沈惠平 王 瑋 鄧嘉鳴 駱敏舟 馬正華 楊廷力
1.常州大學(xué),常州,213016 2.常州先進(jìn)制造技術(shù)研究所,常州,213164
大型工件數(shù)控加工時(shí),往往由于刀具的運(yùn)動(dòng)范圍較小而需要借助于工作臺(tái)來改變大型工件的位置和姿態(tài),以提高生產(chǎn)效率和加工精度。另外,若要在一般輸送設(shè)備的輸送過程中用人工改變被輸送物的姿態(tài),不僅費(fèi)力,且不能保證每次操作的準(zhǔn)確性;而采用機(jī)械手,將增加生產(chǎn)線的復(fù)雜程度及成本。若使用一種輸送裝置,在完成長(zhǎng)、短距離輸送的同時(shí),能改變被輸送物的姿態(tài),則能更好地滿足生產(chǎn)的需要。
此外,在線檢測(cè) LCD液晶面板、太陽能模組等大幅面光電產(chǎn)品的表面缺陷,必須從不同的方位和角度,輔以燈光照明才能檢出,若能選擇一種能改變位置和姿態(tài)的機(jī)構(gòu)用于光電產(chǎn)品的檢測(cè),則可實(shí)現(xiàn)檢測(cè)的自動(dòng)化。
并聯(lián)機(jī)構(gòu)與串聯(lián)機(jī)構(gòu)相比,由于其具有剛度大、結(jié)構(gòu)穩(wěn)定、承載能力大、微動(dòng)精度高、運(yùn)動(dòng)負(fù)荷小等優(yōu)點(diǎn),目前已在諸多領(lǐng)域開始得到廣泛應(yīng)用并成為機(jī)構(gòu)學(xué)研究的熱點(diǎn)之一。近年來,三自由度并聯(lián)機(jī)器人也成為了研究的重點(diǎn):Arakelian等[1]通過對(duì)對(duì)稱型平面3-RRR三自由度并聯(lián)機(jī)構(gòu)動(dòng)力學(xué)模型的研究,使作用在機(jī)架上的力和力矩為零;Gao等[2]給出了對(duì)稱型平面3-RRR三自由度并聯(lián)機(jī)構(gòu)的工作空間形狀和構(gòu)件尺寸之間的關(guān)系;Kucuk[3]運(yùn)用遺傳算法對(duì)7種平面二支鏈三自由度并聯(lián)機(jī)構(gòu)的靈巧度進(jìn)行分析比較,分析了一種靈巧度最優(yōu)的構(gòu)型;韓旭炤等[4]提出了一種非對(duì)稱型平面三導(dǎo)軌3-PRR并聯(lián)機(jī)構(gòu),對(duì)其進(jìn)行了奇異性分析和工作空間分析;錢永明等[5]提出了一種同一導(dǎo)軌2-PRR+RPR平面并聯(lián)機(jī)構(gòu),并將其應(yīng)用于平面虛擬軸機(jī)床;楊建新等[6]在一種非對(duì)稱二導(dǎo)軌3-PRR平面非冗余并聯(lián)機(jī)構(gòu)的基礎(chǔ)上,對(duì)三種冗余并聯(lián)機(jī)構(gòu)的驅(qū)動(dòng)奇異性進(jìn)行了分析。
本文提出并研究一種非對(duì)稱型三滑塊分布在兩個(gè)平行導(dǎo)軌上的三自由度平面并聯(lián)機(jī)構(gòu)[7],它與文獻(xiàn)[6]介紹的3-PRR非冗余并聯(lián)機(jī)構(gòu)的不同之處在于,該機(jī)構(gòu)包含的五桿單回路機(jī)構(gòu)中的二滑塊位于同一導(dǎo)軌上或同一鉛垂面內(nèi)的二個(gè)導(dǎo)軌上,工作空間更大。當(dāng)三滑塊沿平行導(dǎo)軌分別作往復(fù)直線運(yùn)動(dòng)時(shí),工作臺(tái)可改變位置和姿態(tài),可廣泛用于數(shù)控加工或操作時(shí)工件不同位姿的精確定位。
本文提出并設(shè)計(jì)的三滑塊平面型并聯(lián)數(shù)控操作平臺(tái)如圖 1所示,它包括三個(gè)滑塊A、B、C,三個(gè)連桿1、2、3,以及工件板4。工件板4的兩端分別以轉(zhuǎn)動(dòng)副D連接連桿3的一端,以復(fù)合轉(zhuǎn)動(dòng)副E連接連桿1、2的一端,而連桿1、2、3的另一端分別以轉(zhuǎn)動(dòng)副連接導(dǎo)軌1(K′)的滑塊A、B和導(dǎo)軌2(K)上的滑塊C,導(dǎo)軌 K、K′平行。易知,該機(jī)構(gòu)自由度為3,且結(jié)構(gòu)簡(jiǎn)單、制造容易、定位精度高。
圖1 三自由度并聯(lián)操作平臺(tái)簡(jiǎn)圖
建立直角坐標(biāo)系Oxy,如圖1所示,其中,A、B、C、D、E分別表示機(jī)構(gòu)中的5個(gè)鉸鏈;Si(i=1,2,3)分別表示三滑塊A、B、C在導(dǎo)軌上的x方向的位移;設(shè)P(xP、yP)為末端執(zhí)行平臺(tái)4的中點(diǎn)位置,θ表示其與x軸正向夾角,Li(i=1,2,3)分別為1、2、3桿的桿長(zhǎng),L為執(zhí)行平臺(tái)4的長(zhǎng)度;設(shè)θi(i=1,2,3)分別表示連桿1、2、3與x軸正向夾角;H表示兩平行導(dǎo)軌之間的距離。
已知 S1、S2、S3,求執(zhí)行平臺(tái) 4的位姿(xP,yP,θ)。
由矢量法,易知機(jī)構(gòu)運(yùn)動(dòng)學(xué)矢量方程:
分別向 x軸、y軸投影,即有
由式(3)、式(5)消去θ2,并化簡(jiǎn)得
由式(3)、式(5)消去θ1,并化簡(jiǎn)得
由式(2)、式(4)消去θ,并化簡(jiǎn)得
由上式可知,末端執(zhí)行器 P的位置(xP,yP)及姿態(tài)θ均與滑塊A 、B、C的位移S1、S2、S3有關(guān),因此,該機(jī)構(gòu)為非解耦。
已知平臺(tái) 4 的位姿(xP,yP,θ),求 S1、S2、S3。由式(12)得
將式(14)代入式(5)得
將式(14)代入式(4)得
由式(11)得
由位置方程(式(17))對(duì)時(shí)間進(jìn)行一次求導(dǎo),即可得到速度反解方程:
如圖2所示,當(dāng)連桿1、2拉直共線時(shí),轉(zhuǎn)動(dòng)副E落在導(dǎo)軌上,此時(shí)滑塊C左右移動(dòng)時(shí),對(duì)應(yīng)工作臺(tái)4呈現(xiàn)不同的姿態(tài),工作臺(tái)4在圖2b和圖2e狀態(tài)下與x軸正向夾角分別呈現(xiàn)最大和最小值,則工作臺(tái)4的最大擺角為
式(19)表明,H減小,L、L3增大可增大工作臺(tái)4的擺角范圍。
圖2 L1、L2與水平導(dǎo)軌重合時(shí),工作臺(tái)4的不同姿態(tài)
如圖3所示,若L1<L 2,且不與水平導(dǎo)軌重合,當(dāng)連桿1、2其中較短的一根桿垂直于導(dǎo)軌時(shí),此時(shí)滑塊C左右移動(dòng),對(duì)應(yīng)工作臺(tái)4呈現(xiàn)不同的位姿,顯然,當(dāng)連桿1垂直于平行導(dǎo)軌時(shí),對(duì)應(yīng)工作臺(tái)4在圖3b和圖3f狀態(tài)下與 x軸正向夾角分別呈現(xiàn)最大和最小值,這里討論L1+L3>H的情況,工作臺(tái)4的最大擺角為
式(20)表明,H、L減小,L1、L 3增大可增大工作臺(tái)4的擺角。
本文實(shí)驗(yàn)裝置取連桿1、2的桿長(zhǎng)L1=L2=500mm,平臺(tái)4的長(zhǎng)度 L=500mm,H=1000mm,在 L3的長(zhǎng)度由 500mm逐漸變化到1000mm的過程中,對(duì)應(yīng)工作臺(tái)4的最大擺角如圖4所示。
圖3 L1<L2時(shí)工作臺(tái)4的不同姿態(tài)
圖4 L3取不同值時(shí)對(duì)應(yīng)的最大擺角
為了分析方便,僅以L1=L2=L 3=L 0的情況進(jìn)行討論,工作臺(tái)4與x軸的正方向的夾角θ不變,L K為導(dǎo)軌長(zhǎng)度,討論工作臺(tái)的中點(diǎn)P的工作空間。
圖5c所示的狀態(tài)下,L 0取得最大值,L max=H-L sinθ,此時(shí),P點(diǎn)也無法作上下運(yùn)動(dòng),僅能沿著導(dǎo)軌的水平方向作直線移動(dòng)。
如圖6所示,當(dāng)桿長(zhǎng)L 0滿足L min<L0<L mid時(shí),P點(diǎn)的工作空間S1=(L 0-L0 cosα)(L KL0 sinα-L cosθ),其中,α=arccos[(H-L sinθ-L0)/L0]。
如圖7所示,當(dāng)桿長(zhǎng)L0滿足L mid<L0<L max時(shí),P點(diǎn)的工作空間S2=(L0-L 0sinβ)(L KL cosθ+L0sinα),其中,β為滑塊C 位于最左端時(shí)L3與導(dǎo)軌的夾角。
由圖6、圖7比較可得,當(dāng)L mid<L0<L max時(shí),P點(diǎn)的工作空間較大。
圖5 桿長(zhǎng)的極限狀態(tài)
圖6 L min<L0<L mid時(shí)P點(diǎn)的工作空間
圖7 L mid<L 0<L max時(shí) P點(diǎn)的工作空間
現(xiàn)以圖1所示的機(jī)構(gòu)操作點(diǎn)P勻速行走,實(shí)現(xiàn)如圖8所示的由直線、圓等構(gòu)成的組合工藝曲線(曲線上的一些特征點(diǎn)的坐標(biāo)已在圖中標(biāo)出),則所需三滑塊的位移曲線規(guī)律如圖9所示。
圖8 曲線軌跡
該三自由度平面并聯(lián)操作手的虛擬樣機(jī)如圖10所示,物理樣機(jī)正在研制中。
(1)發(fā)明并研究了一種三滑塊驅(qū)動(dòng)的平面并聯(lián)機(jī)構(gòu),該機(jī)構(gòu)結(jié)構(gòu)簡(jiǎn)單、制造成本低、定位精度高、操作方便、具有解析的運(yùn)動(dòng)學(xué)正反解,易于實(shí)現(xiàn)實(shí)時(shí)控制,可應(yīng)用于數(shù)控加工、變姿態(tài)運(yùn)輸、光電產(chǎn)品檢測(cè)等需要變姿態(tài)的工業(yè)操作場(chǎng)合。
圖9 三滑塊位移變化規(guī)律
圖10 并聯(lián)操作手的虛擬樣機(jī)
(2)推導(dǎo)了該機(jī)構(gòu)運(yùn)動(dòng)學(xué)正反解解析公式,分析了該機(jī)構(gòu)的工作空間,即在給定位置時(shí)工作臺(tái)的最大轉(zhuǎn)角和給定姿態(tài)時(shí)末端執(zhí)行器的最大工作范圍。
(3)運(yùn)用MATLAB仿真分析了工作臺(tái)在給定姿態(tài)的情況下,末端操作點(diǎn)沿給定組合曲線運(yùn)動(dòng)時(shí),三滑塊所應(yīng)有的位置的變化規(guī)律,也給出了該三自由度并聯(lián)操作手的虛擬樣機(jī),為其精確控制、設(shè)計(jì)制造奠定了基礎(chǔ)。
(4)若在末端執(zhí)行器上加Z方向的直線移動(dòng)或A、B軸轉(zhuǎn)動(dòng),即可構(gòu)成四、五、六軸操作手,因此,本裝置可應(yīng)用于平面或空間的數(shù)控加工、工件運(yùn)輸、產(chǎn)品檢驗(yàn)等。
[1] Arakelian V H,Smith M R.Design of Planar 3-DOF 3-RRR Reactionless Parallel Manipulators[J].Mechatronics,2008,18(10):601-606.
[2] Gao Feng,Liu Xinjun,Chen Xu.The Relationships Between the Shapes of the Workspaces and the Link Lengths of 3-DOF Symmetrical Planar Parallel Manipulators[J].Mechanism and Machine Theory,2001,36(2):205-220.
[3] Kucuk S.A Dexterity Comparison for 3-DOF Planar Parallel Manipulators with Two Kinematic Chains Using Genetic Algorithms[J].Mechatronics,2009,19(6):868-877.
[4] 韓旭炤,黃玉美,陳純,等.一種新型三自由度平面并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)解析[J].西安理工大學(xué)學(xué)報(bào),2009,25(1):23-27.
[5] 錢永明,曹清林.一種三自由度平面并聯(lián)機(jī)構(gòu)的分析[J].機(jī)械設(shè)計(jì)與制造工程,2001,30(6):29-33.
[6] 楊建新,余躍慶.平面三自由度冗余并聯(lián)機(jī)構(gòu)的驅(qū)動(dòng)奇異性分析[J].中國(guó)機(jī)械工程,2006,17(6):629-632.
[7] 沈惠平,李菊,王瑋,等.一種三滑塊平面型并聯(lián)數(shù)控操作平臺(tái):中國(guó),201010256966.3[P].2010-08