• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Hydrostatic Pressure on Input Power Flow in Submerged Ring-stiffened Cylindrical Shells

    2011-06-07 07:52:30
    船舶力學(xué) 2011年3期
    關(guān)鍵詞:靜水壓力華中科技大學(xué)殼體

    (Department of Naval Architecture and Ocean Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)

    Effect of Hydrostatic Pressure on Input Power Flow in Submerged Ring-stiffened Cylindrical Shells

    LIU Zhi-zhong,LI Tian-yun,ZHU Xiang,ZHANG Jun-jie

    (Department of Naval Architecture and Ocean Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)

    The input power flow for an infinite ring-stiffened cylindrical shell submerged in fluid induced by a cosine harmonic circumferential line force under conditions of a uniform external hydrostatic pressure field is investigated in this paper.The motion of the shell and the pressure field of the external fluid are described by the Flügge’s thin shell theory and the Helmholtz equation respectively.The effect of the external pressure field is modeled by including static prestress terms in the shell equations of motion.The effects of hydrostatic pressure on the input power flow are examined.The results show that the external pressure shifts the curves of input power flow to left along the frequency axis.The effect is more obvious with higher external pressure and circumferential mode.It will give some guidelines for vibration and noise control of this kind of shell.

    hydrostatic pressure;input power flow;ring-stiffened shell;submerged shell

    Biography:LIU Zhi-zhong(1980-),male,Ph.D.student of Huazhong University of Science and Technology,

    E-mail:hichrisliu@163.com.

    1 Introduction

    A submerged cylindrical shell reinforced by circumferential rings is the primary structure of submarine,torpedo and all kinds of submerged vehicles.The determination of the dynamic response of the structures is thus a significant subject in vibration and noise control area.The method of vibration power flow is an effective tool used in this area,and the concept of power flow was first definitely presented by Goyder and White[1-3].Zhang and Zhang[4]have introduced the concept of power flow into the analysis of periodic shells,and studied the input vibrational power flow from a cosine harmonic circumferential line force and the power transmitted by internal forces of the shell wall in vacuo.

    Fuller[5]has investigated the input mobility of an infinite elastic circular cylindrical shell filled with fluid.The spectral equations of motion of the shell-fluid system and the method of residues were employed to evaluate the mobility,and their physical interpretation was also discussed.Xu et al[6-7]have studied the vibration power flow input and transmission in a fluidfilled cylindrical shell.A technology of the spatial Fourier transforms and the inverse transforms was applied in their studies.

    Practically,a cylindrical shell submerged in water is always reinforced by rings or/and bulkheads.Mead and Bardell[8]researched free vibration of a thin cylindrical shell with periodic circumferential stiffeners.When periodic structure is surrounded by the fluid field,the space harmonic analysis method presented by Mead[9]has been widely used.Using this method,Xu[10]investigated the input power flow in a periodically stiffened shell filled with fluid.Yan[11-13]also studied the characteristics of the vibrational power flow propagation and sound radiation in an infinite submerged periodic ring-stiffened cylindrical shell by the same method.Burroughs[14]studied the fluid-loaded infinite circular cylindrical with doubly periodic ring supports forced by a point excitation and gave the analytical expression of far field acoustic radiation,which established the basal thought of this kind of problem.But the model he used is comparatively simple,only the normal force between the stiffeners and the shell was considered.

    When the structure is located in a dense medium such as water,there is a resultant stress field in the structure even though exists in the absence of any vibrations or acoustic loadings.The presence of this static additional stress state in the structure changes the structural response characteristics including,for example,the natural frequencies of vibration[15-16]and acoustic response of the structure[17].These effects will then subsequently result in a variation of forced vibration response of the structure as well.

    The purpose of the present study is to include the hydrostatic pressure field effects in the formulation of the coupled vibro-acoustic response of submerged ring-stiffened cylindrical shells.There exists an extensive literature discussing the dynamic response of prestressed shells[18-20].Xie and Luo[21]studied the acoustic radiation properties of ring-stiffened cylindrical shells submerged in fluid by means of Hamilton’s principle and Green function,and the effects of hydrostatic pressure and rings on the acoustic radiation of the shells were also discussed.

    In this paper,the space harmonic analysis is extended to investigate the input power flow induced by a cosine harmonic line force for an infinite ring-stiffened cylindrical shell submerged in water.The effects of hydrostatic pressure on the input power flow are examined.

    2 Forced vibration of the coupled system

    An infinite thin-walled periodic ring-stiffened cylindrical shell submerged in fluid is considered,as shown in Fig.1.The shell is characterized by its mean radius R,wall thickness h,mass density ρs,Young’s modulus E and the Poisson’s ratio μ.The density of the external fluid is ρfand the sound velocity in it is Cf.The ring stiffeners have uniform rectangular section with width b and height d,attached at x=mL(L is the stiffener spacing,m=0,±1,±2,…).The connections are rigid,so that,at each line of attachment,the shell and the stiffeners have the same linear velocity and angular velocity.The inside stiffeners may apply axial force,shear and moments on the shell.To simplify the problem,it is assumed that the stiffeners are located on the inner wall of the shell,so that their interaction with the external fluid can be ignored.

    Fig.1 Periodic ring-stiffened cylindrical shell immersed in fluid and coordinate

    2.1 The motion equations of the periodic shell

    The shell is excited by a harmonic line pressure F,acting on x=0,expressed as

    where F0is amplitude of the pressure,ω is the circular frequency,n is the circumferential model order and δ is the Dirac delta function.

    The cylindrical coordinate system x,θ,( )r is adopted in the analysis shown in Fig.1.The equations of structure motion are taken from Flügge’s thin shell theory[22]as

    where,D=R2(1- μ2)/(Eh),δ′=dδ/dx,Pfis the acoustic pressure,Fu,m,Fv,m,Fw,mand Mmare the sideward forces and moments of the mth stiffener acting on the shell,respectively.

    2.2 Fluid acoustic equations

    The fluid is assumed to be non-viscous,isotropic and irrotational which satisfies the acoustic wave equation.The equation of motion of the fluid can be written by Helmholtz equation in the cylindrical coordinate system x,θ,( )r as

    where the x,θ and r coordinate are the same as those of the shell.

    Applying variables separation method to solve the acoustic wave equation,the associated form of the pressure field is expressed as

    where subscript s denotes a particular branch of the dispersion curve;Pnsis the fluid acoustic pressure amplitude of every n and s;r ) is Hankel function of the second kind and order n;and kxare the radial and axial wave numbers respectively,and their relation is

    where kfis the free wave number,kf=ω/Cf.

    The displacement components of the shell are expressed in a travelling wave form as

    where Uns,Vnsand Wnsare the displacement amplitudes in the x,θ and r directions,respectively.

    As usual,the fluid velocity is continuous across the fluid-shell boundary,leading to the boundary condition

    Substituting Eqs.(5)and(7c)into Eq.(8),the fluid acoustic pressure amplitude Pnsis obtained as

    Introducing Eq.(9)into Eq.(5),acoustic pressure can be obtained as

    2.3 The response of the coupled system

    Introducing Eqs.(7),(10)into Eq.(2)and taking the Fourier transform,the following equations are obtained in the matrix form as

    where k is axial wave number in spectral domain.

    As the rings are periodic in x-axes direction,the forces in the stiffeners acting on the shell wall satisfy the periodicity condition as

    where Fu,0,Fv,0,Fw,0and M0are the forces or moments of 0th(m=0)stiffener.By using Poisson sum formula[23],the following equations can be obtained:

    Let matrix I be the inverse of matrix L,then the spectral displacements can be obtained from Eq.(11)as follows

    Taking the inverse Fourier transform to Eq.(16),the shell displacement can be obtained as:

    where,km=kx+2mπ/L.

    Thus,the space displacement at x=0 is given by:

    Once the forces and moments of the 0th(x=0)stiffener in Eq.(17)are given,the shell response to the applied pressure load F can be easily solved.Applying the compatible condition of the forces and the displacements between the shell and the stiffeners at x=0,the reaction forces can be expressed as follows[10]:

    where,e1is the distance from the midsurface of the shell to the geometric center of the stiffener,K1~K6are given in the Ref.[10].

    Introducing Eq.(18)into Eq.(17),the shell displacement at x=0 can be obtained in matrix form as

    From Eq.(19),the displacements of the stiffened shell at x=0 can be easily solved as follows

    where,the elements of matrix Q can be written in terms of the element of matrix H from matrix theory and not be given for short.

    2.4 The input power flow of the coupled system

    For a structure excited by an external force,the magnitudes of vibration and sound radiation depend largely on the input power flow into the structure.Thus,it is important to study its characteristics of the input power flow.

    According to the definition of the input power flow[1],when a cosine harmonic line force is applied to the shell wall radially,the radial response of the shell wall at x=0 can be obtained from Eq.(20).Then,the total input power flow from this driving force is defined as follows

    where*denotes the complex conjugate,and

    The non-dimensional power flow is defined as

    3 Numerical computation and result discussion

    In this paper,an integrated numerical method discussed in Ref.[10]is employed to calculate the integral in Eq.(21).This method is to integrate numerically along the pure imaginary axis of the complex wave number domain in order to avoid singularities in the integrand function along the integration path.Structural damping is introduced into the shell material by modifying the Young’s modules E to be complex as E′=E 1-i( )η.Here,η is damping factor.

    Numerical computations are carried out subsequently and the input power flow from a cosine harmonic line force into a periodically ring-stiffened cylindrical shell submerged in fluid is studied.The following parameters of the coupled system have been used in the computations.The shell and the stiffener adopt the same material with E=1.92×1011N/m2,ρs=7 850kg/m3,μ=0.3 and η=0.02.The thickness-radius ratio of the shell is h/R=0.02.The fluid parameters are ρf=1 000kg/m3and cf=1 500m/s.The stiffener has a rectangular cross-section with width b=2h and height d=2h,and the stiffener spacing is L=0.4R.The amplitude of radial harmonic line pressure is supposed to be F0=1N/m.

    Fig.2 shows the non-dimensional input power flow P′inputinto a ring-stiffened shell and a non-stiffened shell versus the non-dimensional frequency Ω for circumferential mode order n=1,without considering the effect of hydrostatic pressure.

    In some frequency bands,such as 0.68<Ω<0.76 and 1.3<Ω<1.6,the power flow input into the stiffened shell is much less than that into a shell without stiffeners.These frequency bands are named non-propagating bands,and the other frequency bands are called propagating bands in which the input power flow into the ring-stiffened shell is close to(or even exceed)that into the shell without stiffeners.It can be seen that the stiffeners greatly influence the input power flow in non-propagating bands.At Ω=0.78 and Ω=1.34,the power flow into the stiffened shell achieves its maximum,and is much more than that into an unstiffened shell.In propagating bands,the difference between the results with stiffeners and those without stiffeners is large,too.

    Fig.2 Input power flow into the cylindrical shell submerged in fluid for n=1—ring-stiffened shell;┄non-stiffened shell

    Fig.3 shows the effect of hydrostatic pressure on input power flow into a ring-stiffened shell for circumferential mode n=0,1,and 5.There also exists propagating bands and nonpropagating bands for a stiffened shell considering the effect of external hydrostatic pressure.For n=0,the frequency bands of 0.70<Ω<0.76 and 1.3<Ω<1.6 are non-propagating bands,and the other frequency bands are propagating bands.The non-propagating bands for n=5 are the frequency bands of 0.5<Ω<0.72 and 1.4<Ω<1.6.As shown in these drawings,the curves of input power flow are shifted to left along the frequency axis mainly in non-propagating bands.It is because that the external hydrostatic pressure decreases the stiffness of the shell.Consequently,its natural frequency decreases due to the external hydrostatic pressure.The influence of hydrostatic pressure with p0=1MPa on the power flow is very small for low circumferential mode n=0 and 1.However,this influence for n=5 becomes larger.When the external hydrostatic pressure increases to p0=3MPa,the influence of hydrostatic pressure on the power flow is larger especially for the high mode n=5.

    Since the hydrostatic pressure shifts the curves of input power flow into a submerged ring-stiffened shell,the peaks and valleys of the power flow are shifted.It is significant for the vibration and noise of control.

    Fig.3 Effect of hydrostatic pressure on input power flow into a ring-stiffened shell(a)n=0;(b)n=1;(c)n=5;— p0=0,… p0=1MPa,┄ p0=3MPa

    4 Conclusions

    By adopting a periodic structure theory,a periodically ring-stiffened cylindrical submerged shell has been investigated.The input power flow for this coupled system induced by a cosine harmonic circumferential line force has been obtained and the effect of external hydrostatic pressure on the input power flow has also been examined.

    There are propagating bands and non-propagating bands for a stiffened shell.The high external hydrostatic pressure influences the input power flow into the coupled system mainly in non-propagating bands.The external pressure will shift the curves of power flow to left along the frequency axis.With increasing the circumferential mode n and the external hydrostatic pressure p0,the effect of hydrostatic pressure on input power flow is more obvious.Hydrostatic pressure of a relative high value cannot be neglected when analyzing the vibration and noise of a submerged stiffened shell.

    [1]Goyder H G D,White R G.Vibrational power flow from machines into built-up structures,part I:Introduction and approximate analyses of beam and plate-like foundations[J].Journal of Sound and Vibration,1980,68(1):59-75.

    [2]Goyder H G D,White R G.Vibration power flow from machines into built-up structures,Part II:wave propagation and power flow in beam-stiffened plates[J].Journal of Sound and Vibration 1980,68(1):77-96.

    [3]Goyder H G D,White R G.Vibration power flow from machines into built-up structures,Part III:power flow through isolation systems[J].Journal of Sound and Vibration 1980,68(1):97-117.

    [4]Zhang W H,Zhang X M.Vibrational power flow in a cylindrical shell with periodic stiffeners[C]//ASME-PVP.Nashville,USA,1991.

    [5]Fuller C R.The input mobility of an infinite circular cylindrical shell filled with fluid[J].Journal of Sound and Vibration,1983,87:409-427.

    [6]Xu M B,Zhang X M.Vibration power flow in a fluid-filled cylindrical shell[J].Journal of Sound and Vibration,1998,218(4):587-598.

    [7]Xu M B,Zhang W H.Vibrational power flow input and transmission in a circular cylindrical shell filled with fluid[J].Journal of Sound and Vibration,2000,234(3):387-403.

    [8]Mead D J,Bardell N S.Free vibration of a thin cylindrical shell with periodic circumferential stiffeners[J].Journal of Sound and Vibration,1987,115(3):499-520.

    [9]Mead D J,Pujara K K.Space-harmonic analysis of periodically supported beams:response to convected random loading[J].Journal of Sound and Vibration,1971,14:525-541.

    [10]Xu M B,Zhang X M,Zhang W H.Space-harmonic analysis of input power flow in a periodically stiffened shell filled with fluid[J].Journal of Sound and Vibration,1999,222:531-546.

    [11]Yan J,Li T Y,Liu T G,et al.Characteristics of the vibrational power flow propagation in a submerged periodic ringstiffened cylindrical shell[J].Applied Acoustics,2006,67:550-569.

    [12]Yan J,Li T Y,Liu J X,et al.Space harmonic analysis of sound radiation from a submerged periodic ring-stiffened cylindrical shell[J].Applied Acoustics,2006,67(8):743-755.

    [13]Yan J,Li T Y,Liu J X,et al.Input power flow in a submerged infinite cylindrical shell with doubly periodic supports[J].Applied Acoustics,2008,69(8):681-690.

    [14]Burroughs B C.Acoustic radiation from fluid-loaded infinite circular cylindrical with double periodic ring supports[J].Journal of Acoustical Society of America,1984,75:714-722.

    [15]Zhang Y L,Daniel G G,Jason M R.Vibration of prestressed thin cylindrical shells conveying fluid[J].Thin-Walled Structurs,2003,41(12):1103-1127.

    [16]Zhang Y L,Reese J M,Gorman D G.Finite element analysis of the vibratory characteristics of cylindrical shells conveying fluid[J].Computer Methods in Applied Mechanics and Engineering,2002,191(45):5207-5231.

    [17]Keltie R F.The effect of hydrostatic pressure fields on the structural and acoustic response of cylindrical shells[J].Journal of the Acoustical Society of America,1983,79(3):595-603.

    [18]Meish V F,Kairov A S.Vibrations of reinforced cylindrical shells with initial deflections under nonstationary loads[J].International Applied Mechanics,2005,41(1):42-48.

    [19]Arturs K.Vibration and stability of prestressed shells[J].Nuclear Engineering and Design,1972,20(1):131-147.

    [20]Luo D P,Xu Z P.Vibration characteristics of submerged ring-stiffened cylindrical shells[J].Shipbuilding of China,1990(2):67-79.(in Chinese)

    [21]Xie G M,Luo D P.Acoustic radiation analysis of ring-stiffened cylindrical shells in fluids[J].Shipbuilding of China,1995(4):37-45.(in Chinese)

    [22]Wilhelm Flügge.Stresses in Shells[M].Second edition.Springer-Verlag,New York,1973.

    [23]Mace B R.Periodically stiffened fluid-loaded plates,II:response to line and point forces[J].Journal of Sound and Vibration,1980,73:487-504.

    靜水壓力對(duì)水下環(huán)肋圓柱殼輸入功率流的影響

    劉志忠,李天勻,朱 翔,張俊杰

    (華中科技大學(xué)船海學(xué)院,武漢 430074)

    研究了考慮靜水壓力時(shí)水下環(huán)肋圓柱殼在周向余弦線分布力激勵(lì)下的輸入功率流特性。圓柱殼體和外流場(chǎng)的振動(dòng)分別由Flügge殼體方程和Helmholtz波動(dòng)方程描述,靜水壓力的影響以額外應(yīng)力的形式計(jì)入殼體振動(dòng)方程當(dāng)中。探討了靜水壓力對(duì)輸入功率流的影響。結(jié)果表明外部靜水壓力使輸入功率流曲線沿頻率軸往左移動(dòng),即往低頻方向移動(dòng)。靜水壓力越大,影響越大;周向模態(tài)數(shù)越大,影響越大。文中結(jié)果對(duì)水下環(huán)肋圓柱殼的振動(dòng)與噪聲控制有一定的指導(dǎo)意義。

    靜水壓力;輸入功率流;環(huán)肋圓柱殼;水下圓柱殼

    O328

    A

    劉志忠(1980-),男,華中科技大學(xué)船海學(xué)院博士研究生;

    張俊杰(1982-),男,華中科技大學(xué)船海學(xué)院博士研究生。

    O328

    A

    1007-7294(2011)03-0301-12

    date:2010-06-10

    李天勻(1969-),男,華中科技大學(xué)船海學(xué)院教授,博士生導(dǎo)師;

    朱 翔(1980-),男,博士,華中科技大學(xué)船海學(xué)院講師;

    猜你喜歡
    靜水壓力華中科技大學(xué)殼體
    華中科技大學(xué)機(jī)械科學(xué)與工程學(xué)院(二)
    華中科技大學(xué)機(jī)械科學(xué)與工程學(xué)院(一)
    減速頂殼體潤(rùn)滑裝置的研制與構(gòu)想
    汽車(chē)變速箱殼體零件自動(dòng)化生產(chǎn)線
    二次供水豎向分區(qū)技術(shù)分析
    如何做好救生筏壓力釋放器及相關(guān)部件的連接
    彰顯中國(guó)化馬克思主義的魅力
    ——記華中科技大學(xué)哲學(xué)系教授歐陽(yáng)康
    油泵殼體的沖壓工藝及模具設(shè)計(jì)
    TH型干燥筒殼體的焊接
    焊接(2016年2期)2016-02-27 13:01:22
    《營(yíng)銷(xiāo)禮儀》課程構(gòu)建實(shí)訓(xùn)主導(dǎo)型教學(xué)模式的探討——以華中科技大學(xué)武昌分校為例
    女人十人毛片免费观看3o分钟| 超碰av人人做人人爽久久 | 欧美成人性av电影在线观看| 三级毛片av免费| 国产v大片淫在线免费观看| 亚洲中文日韩欧美视频| 欧美三级亚洲精品| 久久久久久久久久黄片| 美女cb高潮喷水在线观看| 亚洲人成网站在线播| 免费看日本二区| 色av中文字幕| 99国产精品一区二区三区| 日韩免费av在线播放| 色综合亚洲欧美另类图片| 日本a在线网址| 亚洲人成电影免费在线| 久久人妻av系列| 黑人欧美特级aaaaaa片| 国产综合懂色| www.999成人在线观看| 露出奶头的视频| 亚洲av熟女| 亚洲国产色片| 免费看日本二区| 成人欧美大片| 99久久九九国产精品国产免费| 亚洲最大成人中文| 亚洲国产精品合色在线| 少妇高潮的动态图| 国产爱豆传媒在线观看| 亚洲真实伦在线观看| 久久人人精品亚洲av| 美女黄网站色视频| 亚洲性夜色夜夜综合| 久久久久国内视频| 欧美成人a在线观看| 国产精品久久久久久精品电影| 91久久精品电影网| av欧美777| 美女免费视频网站| 成人国产一区最新在线观看| 国产爱豆传媒在线观看| 日本黄大片高清| 12—13女人毛片做爰片一| 欧美+亚洲+日韩+国产| 国产av在哪里看| 国产高潮美女av| 高清日韩中文字幕在线| 草草在线视频免费看| 国产伦精品一区二区三区视频9 | 中文亚洲av片在线观看爽| 天堂网av新在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成网站在线播| 国产色爽女视频免费观看| 久久久久免费精品人妻一区二区| 熟女电影av网| 亚洲精品色激情综合| 黄片大片在线免费观看| 欧美大码av| av天堂中文字幕网| 日本精品一区二区三区蜜桃| 在线免费观看不下载黄p国产 | 国产久久久一区二区三区| 在线十欧美十亚洲十日本专区| 欧美av亚洲av综合av国产av| 欧美一区二区国产精品久久精品| 一进一出抽搐动态| 成人欧美大片| 久久人人精品亚洲av| 国产黄色小视频在线观看| 成人鲁丝片一二三区免费| 欧美绝顶高潮抽搐喷水| av国产免费在线观看| 亚洲欧美一区二区三区黑人| 国产精品永久免费网站| 中文亚洲av片在线观看爽| 亚洲av美国av| 一本一本综合久久| 国产精品久久久久久久久免 | 国产成人影院久久av| www日本在线高清视频| 美女被艹到高潮喷水动态| 国产av麻豆久久久久久久| 在线国产一区二区在线| 可以在线观看毛片的网站| 成人18禁在线播放| 丁香六月欧美| 在线十欧美十亚洲十日本专区| 此物有八面人人有两片| 一夜夜www| 欧美另类亚洲清纯唯美| 中文字幕高清在线视频| 中文字幕人妻熟人妻熟丝袜美 | 久久婷婷人人爽人人干人人爱| 精品一区二区三区视频在线观看免费| a级一级毛片免费在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产久久久一区二区三区| 精品人妻一区二区三区麻豆 | 久久久久国产精品人妻aⅴ院| 精品久久久久久,| 少妇裸体淫交视频免费看高清| 给我免费播放毛片高清在线观看| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 色综合站精品国产| 精品99又大又爽又粗少妇毛片 | 成人国产综合亚洲| 久久99热这里只有精品18| 一区二区三区免费毛片| av专区在线播放| 最好的美女福利视频网| 母亲3免费完整高清在线观看| 国产单亲对白刺激| 精品国产亚洲在线| 舔av片在线| 欧美中文日本在线观看视频| 欧美激情久久久久久爽电影| 一进一出好大好爽视频| 免费在线观看成人毛片| 亚洲成av人片在线播放无| 精品久久久久久,| 免费搜索国产男女视频| 看免费av毛片| 日韩欧美精品v在线| 狠狠狠狠99中文字幕| 精品久久久久久成人av| 欧美日韩黄片免| 国产亚洲欧美在线一区二区| 欧美一级毛片孕妇| 精品国产超薄肉色丝袜足j| 十八禁网站免费在线| 18禁黄网站禁片午夜丰满| 国产精品亚洲美女久久久| 3wmmmm亚洲av在线观看| 在线观看日韩欧美| 99久久九九国产精品国产免费| 国产私拍福利视频在线观看| 免费在线观看亚洲国产| 亚洲av五月六月丁香网| 久久久久久久久久黄片| 蜜桃亚洲精品一区二区三区| 精品一区二区三区视频在线观看免费| 99久久精品热视频| 99热只有精品国产| 久久久国产成人免费| 国产三级黄色录像| 悠悠久久av| 亚洲欧美日韩无卡精品| 啦啦啦免费观看视频1| 国产免费av片在线观看野外av| 亚洲国产精品成人综合色| www国产在线视频色| 又黄又爽又免费观看的视频| 亚洲精品成人久久久久久| 男人的好看免费观看在线视频| 免费看美女性在线毛片视频| 99热这里只有是精品50| eeuss影院久久| 午夜老司机福利剧场| 人妻丰满熟妇av一区二区三区| 亚洲精品一区av在线观看| 99国产精品一区二区蜜桃av| 波多野结衣巨乳人妻| 国产真人三级小视频在线观看| 51午夜福利影视在线观看| 亚洲精品乱码久久久v下载方式 | 岛国在线免费视频观看| 国内精品久久久久精免费| 午夜影院日韩av| 欧美成人a在线观看| 免费在线观看日本一区| 草草在线视频免费看| 久99久视频精品免费| 国产伦一二天堂av在线观看| 久久中文看片网| 老司机午夜十八禁免费视频| 国产亚洲精品久久久久久毛片| 亚洲国产欧美人成| 国产aⅴ精品一区二区三区波| 亚洲专区中文字幕在线| 一本久久中文字幕| 成人国产综合亚洲| 乱人视频在线观看| 国产综合懂色| 欧美av亚洲av综合av国产av| 女警被强在线播放| 小说图片视频综合网站| 亚洲七黄色美女视频| 国产av一区在线观看免费| 成人av一区二区三区在线看| 欧美成人性av电影在线观看| 免费av观看视频| 少妇丰满av| 真人一进一出gif抽搐免费| 搞女人的毛片| 亚洲,欧美精品.| 久久久久性生活片| 波野结衣二区三区在线 | 成人18禁在线播放| 久久国产乱子伦精品免费另类| 久久精品91无色码中文字幕| 香蕉久久夜色| 天堂动漫精品| 校园春色视频在线观看| 人人妻,人人澡人人爽秒播| 99久久无色码亚洲精品果冻| 国产亚洲精品综合一区在线观看| 国产主播在线观看一区二区| 女警被强在线播放| 女同久久另类99精品国产91| 国产精品一区二区三区四区久久| 黄色视频,在线免费观看| 欧美成人一区二区免费高清观看| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 男插女下体视频免费在线播放| 一本综合久久免费| 黄片小视频在线播放| 两人在一起打扑克的视频| 亚洲色图av天堂| 亚洲国产欧美人成| 久久久精品大字幕| 国产真人三级小视频在线观看| 国产真实乱freesex| 欧美日韩精品网址| 欧美日韩中文字幕国产精品一区二区三区| 国内久久婷婷六月综合欲色啪| 好男人电影高清在线观看| 啪啪无遮挡十八禁网站| 中文字幕久久专区| 欧美区成人在线视频| 国产成人aa在线观看| 国产精华一区二区三区| 老司机午夜福利在线观看视频| 国产熟女xx| 女人高潮潮喷娇喘18禁视频| www.色视频.com| 国产一区二区在线av高清观看| 18禁裸乳无遮挡免费网站照片| 中文字幕精品亚洲无线码一区| 99精品久久久久人妻精品| 久久久久久久亚洲中文字幕 | 三级男女做爰猛烈吃奶摸视频| 听说在线观看完整版免费高清| 精品人妻一区二区三区麻豆 | aaaaa片日本免费| 亚洲电影在线观看av| 天美传媒精品一区二区| 中文资源天堂在线| 亚洲av免费在线观看| 校园春色视频在线观看| 国产精品影院久久| 久久午夜亚洲精品久久| 国产老妇女一区| 国内毛片毛片毛片毛片毛片| 麻豆一二三区av精品| 国产精品久久久人人做人人爽| 久久久国产成人精品二区| 一进一出抽搐gif免费好疼| 母亲3免费完整高清在线观看| 91九色精品人成在线观看| 老汉色av国产亚洲站长工具| 99热这里只有是精品50| 香蕉av资源在线| 51国产日韩欧美| 精品国产亚洲在线| 十八禁人妻一区二区| 免费看光身美女| 国产精品爽爽va在线观看网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 九九久久精品国产亚洲av麻豆| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 一本综合久久免费| 波多野结衣高清无吗| 欧美日本亚洲视频在线播放| 床上黄色一级片| 亚洲国产精品成人综合色| 美女高潮的动态| 午夜免费男女啪啪视频观看 | 精品熟女少妇八av免费久了| 老汉色∧v一级毛片| 中国美女看黄片| 无限看片的www在线观看| 国产精品三级大全| 啦啦啦观看免费观看视频高清| 国产精品av视频在线免费观看| 久久久国产成人精品二区| 国产乱人视频| 一级作爱视频免费观看| 又黄又爽又免费观看的视频| 久久精品国产自在天天线| 成人18禁在线播放| 一个人看视频在线观看www免费 | 中文字幕人妻丝袜一区二区| 国产精品亚洲av一区麻豆| 色综合站精品国产| 亚洲性夜色夜夜综合| 91麻豆av在线| 国产毛片a区久久久久| 久久久久久久久久黄片| 精品久久久久久成人av| 精品不卡国产一区二区三区| 一二三四社区在线视频社区8| 国产麻豆成人av免费视频| 欧美日本视频| 精华霜和精华液先用哪个| 老司机午夜十八禁免费视频| 神马国产精品三级电影在线观看| 女警被强在线播放| 伊人久久大香线蕉亚洲五| 亚洲成av人片免费观看| 中文亚洲av片在线观看爽| 母亲3免费完整高清在线观看| 日韩国内少妇激情av| 欧美性猛交黑人性爽| 啦啦啦韩国在线观看视频| 亚洲激情在线av| 欧美极品一区二区三区四区| 欧美在线黄色| 婷婷丁香在线五月| 男人舔女人下体高潮全视频| 色综合欧美亚洲国产小说| 国产av在哪里看| 日韩有码中文字幕| 国产精品综合久久久久久久免费| 成年人黄色毛片网站| 亚洲成人免费电影在线观看| 男插女下体视频免费在线播放| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 黄色日韩在线| 亚洲精华国产精华精| 99国产精品一区二区三区| 免费大片18禁| 亚洲最大成人中文| 免费人成视频x8x8入口观看| 激情在线观看视频在线高清| 69av精品久久久久久| 欧美乱色亚洲激情| 亚洲欧美一区二区三区黑人| 色老头精品视频在线观看| 免费看美女性在线毛片视频| 免费看光身美女| 性色av乱码一区二区三区2| 国产伦在线观看视频一区| 亚洲国产欧美人成| 亚洲午夜理论影院| 亚洲av二区三区四区| 又爽又黄无遮挡网站| 亚洲精品在线观看二区| 国内精品久久久久久久电影| 人人妻,人人澡人人爽秒播| 美女 人体艺术 gogo| 成人av一区二区三区在线看| 狂野欧美白嫩少妇大欣赏| 日本免费一区二区三区高清不卡| 成人性生交大片免费视频hd| ponron亚洲| 精品一区二区三区视频在线 | 青草久久国产| 日韩欧美 国产精品| 久久久国产成人免费| 国产免费一级a男人的天堂| 毛片女人毛片| 1000部很黄的大片| 三级毛片av免费| 日韩欧美国产一区二区入口| 首页视频小说图片口味搜索| 国产一区二区在线观看日韩 | 国产三级在线视频| 首页视频小说图片口味搜索| 男人舔女人下体高潮全视频| 亚洲第一电影网av| 18禁国产床啪视频网站| 日本一本二区三区精品| 国产精品一区二区三区四区久久| 啦啦啦韩国在线观看视频| 国产黄a三级三级三级人| 国产av麻豆久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 中文资源天堂在线| 久久6这里有精品| 白带黄色成豆腐渣| 国模一区二区三区四区视频| 日韩中文字幕欧美一区二区| 一本一本综合久久| 日韩精品青青久久久久久| 久久久久性生活片| 国产一区在线观看成人免费| 精品久久久久久久久久久久久| 免费电影在线观看免费观看| 精品一区二区三区av网在线观看| 九色成人免费人妻av| 夜夜躁狠狠躁天天躁| 此物有八面人人有两片| 国语自产精品视频在线第100页| 亚洲一区二区三区色噜噜| 综合色av麻豆| 99久国产av精品| 我的老师免费观看完整版| 国产精品精品国产色婷婷| 日韩欧美在线二视频| 亚洲成人久久性| 99久久无色码亚洲精品果冻| 小蜜桃在线观看免费完整版高清| 亚洲美女视频黄频| 一级作爱视频免费观看| 一个人看的www免费观看视频| 99精品欧美一区二区三区四区| 国产 一区 欧美 日韩| 久久精品国产亚洲av香蕉五月| 性欧美人与动物交配| 亚洲成人中文字幕在线播放| 尤物成人国产欧美一区二区三区| 老汉色av国产亚洲站长工具| 韩国av一区二区三区四区| 亚洲av一区综合| 亚洲va日本ⅴa欧美va伊人久久| 亚洲七黄色美女视频| 国产精品99久久99久久久不卡| 欧美xxxx黑人xx丫x性爽| 在线观看免费视频日本深夜| 欧美日韩一级在线毛片| av天堂在线播放| 亚洲欧美精品综合久久99| 国产精品av视频在线免费观看| 国产又黄又爽又无遮挡在线| 国产亚洲欧美在线一区二区| 日韩国内少妇激情av| 国产精品 国内视频| 亚洲 欧美 日韩 在线 免费| 少妇人妻精品综合一区二区 | 亚洲国产精品999在线| 国产成人啪精品午夜网站| 亚洲,欧美精品.| 国产欧美日韩精品一区二区| 免费无遮挡裸体视频| 啪啪无遮挡十八禁网站| 亚洲一区二区三区色噜噜| 无人区码免费观看不卡| 国产真人三级小视频在线观看| 99久久成人亚洲精品观看| 在线免费观看的www视频| 国产av麻豆久久久久久久| 叶爱在线成人免费视频播放| 国产精品一区二区三区四区免费观看 | aaaaa片日本免费| 欧美在线黄色| 久久久久久久亚洲中文字幕 | aaaaa片日本免费| eeuss影院久久| 国产又黄又爽又无遮挡在线| 久久久国产精品麻豆| 免费看光身美女| 在线观看午夜福利视频| 每晚都被弄得嗷嗷叫到高潮| 欧美3d第一页| 国产蜜桃级精品一区二区三区| 国内精品久久久久精免费| 亚洲性夜色夜夜综合| 免费无遮挡裸体视频| 熟妇人妻久久中文字幕3abv| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜添小说| 宅男免费午夜| 一本精品99久久精品77| 亚洲精品成人久久久久久| 女人被狂操c到高潮| 大型黄色视频在线免费观看| 日本一二三区视频观看| 欧美最新免费一区二区三区 | 淫秽高清视频在线观看| 成年版毛片免费区| 久久久国产成人免费| 亚洲美女黄片视频| 一本精品99久久精品77| 一个人免费在线观看的高清视频| 成年版毛片免费区| 99精品久久久久人妻精品| 精品久久久久久,| 久久久久精品国产欧美久久久| 十八禁网站免费在线| 国产伦在线观看视频一区| 中国美女看黄片| 日韩人妻高清精品专区| 色综合欧美亚洲国产小说| 岛国视频午夜一区免费看| 成人精品一区二区免费| 中文字幕人妻丝袜一区二区| 真人做人爱边吃奶动态| 久久久国产精品麻豆| 欧美不卡视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 国产三级中文精品| 99热这里只有精品一区| 国产欧美日韩精品亚洲av| 久久精品亚洲精品国产色婷小说| 一边摸一边抽搐一进一小说| 又粗又爽又猛毛片免费看| 亚洲男人的天堂狠狠| 在线免费观看的www视频| 久久精品国产综合久久久| 亚洲国产精品成人综合色| 国产免费一级a男人的天堂| 狂野欧美激情性xxxx| 国产私拍福利视频在线观看| 18+在线观看网站| 免费人成视频x8x8入口观看| 每晚都被弄得嗷嗷叫到高潮| 老司机午夜福利在线观看视频| 久久久久久久久久黄片| 真人做人爱边吃奶动态| 最近视频中文字幕2019在线8| 香蕉久久夜色| 免费观看人在逋| 免费av观看视频| 色综合站精品国产| 99热精品在线国产| 亚洲国产欧美人成| 99久久精品一区二区三区| 哪里可以看免费的av片| av专区在线播放| 哪里可以看免费的av片| 啦啦啦韩国在线观看视频| 国产欧美日韩精品亚洲av| 淫妇啪啪啪对白视频| 亚洲av免费在线观看| 一级毛片女人18水好多| 久久久久久国产a免费观看| 亚洲中文日韩欧美视频| 舔av片在线| 久久精品国产综合久久久| 国产伦人伦偷精品视频| 网址你懂的国产日韩在线| 一进一出抽搐动态| 男女做爰动态图高潮gif福利片| 欧美最黄视频在线播放免费| 欧美激情在线99| 国产精品综合久久久久久久免费| 欧美另类亚洲清纯唯美| 国产一区二区激情短视频| 日韩精品中文字幕看吧| 最近在线观看免费完整版| 丁香欧美五月| 啦啦啦韩国在线观看视频| 亚洲国产精品成人综合色| 91字幕亚洲| 日韩欧美在线二视频| 淫秽高清视频在线观看| 国产精品亚洲一级av第二区| 国产69精品久久久久777片| 国产成年人精品一区二区| 欧美+日韩+精品| 久久性视频一级片| 男女午夜视频在线观看| 国产在线精品亚洲第一网站| 亚洲av第一区精品v没综合| 午夜福利在线观看免费完整高清在 | 国产精品久久电影中文字幕| 女生性感内裤真人,穿戴方法视频| 亚洲av二区三区四区| aaaaa片日本免费| 亚洲av美国av| 久久久久国产精品人妻aⅴ院| 日韩有码中文字幕| 他把我摸到了高潮在线观看| 欧美日韩国产亚洲二区| 精品欧美国产一区二区三| 国产不卡一卡二| 日日摸夜夜添夜夜添小说| 国产精品久久视频播放| 国产野战对白在线观看| 高潮久久久久久久久久久不卡| 日韩av在线大香蕉| 人人妻,人人澡人人爽秒播| 国产精品一区二区免费欧美| 亚洲av熟女| 男人舔奶头视频| xxx96com| 亚洲aⅴ乱码一区二区在线播放| 97碰自拍视频| 天堂影院成人在线观看| 51午夜福利影视在线观看| 在线观看av片永久免费下载| 亚洲天堂国产精品一区在线| 51午夜福利影视在线观看| 日韩人妻高清精品专区| 日韩欧美国产在线观看| 亚洲av第一区精品v没综合| 在线观看av片永久免费下载| 制服人妻中文乱码| 欧美成人性av电影在线观看| 此物有八面人人有两片| 久久久久久久亚洲中文字幕 | 欧美中文综合在线视频| 极品教师在线免费播放| 悠悠久久av| 天堂影院成人在线观看| 国产高清有码在线观看视频| 国产免费一级a男人的天堂| 99热这里只有精品一区| 99国产综合亚洲精品| 两个人的视频大全免费| 亚洲不卡免费看| 在线观看美女被高潮喷水网站 | 欧美在线黄色| 99久久99久久久精品蜜桃| 日韩亚洲欧美综合| 色综合亚洲欧美另类图片| 免费看光身美女| 免费在线观看成人毛片|