越高。

    等離子體;流動控制;激勵器;流動分離

    V211.7;O357.4+1

    A

    date:2010-11-09;Revised date2011-05-08

    猜你喜歡
    迎角升力等離子體
    高速列車車頂–升力翼組合體氣動特性
    連續(xù)變迎角試驗(yàn)數(shù)據(jù)自適應(yīng)分段擬合濾波方法
    連續(xù)磁活動對等離子體層演化的影響
    基于低溫等離子體修飾的PET/PVC浮選分離
    無人機(jī)升力測試裝置設(shè)計(jì)及誤差因素分析
    基于自適應(yīng)偽譜法的升力式飛行器火星進(jìn)入段快速軌跡優(yōu)化
    等離子體種子處理技術(shù)介紹
    升力式再入飛行器體襟翼姿態(tài)控制方法
    失速保護(hù)系統(tǒng)迎角零向跳變研究
    科技傳播(2014年4期)2014-12-02 01:59:42
    等離子體聚合廢植物油及其潤滑性能
    一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久99一区二区三区| 国产片特级美女逼逼视频| 精品久久国产蜜桃| 伦理电影大哥的女人| 在线观看www视频免费| 啦啦啦中文免费视频观看日本| 爱豆传媒免费全集在线观看| 亚洲av成人精品一二三区| 两个人的视频大全免费| 熟女电影av网| 九九爱精品视频在线观看| 久久ye,这里只有精品| 日本与韩国留学比较| 国产成人精品在线电影| 男女无遮挡免费网站观看| 国产成人aa在线观看| 王馨瑶露胸无遮挡在线观看| 狂野欧美激情性xxxx在线观看| 一本色道久久久久久精品综合| 婷婷色综合大香蕉| av网站免费在线观看视频| 亚洲久久久国产精品| 国产成人精品一,二区| 一区二区三区四区激情视频| 欧美精品一区二区大全| 精品亚洲成a人片在线观看| av不卡在线播放| 中国国产av一级| 亚洲欧洲国产日韩| 在线观看人妻少妇| 亚洲欧美一区二区三区国产| 久久久久人妻精品一区果冻| 午夜激情久久久久久久| 桃花免费在线播放| 午夜日本视频在线| 久久99一区二区三区| 国产精品久久久久久久电影| 在线精品无人区一区二区三| 国产成人精品一,二区| 亚洲精品456在线播放app| 高清不卡的av网站| 国产欧美日韩综合在线一区二区| 亚洲精品美女久久av网站| 精品久久久噜噜| 在线观看www视频免费| 我要看黄色一级片免费的| 2018国产大陆天天弄谢| 亚洲欧洲国产日韩| 国产极品天堂在线| 国产免费福利视频在线观看| 一级毛片黄色毛片免费观看视频| 国产av码专区亚洲av| 色网站视频免费| videosex国产| 伦理电影大哥的女人| 国产午夜精品一二区理论片| 亚洲av成人精品一区久久| 极品少妇高潮喷水抽搐| 老熟女久久久| 18禁动态无遮挡网站| 一级黄片播放器| 99热全是精品| 最近的中文字幕免费完整| 亚洲综合精品二区| 亚洲欧美一区二区三区国产| 国产精品 国内视频| 视频在线观看一区二区三区| 国产探花极品一区二区| 午夜影院在线不卡| 九九爱精品视频在线观看| 嘟嘟电影网在线观看| 日韩免费高清中文字幕av| 男女边吃奶边做爰视频| 又粗又硬又长又爽又黄的视频| 亚洲av.av天堂| 亚洲怡红院男人天堂| 最新中文字幕久久久久| 波野结衣二区三区在线| 亚洲无线观看免费| 精品一区二区三卡| 夜夜爽夜夜爽视频| 精品一区二区三卡| 国产一区有黄有色的免费视频| av在线老鸭窝| 日韩视频在线欧美| 久久狼人影院| 80岁老熟妇乱子伦牲交| 赤兔流量卡办理| 美女中出高潮动态图| 成年女人在线观看亚洲视频| 国产精品人妻久久久久久| 最近2019中文字幕mv第一页| 亚洲色图综合在线观看| av又黄又爽大尺度在线免费看| 亚洲欧美精品自产自拍| 亚洲精品久久成人aⅴ小说 | av专区在线播放| 成年av动漫网址| 亚洲不卡免费看| 亚洲精品一区蜜桃| 日本91视频免费播放| 亚洲国产毛片av蜜桃av| 美女中出高潮动态图| 在线播放无遮挡| 久久精品国产亚洲av涩爱| 日韩电影二区| 亚洲国产成人一精品久久久| 99热全是精品| 激情五月婷婷亚洲| 亚洲国产精品专区欧美| 大香蕉久久成人网| 久久久亚洲精品成人影院| 在线看a的网站| 国产精品久久久久久久电影| av.在线天堂| 免费av不卡在线播放| kizo精华| 久久av网站| 看免费成人av毛片| 最近中文字幕2019免费版| 大话2 男鬼变身卡| 午夜福利在线观看免费完整高清在| 交换朋友夫妻互换小说| 纵有疾风起免费观看全集完整版| 91精品三级在线观看| 91精品一卡2卡3卡4卡| 成年人免费黄色播放视频| 插逼视频在线观看| 边亲边吃奶的免费视频| 久久女婷五月综合色啪小说| 岛国毛片在线播放| 国产成人精品在线电影| 亚洲欧美精品自产自拍| videosex国产| 精品熟女少妇av免费看| 日本黄大片高清| 亚洲激情五月婷婷啪啪| 欧美xxⅹ黑人| 熟女av电影| 久久久久久久国产电影| 免费观看性生交大片5| 亚洲精品乱久久久久久| 亚洲精品色激情综合| 美女国产视频在线观看| 欧美精品国产亚洲| 一级二级三级毛片免费看| 国产在视频线精品| 美女福利国产在线| 王馨瑶露胸无遮挡在线观看| 婷婷色综合www| 一本久久精品| 熟女人妻精品中文字幕| 久久精品国产亚洲网站| 99热6这里只有精品| 18禁动态无遮挡网站| 97在线人人人人妻| 美女中出高潮动态图| 人人妻人人爽人人添夜夜欢视频| 伦理电影大哥的女人| 狠狠婷婷综合久久久久久88av| 大话2 男鬼变身卡| 免费久久久久久久精品成人欧美视频 | 狠狠精品人妻久久久久久综合| 人妻少妇偷人精品九色| 日日摸夜夜添夜夜爱| 久久ye,这里只有精品| 99久久综合免费| 99久国产av精品国产电影| 三级国产精品片| 久久久久久久久久久丰满| 一级毛片aaaaaa免费看小| www.av在线官网国产| 国产女主播在线喷水免费视频网站| 免费观看a级毛片全部| 免费不卡的大黄色大毛片视频在线观看| 多毛熟女@视频| 五月玫瑰六月丁香| 国产国拍精品亚洲av在线观看| 国产片内射在线| 久久ye,这里只有精品| 777米奇影视久久| 日本wwww免费看| 色吧在线观看| 亚洲av福利一区| 国产亚洲午夜精品一区二区久久| 色哟哟·www| 久久影院123| 91在线精品国自产拍蜜月| 啦啦啦视频在线资源免费观看| 最近手机中文字幕大全| 久久久久精品性色| 国产视频内射| 乱人伦中国视频| 午夜免费观看性视频| 伦精品一区二区三区| 久久精品人人爽人人爽视色| 免费av不卡在线播放| 午夜日本视频在线| 国产一区二区在线观看av| 久久人人爽人人爽人人片va| 91在线精品国自产拍蜜月| 老司机影院成人| 亚洲国产欧美日韩在线播放| av线在线观看网站| a级毛色黄片| 国产精品久久久久久久久免| 精品亚洲成国产av| a级片在线免费高清观看视频| 波野结衣二区三区在线| 边亲边吃奶的免费视频| 美女主播在线视频| 2018国产大陆天天弄谢| 久久 成人 亚洲| 免费黄色在线免费观看| 久久久久久久国产电影| 少妇被粗大的猛进出69影院 | 女性被躁到高潮视频| 亚洲精品乱码久久久v下载方式| 亚洲av综合色区一区| 久久国产精品男人的天堂亚洲 | 在线观看一区二区三区激情| 国产伦理片在线播放av一区| 免费观看av网站的网址| 亚洲成人av在线免费| 波野结衣二区三区在线| 日韩一本色道免费dvd| 少妇丰满av| 在线观看三级黄色| 国产免费视频播放在线视频| 亚洲五月色婷婷综合| 国产在线一区二区三区精| 久久亚洲国产成人精品v| 欧美三级亚洲精品| 3wmmmm亚洲av在线观看| 国国产精品蜜臀av免费| 最近手机中文字幕大全| 啦啦啦啦在线视频资源| av在线app专区| 日韩,欧美,国产一区二区三区| 国产免费福利视频在线观看| 亚洲av中文av极速乱| 亚洲国产精品专区欧美| 色婷婷av一区二区三区视频| 99热国产这里只有精品6| xxx大片免费视频| 黄片播放在线免费| 春色校园在线视频观看| 建设人人有责人人尽责人人享有的| 亚洲精品一区蜜桃| 蜜桃在线观看..| 日本-黄色视频高清免费观看| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲婷婷狠狠爱综合网| 麻豆精品久久久久久蜜桃| 日韩精品免费视频一区二区三区 | 国产黄片视频在线免费观看| 嫩草影院入口| 久热久热在线精品观看| 97超碰精品成人国产| 亚洲精品aⅴ在线观看| 女人精品久久久久毛片| 性色avwww在线观看| 欧美成人午夜免费资源| tube8黄色片| 久久久欧美国产精品| 丰满乱子伦码专区| 春色校园在线视频观看| 天堂俺去俺来也www色官网| 丁香六月天网| 久久久久久久久久久免费av| 在线观看免费日韩欧美大片 | 亚洲国产成人一精品久久久| 亚洲精品一二三| 交换朋友夫妻互换小说| 中国三级夫妇交换| 18禁在线无遮挡免费观看视频| 蜜桃国产av成人99| 99re6热这里在线精品视频| 成人免费观看视频高清| 国产有黄有色有爽视频| 天天操日日干夜夜撸| 一级毛片 在线播放| 2018国产大陆天天弄谢| 日韩亚洲欧美综合| 欧美精品亚洲一区二区| 老熟女久久久| 亚洲性久久影院| 天天躁夜夜躁狠狠久久av| 免费不卡的大黄色大毛片视频在线观看| 男男h啪啪无遮挡| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 国产黄色免费在线视频| 免费av中文字幕在线| 国产 精品1| 精品一品国产午夜福利视频| 成人毛片60女人毛片免费| 欧美精品国产亚洲| 久久久久国产精品人妻一区二区| 十八禁高潮呻吟视频| 丝瓜视频免费看黄片| 国产伦理片在线播放av一区| 久久久久久久久久人人人人人人| 久久久亚洲精品成人影院| 精品一区二区免费观看| 人人妻人人添人人爽欧美一区卜| 国产亚洲精品久久久com| 亚洲人成网站在线播| 午夜视频国产福利| 亚洲第一区二区三区不卡| 亚洲伊人久久精品综合| 亚洲色图综合在线观看| 国产精品久久久久久精品古装| 日韩成人伦理影院| 国产黄频视频在线观看| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 国产不卡av网站在线观看| 午夜日本视频在线| 国产亚洲最大av| 免费黄色在线免费观看| 欧美精品高潮呻吟av久久| 看十八女毛片水多多多| 日本午夜av视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品456在线播放app| 精品一品国产午夜福利视频| av网站免费在线观看视频| 日本猛色少妇xxxxx猛交久久| 男人爽女人下面视频在线观看| 精品一品国产午夜福利视频| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 热re99久久国产66热| 高清毛片免费看| 成人亚洲精品一区在线观看| 美女主播在线视频| 观看美女的网站| 亚洲人与动物交配视频| 熟女av电影| 亚洲精品aⅴ在线观看| www.色视频.com| 丰满少妇做爰视频| 亚洲精品中文字幕在线视频| 99re6热这里在线精品视频| 成人手机av| 成人影院久久| 午夜激情福利司机影院| 亚洲在久久综合| 婷婷色综合大香蕉| 午夜福利视频精品| 91成人精品电影| av网站免费在线观看视频| 亚洲av电影在线观看一区二区三区| 国产精品嫩草影院av在线观看| 亚洲av成人精品一区久久| 国产av码专区亚洲av| 日韩中文字幕视频在线看片| 99久国产av精品国产电影| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 精品久久国产蜜桃| 老司机影院成人| 99久久精品一区二区三区| 亚洲av中文av极速乱| 观看美女的网站| 亚洲图色成人| 国产精品久久久久久久电影| xxx大片免费视频| 久久精品夜色国产| 麻豆成人av视频| 人人妻人人澡人人看| 99久久精品国产国产毛片| 亚洲丝袜综合中文字幕| 街头女战士在线观看网站| 最后的刺客免费高清国语| 久久99热6这里只有精品| 亚洲,欧美,日韩| 成人毛片a级毛片在线播放| 一级片'在线观看视频| 99九九在线精品视频| 熟妇人妻不卡中文字幕| 亚洲在久久综合| 亚洲精品日韩在线中文字幕| 2018国产大陆天天弄谢| 韩国高清视频一区二区三区| 久久久久久久久久成人| 又大又黄又爽视频免费| 国内精品宾馆在线| 久久久欧美国产精品| av免费观看日本| 欧美老熟妇乱子伦牲交| 国产 一区精品| av国产久精品久网站免费入址| 天天影视国产精品| 亚洲精品亚洲一区二区| 人人澡人人妻人| 国产69精品久久久久777片| 免费av不卡在线播放| 国产欧美日韩综合在线一区二区| 美女cb高潮喷水在线观看| 国产精品麻豆人妻色哟哟久久| 这个男人来自地球电影免费观看 | 亚洲av中文av极速乱| 一级二级三级毛片免费看| 飞空精品影院首页| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡动漫免费视频| 日韩亚洲欧美综合| 热99久久久久精品小说推荐| 欧美人与性动交α欧美精品济南到 | 亚洲综合色网址| 婷婷色av中文字幕| 人体艺术视频欧美日本| 男女高潮啪啪啪动态图| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 久久综合国产亚洲精品| av线在线观看网站| 狠狠婷婷综合久久久久久88av| 大片电影免费在线观看免费| 午夜激情av网站| 久久久久国产网址| 精品久久蜜臀av无| 妹子高潮喷水视频| 不卡视频在线观看欧美| 亚洲综合色惰| 三级国产精品片| 成人免费观看视频高清| 午夜久久久在线观看| 中文字幕制服av| 狠狠婷婷综合久久久久久88av| 国产男人的电影天堂91| 一级黄片播放器| 女性生殖器流出的白浆| 国产男女内射视频| 啦啦啦啦在线视频资源| 99国产综合亚洲精品| 中文精品一卡2卡3卡4更新| 久久久精品区二区三区| 最近中文字幕2019免费版| 久久久精品94久久精品| 久久久久久久久久久丰满| 天天躁夜夜躁狠狠久久av| 天堂8中文在线网| 欧美 日韩 精品 国产| 全区人妻精品视频| 成人影院久久| 女的被弄到高潮叫床怎么办| 中文天堂在线官网| 少妇猛男粗大的猛烈进出视频| 人妻 亚洲 视频| 亚洲欧洲国产日韩| a 毛片基地| 国产精品.久久久| 激情五月婷婷亚洲| 精品亚洲乱码少妇综合久久| 边亲边吃奶的免费视频| 亚洲色图综合在线观看| 免费人成在线观看视频色| 亚洲精品日韩av片在线观看| 男人爽女人下面视频在线观看| 国产欧美亚洲国产| 亚洲国产欧美在线一区| 免费日韩欧美在线观看| 国产探花极品一区二区| 大片电影免费在线观看免费| 久久久久久久大尺度免费视频| 久久99一区二区三区| 亚洲av二区三区四区| 亚洲精品,欧美精品| 日本爱情动作片www.在线观看| 久久精品国产a三级三级三级| 91午夜精品亚洲一区二区三区| 18禁在线播放成人免费| 精品亚洲成a人片在线观看| 母亲3免费完整高清在线观看 | 午夜福利影视在线免费观看| 99re6热这里在线精品视频| 国产国拍精品亚洲av在线观看| 亚洲美女搞黄在线观看| 天天躁夜夜躁狠狠久久av| 午夜91福利影院| 国产成人freesex在线| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av天美| 国产极品天堂在线| 国产亚洲精品久久久com| 免费大片黄手机在线观看| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 如何舔出高潮| 国产精品无大码| 国产精品久久久久久精品电影小说| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡 | 五月伊人婷婷丁香| 久久久久网色| 国产探花极品一区二区| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 成人手机av| a 毛片基地| 国产av精品麻豆| 校园人妻丝袜中文字幕| 99久久精品一区二区三区| 十分钟在线观看高清视频www| 18禁动态无遮挡网站| 国产极品天堂在线| 女性被躁到高潮视频| .国产精品久久| 久久国产亚洲av麻豆专区| 在线播放无遮挡| 国产精品免费大片| 又黄又爽又刺激的免费视频.| 成人国产麻豆网| 美女视频免费永久观看网站| 亚洲精品自拍成人| 老司机亚洲免费影院| 99精国产麻豆久久婷婷| 亚洲高清免费不卡视频| 亚洲久久久国产精品| 亚洲国产日韩一区二区| 777米奇影视久久| 97在线人人人人妻| 视频区图区小说| 丰满饥渴人妻一区二区三| 亚洲精品乱码久久久久久按摩| 国产精品嫩草影院av在线观看| 最近中文字幕2019免费版| av一本久久久久| 天天影视国产精品| 久久久久久伊人网av| 国产爽快片一区二区三区| 国产精品无大码| 亚洲精品成人av观看孕妇| 国产免费一级a男人的天堂| 好男人视频免费观看在线| 欧美日本中文国产一区发布| 久久午夜综合久久蜜桃| 男女无遮挡免费网站观看| 色吧在线观看| 国产乱人偷精品视频| 26uuu在线亚洲综合色| 99热这里只有是精品在线观看| 成人毛片60女人毛片免费| 国产在视频线精品| 大陆偷拍与自拍| 一级毛片我不卡| 国产男女超爽视频在线观看| 亚洲婷婷狠狠爱综合网| 大香蕉久久网| 国产高清有码在线观看视频| 另类亚洲欧美激情| 亚洲av福利一区| 91成人精品电影| 女人精品久久久久毛片| 国产亚洲精品第一综合不卡 | 人成视频在线观看免费观看| 高清欧美精品videossex| 久久久久久久久久人人人人人人| 毛片一级片免费看久久久久| 亚洲国产日韩一区二区| 视频中文字幕在线观看| 人妻一区二区av| 国产精品一区二区在线不卡| 日韩精品免费视频一区二区三区 | 国产欧美亚洲国产| 久久人人爽av亚洲精品天堂| 在线播放无遮挡| 男女国产视频网站| 午夜免费男女啪啪视频观看| 丰满乱子伦码专区| 久久久精品免费免费高清| 国产男女内射视频| 午夜免费观看性视频| 少妇的逼好多水| 一区二区日韩欧美中文字幕 | 成年美女黄网站色视频大全免费 | 女性生殖器流出的白浆| 亚洲欧美日韩卡通动漫| 欧美日本中文国产一区发布| 国产高清有码在线观看视频| 九草在线视频观看| 一二三四中文在线观看免费高清| 黄色配什么色好看| 亚洲欧美日韩卡通动漫| 尾随美女入室| 制服人妻中文乱码| 日韩,欧美,国产一区二区三区| 青春草亚洲视频在线观看| 另类亚洲欧美激情| 国产高清国产精品国产三级| 亚洲人成网站在线观看播放| 日本猛色少妇xxxxx猛交久久| 日本欧美视频一区| 国产成人精品婷婷| 欧美一级a爱片免费观看看| 亚州av有码| 国产色婷婷99| 午夜激情久久久久久久| 精品视频人人做人人爽| 色哟哟·www| 人妻 亚洲 视频| 欧美另类一区| 欧美激情 高清一区二区三区| 亚洲情色 制服丝袜| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| 国产高清不卡午夜福利| 夜夜骑夜夜射夜夜干| 亚洲精品aⅴ在线观看|