• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LABORATORY STUDIES ON WAVE FORCE OF COASTAL STRUCTURES MADE OF FLAT GEOTUBES*

    2011-05-08 05:55:20LINGangSHUYimingLUXinDAILinjunYUXinzhouZHANGXianleiYIJingrong
    水動力學研究與進展 B輯 2011年6期

    LIN Gang, SHU Yi-ming, LU Xin, DAI Lin-jun, YU Xin-zhou, ZHANG Xian-lei, YI Jing-rong

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: lingang9804@163.com

    LABORATORY STUDIES ON WAVE FORCE OF COASTAL STRUCTURES MADE OF FLAT GEOTUBES*

    LIN Gang, SHU Yi-ming, LU Xin, DAI Lin-jun, YU Xin-zhou, ZHANG Xian-lei, YI Jing-rong

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: lingang9804@163.com

    (Received January 6, 2011, Revised March 23, 2011)

    Flat geotubes are widely used for coastal structures such as seawalls, breakwaters and sightseeing groins, etc.. However, the understanding of the stable mechanism involved in the wave-structure interactions should be deepened, and one of the important work is to clarify the stress state of the structure under the wave action. In this article, wave force acting on coastal structures made of flat geotube is experimentally investigated. The required drag, inertia and lift coefficients are especially analyzed from the results of hydraulic model experiments specially designed for geotube structure. Several types of structures made of flat geotubes under wave action have been tested in order to understand the stress state of the geotube fixed to force transducer within different structures. Experimental results show that the wave-induced forces on the instrumented geotube are markedly influenced by wave elements. Meanwhile, the magnitude of horizontal force of adjoining geotube is different at the same time.

    flat geotube, wave force coefficients, inertial force, drag, lift, coastal structure, hydraulic model experiment

    Introduction

    There is a long coastline along the East and South of China, and potamic shoreline are also widely distributed inland. Many coastal structures such as seawalls, artificial reefs, speedway and even reservoir have been built around these lines. These structures are more and more used instead of hard coastal framework made of concrete or rubble materials[1]. And flat geotubes are widely adopted. In recently years, many coastal structures have been successful constructed made of flat geotube. However there is no ready-made theory or formulae available for the hydraulic stability of flat geotube structures, which is used to accounting for the process affecting the stability of structure. The most important of studying the stability of structure is to analyze wave forces acting on flat geotubes.

    Based on the previous investigations, a new experiment has been designed, in order to study the characteristics of wave-structure interaction[2-4]. A geotube fixed to force transducer, which is placed in several types of geotube configurations, is used to gain the drag, inertia and lift wave force in the wave action and study the stress state of different geotube structures in combination wave elements. By using the least square method, the drag, inertia and lift coefficients CD, CIand CLare derived in this article.

    1. Theoretical formulae

    1.1 Wave force and coefficient formulae

    According to the Morison equation, the waveinduced horizontal force on the geotube structure is given by

    where ρ is the density of water, CDthe drag force coefficient which reflects on the shape and material of the flat geotube, CIthe inertia force coefficient, Asthe cross-section area of geotube normal to the water current, V the volume of the geotube, and u( z, t) the horizontal particle water current velocity in the vicinity of the geotube structure.

    The wave-induced lift force is as follows

    where CLis the lift force coefficient, ATis the plan form area of the flat geotube.

    In the hydraulic model experiment, the drag and inertia force coefficients are derived with the least square method. The related formulae are:

    Drag force coefficient

    Inertia force coefficient

    where Fmis the actual measurement horizontal force of the geotube in the experiment.

    The lift force coefficient is given as

    where u( z, t)maxis the maximum of the horizontal particle water current velocity in the vicinity of the geotube structure.

    1.2 Water particle acceleration

    When d/L is smaller than 1.0, the shallow water assumption could be employed, so the horizontal particle velocity u is equal to the wave celerity as follows

    where g is the acceleration of gravity, d the water depth at the measurement point and L the wave height.

    Further, the horizontal water particle acceleration can be expressed as

    where uiand ui?1denote the horizontal velocities in the vicinity of the geotube structure measured at time instants tiand ti?Δt respectively.

    2. Experimental setup

    Since there is no literature about the drag, inertia and lift force and coefficient for flat geotube applied to coastal structure, extensive experiments are necessary and feasible to gain the real information of the geotube structure under the wave action[8,9].

    The experiments were performed in the wave flume of the Key Laboratory of Coastal Disaster and Defense, Ministry of Education, at Hohai University. The flume was 80 m long, 1.0 m wide and 1.5 m high. Wave-maker was installed at one end of the flume, and the system with negligible wave reflection was fixed on the other end. The flume was divided in two sections with width of 0.5 m and 0.3 m respectively, where one part is used to set geotube structure model and the other used for eliminating the wave reflection. The plan view of the wave flume is shown in Fig.1. According to the dimensions of the wave flume, the model scale 1:30 was selected.

    Fig.1 Plan view of the wave flume (m)

    The measurement of the wave-induced pressure was conducted with the force transducer controlled by the DJ800 multifunctional monitoring system, which was developed by China Institute of Water Resources and Hydropower Research. The measuring range of force transducer varied from –2 kPa to 10 kPa and the error was ±0.3% F.S.

    An instrumented geotube as well as several other similar ones were placed in different configurations in the flume and the structures were impacted by wave element conditions designed. The measured geotube was instrumented with force transducers in order to obtain the horizontal and uplift wave-induced forces of the geotube at every cycle of wave, which was made of wood and wrapped with the same geotextile as other geotubes used in experiments, so as to modify the same roughness of geotubes as practical projects.The dimensions of the instrumented geotube were 0.50 m long, 0.42 m wide and 0.02 m high. Others geotubes were filled with sand at an approximate dry density of 1 650 kg/m3, and the filling ratio was about 80% of the cube-shaped volume of the geotube without considering the deformation of the geotextile flat geotube[10]. The instrumented geotube is shown in Fig.2.

    Fig.2 Instrumented flat geotube made of wood, covered with geotextile (fixed with force transducers)

    In the experiment, the wave-induced water particle velocity in the vicinity of the geotube structure was obtained by the Nortek Vectrino Velocimeter. The velocimeter precision was ±0.001 m/s.

    Table 1 Parameters in experiments ( H / L =1/25)

    Fig.3 Wave-induced horizontal force on the still water level (d=0.40 m, T=1.45 s, H=0.10 m)

    Fig.4 Wave-induced horizontal force under the deep water (d=0.47 m, T=1.39 s, H=0.10 m)

    Fig.5 The wave-induced horizontal forces for different wave heights (d=0.40 m)

    Fig.6 The wave-induced horizontal forces in regular and irregular wave (d=0.47 m)

    Fig.7 The wave-induced uplift forces of geotubes at different positions (d=0.40 m, T=1.83 s, H=0.1333 m)

    The geotube structures were subjected to both regular and irregular waves with wave heights (or significant wave height) varying from 0.06 m to 0.22 m and wave periods (or spectrum peak period) from 1.09 s to 2.64 s by the cases of H/L (1:25) and two constant water depths (0.40 m and 0.47 m). The parameters are shown in Table 1.

    Fig.8 The cross section of 11 different configurations of flat geotube in experiment

    In the experiment, while one geotube structure model was performed by wave series, the wave forces of geotube and flow velocity of water particle were recorded. Then by changing the models, the corresponding wave forces and velocity were measured.

    3. Results and discussions

    3.1 The horizontal and lift forces of flat geotube

    The wave-induces forces on geotubes in different wave conditions were systematically measured. The main results of the horizontal and lift forces on geotube are summarized as follows:

    (1) The wave-induced horizontal force on the geotube just placed on the still water level reaches its maximum. The wave-induced horizontal forces decreases with increasing depth of the geotube is placed from the still water to the sea bed downwards, which is shown in Figs.3 and 4.

    (2) For the same parameters other than wave height, the wave-induces horizontal forces on the geotube increases with increasing wave height, which is shown in Fig.5.

    (3) Except for several high wave forces, the irregular wave-induced forces on the geotube is smaller than the regular wave-induced ones, as shown in Fig.6. However, the negative influence of the irregular wave force on the stability of the structure made of flat geotube should be noticed. The displacement of the upper geotube took place before the structure instability occurring based on previous research[11,12]. And just the several high wave forces may make the displacement of the upper geotube happen.

    (4) Because of the influence of large plain area and filled material of the geotube, the lift forces on the geotube are irregular. The general tendency is that the wave-induced lift force on the upper geotube is greater than the lower one. This is in line with the results that the upper geotube is more easily unstable in the previous studies. The lift force on the geotube is shown in Fig.7.

    Table 2 Summary of drag, inertia and lift force coefficients CD, CIand CL

    3.2 The drag, inertia and lift coefficients CD, CIand CL

    In the experiment, the instrumented flat geotube placed in multilayer structures were studied. The partial cross sections of geotube structures are shown in Fig.8.

    For each model test, the drag, inertia and lift force coefficients are derived with the least square method. Based on the experimental data of horizontal, lift force and water particle velocity in the vicinity of the geotube structure[13,14], the results for the drag, inertia and lift force coefficients are shown in Table 2.

    Table 2 shows that the drag force coefficient has the largest values and the inertia force coefficient is the smallest one in the three coefficients. From the experiment, the viewpoint is also confirmed that the drag force is dominated over the stability of flat geotube structure. The magnitudes of the drag, inertia and lift force coefficients and their varying trends are similar to the results of Recio and Oumeraci. It indicates that the results of this experiment are believable.

    From the experiment results, it is also found that the force coefficients are closely related to water conditions investigated and the effect of the Reynolds number is strong, which need to be studied further.

    Fig.9 Comparison of the measured and calculated horizontal wave force (d=0.40 m, H=0.1667 m, T=2.22 s, CD=8.8, CI=0.74)

    After obtaining the drag, inertia and lift force coefficients CD, CIand CLfrom the measured forces, velocities and derived accelerations, the calculation of the wave forces can be carried out. Figure 9 shows the examples of measured and calculated horizontal wave forces. The inertia forces term is also shown in Fig.9. It is shown that the measured and calculated forces have the similar tendency, and the inertia force is much smaller than the drag force in the experiment.

    Figure 10 shows the comparison of measured and calculated results for uplift wave forces. It can be seen that the values of measured and calculated forces agree quite well in spite of existing wave phase difference which is probably resulted from the discrepancy of fixed calculated period in the process of calculationand varying ones under experiment.

    Fig.10 Comparison of the measured and calculated uplift wave force (d=0.40 m, H=0.1667 m, T=2.22 s, CL=0.6)

    4. Conclusions

    Structures made of flat geotubes have been experimentally investigated[15,16]. There are a variety of configurations for placing the instrumented flat geotube, but only several representative structures were chosen to test. The horizontal and lift forces were measured, and the drag, inertia and lift force coefficients were derived from the measured forces, velocities and accelerations.

    Based on the obtained results, the following conclusions could be reached:

    (1) The experiment has given some new information on the characteristics of the forces on the structure made of flat geotubes impacted by wave.

    (2) The wave force of coastal structures made of flat geotubes is influenced by the wave element, structure styles and the position of the instrumented geotube in configurations, and the drag, inertia and lift force coefficients are different correspondingly.

    (3) The horizontal drag force is apparently dominated over the flat geotube.

    (4) In order to study the stability of the structures made of geotube, it is important to obtain the drag, inertia and lift coefficients. Based on the result of this article, we can conclude that it is reasonable and feasible to derive the force coefficients CD, CIand CLof flat geotube structure with Morison’s Equations.

    [1] RECIO J., OUMERARIC H. Effect of deformations on the hydraulic stability of coastal structures made of geotextile sand containers[J]. Geotextiles and Geomembrances, 2007, 25(4-5): 278-292.

    [2] LI Yong, LIN Mian. Wave-body interactions for a surface-piercing body in water of finite depth[J]. Journal of Hydrodynamics, 2010, 22(6): 745-752.

    [3] ZHANG W., TAN J. 2-D finite element analysis and stability calculation of geotextile tubes[C]. 8ICG 8th International Geosynthetics Conference Proceedings. Yokohama, Japan, 2006, 769-772.

    [4] MARTH R., MUELLER G. and WOLTERS G. Damages of blockwork coastal structures due to internal wave impact induced pressures[C]. Proceedings of the International Coastal Symposium. Hafnafjordur, Iceland, 2005.

    [5] RECIO J., OUMERARIC H. Process based on stability formulae for coastal structures, made of geotube[J]. Coastal Engineering, 2009, 56(5-6): 632-658.

    [6] HUA Lei-na, YU Xi-ping. Element-free Galerkin method for response of stratified seabed under wave action[J]. Journal of Hydrodynamics, 2009, 21(4): 550-556.

    [7] RECIO J., OUMERARIC H. Processes affecting the hydraulic stability of coastal revetments made of geotextile sand containers[J]. Coastal Engineering, 2009, 56(3): 260-284.

    [8] SHU Y. M. Field experiment for dike soil at Yangtze River Estuary[C]. Proceedings of the International Symposium on Engineering Practice and Performance of Soft Deposits. Osaka, Japan, 2004, 1: 457-461.

    [9] PILARCZYK K. W. Geosynthetics and geosystems in hydraulic and costal engineering[M]. London: Taylor and Francis, 2000.

    [10] ZHANG Jun-ping. Use of stuffed geotextile container in phase one of ShenHua Port in Huanghua[J]. China Harbour Engineering, 2002, 4(2): 46-48(in Chinese).

    [11] ZHU C. R., SHU Y. M. and JIANG J. H. Study on the experiment of unarmored flat geotube dike under wave action[C]. Proceeding of the 4th Asia Regional Conference on Geosynthetics. Shanghai, 2008, 625-629.

    [12] ZOU Lin, LIN Yu-feng. Force reduction of flow around a sinusoidal wavy cylinder[J]. Journal of Hydrodynamics, 2009, 21(3): 308-315.

    [13] VERNUGOPAL V., VARYANI K. and BARLTROP N. Wave force coefficients for horizontally submerged rectangular cylinders[J]. Ocean Engineering, 2006, 33(11-12): 1669-1704.

    [14] HUI Er-qing, HU Xing-e and JIANG Chun-bo et al. A study of drag coefficient relanted with vegetation based on the flume experiment[J]. Journal of Hydrodynamics, 2010, 22(3): 329-337.

    [15] LIN Gang. Test and study on dike structure with flat geotube in the action of wave[D]. Master Thesis, Nanjing: Hohai University, 2005(in Chinese).

    [16] XIA Yan, SHU Yi-ming and YANG Xiang-quan. Laboratory study on the factor influence flat geotube dike stability under wave impact[J]. Advances in Science and Technology of Water Resources, 2009, 29(1): 220-222, 238(in Chinese).

    10.1016/S1001-6058(10)60181-3

    * Project supported by the National Natural Science Foundation of China (Grant No. 51179065), the National Science and Technology Support Plan (Grant No. 2012BAB03B02).

    Biography: LIN Gang (1978-), Male, Ph. D. Candidate

    SHU Yi-ming, E-mail: shym@hhu.edu.cn

    成人国产麻豆网| 一本一本综合久久| 久热久热在线精品观看| av在线亚洲专区| 在线天堂最新版资源| 国产三级在线视频| 丰满乱子伦码专区| av女优亚洲男人天堂| 精品久久久久久成人av| 成人高潮视频无遮挡免费网站| 国内少妇人妻偷人精品xxx网站| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品欧美日韩精品| 一级毛片我不卡| 国产69精品久久久久777片| 联通29元200g的流量卡| 亚洲中文字幕一区二区三区有码在线看| 久久精品久久久久久噜噜老黄 | 啦啦啦啦在线视频资源| 亚洲av中文字字幕乱码综合| 在线观看66精品国产| 日本色播在线视频| 亚洲最大成人av| 好男人在线观看高清免费视频| 直男gayav资源| 伊人久久精品亚洲午夜| 久久国产乱子免费精品| 乱人视频在线观看| 麻豆成人午夜福利视频| 夜夜爽夜夜爽视频| 亚洲欧美精品自产自拍| 亚洲自偷自拍三级| av女优亚洲男人天堂| 成人综合一区亚洲| 精品人妻偷拍中文字幕| or卡值多少钱| a级毛色黄片| 97超碰精品成人国产| 男的添女的下面高潮视频| 中文精品一卡2卡3卡4更新| 亚洲综合精品二区| 夜夜爽夜夜爽视频| 国产三级中文精品| 我要搜黄色片| 午夜福利成人在线免费观看| 三级男女做爰猛烈吃奶摸视频| 热99在线观看视频| 男插女下体视频免费在线播放| 99久久成人亚洲精品观看| 免费av不卡在线播放| 草草在线视频免费看| 亚洲国产精品成人综合色| 特大巨黑吊av在线直播| 看十八女毛片水多多多| 国产精品av视频在线免费观看| 91久久精品国产一区二区成人| 极品教师在线视频| 波野结衣二区三区在线| 在线免费观看的www视频| 春色校园在线视频观看| 亚洲人成网站高清观看| 亚洲激情五月婷婷啪啪| 亚洲av电影在线观看一区二区三区 | 日韩成人伦理影院| 精品99又大又爽又粗少妇毛片| 国产乱人偷精品视频| 久久久国产成人精品二区| 亚洲欧美精品自产自拍| 久久这里有精品视频免费| 午夜精品一区二区三区免费看| 91精品一卡2卡3卡4卡| 久久久久久久久久久免费av| 又粗又爽又猛毛片免费看| 日本wwww免费看| 久久人人爽人人爽人人片va| 一二三四中文在线观看免费高清| 亚洲欧美清纯卡通| 麻豆精品久久久久久蜜桃| 亚洲人成网站在线播| 久久久a久久爽久久v久久| 精品少妇黑人巨大在线播放 | 精品久久国产蜜桃| 亚洲高清免费不卡视频| 如何舔出高潮| 国产午夜精品论理片| 国产极品精品免费视频能看的| 免费观看a级毛片全部| 国产国拍精品亚洲av在线观看| 亚洲五月天丁香| 超碰97精品在线观看| 黄色一级大片看看| 黄片无遮挡物在线观看| 国产高清视频在线观看网站| 1024手机看黄色片| 在线播放国产精品三级| 国产亚洲av片在线观看秒播厂 | 伊人久久精品亚洲午夜| 永久免费av网站大全| 国产午夜精品久久久久久一区二区三区| 国产精品女同一区二区软件| 亚洲欧美日韩高清专用| 亚洲精华国产精华液的使用体验| 午夜福利在线观看免费完整高清在| 久久亚洲精品不卡| 国产黄色小视频在线观看| 男人和女人高潮做爰伦理| 联通29元200g的流量卡| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久 | 色5月婷婷丁香| 永久免费av网站大全| 我的女老师完整版在线观看| 国产真实乱freesex| 小蜜桃在线观看免费完整版高清| av国产免费在线观看| 亚洲高清免费不卡视频| 国产欧美日韩精品一区二区| 久久国产乱子免费精品| 国语对白做爰xxxⅹ性视频网站| 久久久a久久爽久久v久久| 日韩欧美 国产精品| 乱人视频在线观看| 久久精品国产鲁丝片午夜精品| 国产熟女欧美一区二区| 亚洲欧洲日产国产| 中文字幕亚洲精品专区| 在线天堂最新版资源| 一边亲一边摸免费视频| 免费看日本二区| 波野结衣二区三区在线| 欧美性猛交黑人性爽| 美女高潮的动态| 白带黄色成豆腐渣| 国产黄a三级三级三级人| 韩国高清视频一区二区三区| 久久久久久久久久久免费av| 亚洲国产欧美人成| 欧美成人午夜免费资源| av在线蜜桃| 国产一区二区在线av高清观看| 天美传媒精品一区二区| 高清毛片免费看| 成人亚洲欧美一区二区av| 最近最新中文字幕免费大全7| 简卡轻食公司| 伦精品一区二区三区| 午夜a级毛片| 毛片一级片免费看久久久久| 国产在视频线在精品| 1000部很黄的大片| 免费大片18禁| 国产大屁股一区二区在线视频| 在线观看66精品国产| eeuss影院久久| 成人毛片60女人毛片免费| 亚洲国产欧美在线一区| 麻豆av噜噜一区二区三区| 欧美日韩国产亚洲二区| 久久精品久久久久久噜噜老黄 | 国产熟女欧美一区二区| 久久人人爽人人爽人人片va| 午夜激情欧美在线| 久久久久久久久久久免费av| 精品午夜福利在线看| 男人和女人高潮做爰伦理| 国产精品电影一区二区三区| 国产亚洲5aaaaa淫片| 18禁在线播放成人免费| 一级黄片播放器| 日韩成人伦理影院| 在线观看一区二区三区| 久久国内精品自在自线图片| 天堂av国产一区二区熟女人妻| 日本免费一区二区三区高清不卡| 超碰av人人做人人爽久久| av线在线观看网站| 1000部很黄的大片| 国产视频首页在线观看| 免费看日本二区| 国产黄片美女视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩综合久久久久久| 国产男人的电影天堂91| 中文字幕精品亚洲无线码一区| 18+在线观看网站| 国产av在哪里看| 国产黄色小视频在线观看| 亚洲久久久久久中文字幕| av福利片在线观看| 国产高清视频在线观看网站| 国产91av在线免费观看| 高清午夜精品一区二区三区| 欧美性猛交黑人性爽| 超碰97精品在线观看| 成人高潮视频无遮挡免费网站| av国产免费在线观看| 精品久久久久久久末码| 亚洲人成网站高清观看| 亚洲乱码一区二区免费版| 搡老妇女老女人老熟妇| 成人亚洲精品av一区二区| 精品国产一区二区三区久久久樱花 | 在线免费观看的www视频| 亚洲国产精品成人久久小说| 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看| 国产精品久久久久久av不卡| 亚洲人成网站在线观看播放| 免费播放大片免费观看视频在线观看 | 亚洲av福利一区| 舔av片在线| 亚洲综合精品二区| 日韩一区二区视频免费看| 国产乱人视频| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 亚洲国产高清在线一区二区三| 免费看a级黄色片| 成年女人永久免费观看视频| 亚洲av电影不卡..在线观看| 人体艺术视频欧美日本| 欧美一区二区国产精品久久精品| 欧美极品一区二区三区四区| av在线蜜桃| 一级二级三级毛片免费看| 久久久国产成人精品二区| 寂寞人妻少妇视频99o| 久久精品综合一区二区三区| 精品久久久久久成人av| 国产免费一级a男人的天堂| 嫩草影院新地址| 乱码一卡2卡4卡精品| 久久99精品国语久久久| 丰满少妇做爰视频| 尤物成人国产欧美一区二区三区| 22中文网久久字幕| 18禁在线无遮挡免费观看视频| 少妇的逼水好多| 精华霜和精华液先用哪个| 日韩av在线大香蕉| 国产亚洲精品av在线| 黄片wwwwww| 熟女人妻精品中文字幕| 国内精品一区二区在线观看| 国产一区亚洲一区在线观看| 国产av一区在线观看免费| 亚洲av日韩在线播放| 乱人视频在线观看| a级一级毛片免费在线观看| 3wmmmm亚洲av在线观看| 午夜精品在线福利| 看免费成人av毛片| 国产精品一区二区三区四区久久| 欧美成人免费av一区二区三区| 免费观看在线日韩| 搡老妇女老女人老熟妇| 免费人成在线观看视频色| 国产真实伦视频高清在线观看| 天天躁日日操中文字幕| 小蜜桃在线观看免费完整版高清| 亚洲伊人久久精品综合 | 中文在线观看免费www的网站| 人人妻人人澡欧美一区二区| 精品一区二区三区视频在线| 九九在线视频观看精品| 一二三四中文在线观看免费高清| 久久精品熟女亚洲av麻豆精品 | 国产精品综合久久久久久久免费| 免费观看人在逋| 高清毛片免费看| 国产午夜精品久久久久久一区二区三区| 18禁裸乳无遮挡免费网站照片| 免费一级毛片在线播放高清视频| 免费播放大片免费观看视频在线观看 | 深爱激情五月婷婷| 观看免费一级毛片| 亚洲精品,欧美精品| 亚洲国产色片| 人妻制服诱惑在线中文字幕| 国产一区二区在线av高清观看| 老司机福利观看| 亚洲中文字幕一区二区三区有码在线看| 成人漫画全彩无遮挡| 91精品国产九色| 日韩一本色道免费dvd| 岛国在线免费视频观看| 国产乱人偷精品视频| 国语自产精品视频在线第100页| 国产av码专区亚洲av| 可以在线观看毛片的网站| 99久久九九国产精品国产免费| 村上凉子中文字幕在线| 最近最新中文字幕免费大全7| 亚洲五月天丁香| 欧美另类亚洲清纯唯美| 国产亚洲精品av在线| 亚洲精品,欧美精品| 一区二区三区乱码不卡18| 欧美高清成人免费视频www| 搡女人真爽免费视频火全软件| 国产片特级美女逼逼视频| 国产探花极品一区二区| 有码 亚洲区| 国模一区二区三区四区视频| 联通29元200g的流量卡| 欧美精品国产亚洲| 嘟嘟电影网在线观看| 纵有疾风起免费观看全集完整版 | 精品久久久久久久久亚洲| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 男女国产视频网站| 久久久精品大字幕| 国产不卡一卡二| 1024手机看黄色片| 欧美日韩综合久久久久久| 免费搜索国产男女视频| 伦精品一区二区三区| 欧美精品国产亚洲| 级片在线观看| 看非洲黑人一级黄片| 国产精品熟女久久久久浪| 小说图片视频综合网站| 青春草亚洲视频在线观看| 老师上课跳d突然被开到最大视频| 久久99蜜桃精品久久| 在现免费观看毛片| 夫妻性生交免费视频一级片| 性插视频无遮挡在线免费观看| 看黄色毛片网站| 免费av毛片视频| 美女高潮的动态| 边亲边吃奶的免费视频| 久久久久九九精品影院| 亚洲成色77777| 69av精品久久久久久| 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| 在线播放国产精品三级| 精品久久久久久久久亚洲| 婷婷色av中文字幕| 国产免费福利视频在线观看| 亚洲高清免费不卡视频| 久久久久国产网址| 国产黄色小视频在线观看| 老女人水多毛片| 少妇人妻一区二区三区视频| 乱系列少妇在线播放| 亚洲成色77777| 免费看美女性在线毛片视频| 欧美高清成人免费视频www| 色综合站精品国产| 99热这里只有是精品50| 久久精品久久久久久噜噜老黄 | 男的添女的下面高潮视频| 日本av手机在线免费观看| 尾随美女入室| 国产高清视频在线观看网站| 一级爰片在线观看| 精品午夜福利在线看| 在线播放国产精品三级| 五月伊人婷婷丁香| 直男gayav资源| 91av网一区二区| 国产精品伦人一区二区| 亚洲精品,欧美精品| 一本一本综合久久| 精品不卡国产一区二区三区| 免费大片18禁| 欧美高清成人免费视频www| 长腿黑丝高跟| 天堂影院成人在线观看| 精品久久久久久电影网 | 国内揄拍国产精品人妻在线| 极品教师在线视频| 97人妻精品一区二区三区麻豆| 国产精品久久久久久精品电影小说 | 亚洲真实伦在线观看| 亚洲av成人精品一区久久| 久久精品国产自在天天线| 亚洲欧美精品综合久久99| 亚洲成人中文字幕在线播放| 少妇熟女欧美另类| 婷婷色麻豆天堂久久 | 国产精品99久久久久久久久| 日本爱情动作片www.在线观看| 国产色婷婷99| 欧美性猛交黑人性爽| 国产探花在线观看一区二区| 国产精品一及| 丝袜喷水一区| 精品一区二区免费观看| 国产69精品久久久久777片| 男的添女的下面高潮视频| 免费观看的影片在线观看| 三级国产精品欧美在线观看| 插阴视频在线观看视频| 成人高潮视频无遮挡免费网站| 色播亚洲综合网| 亚洲最大成人中文| 在线观看美女被高潮喷水网站| 伦精品一区二区三区| 亚洲最大成人av| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 麻豆av噜噜一区二区三区| 国产淫语在线视频| 少妇人妻精品综合一区二区| 看黄色毛片网站| av免费观看日本| 美女cb高潮喷水在线观看| 午夜免费男女啪啪视频观看| 国内揄拍国产精品人妻在线| 卡戴珊不雅视频在线播放| 久久久a久久爽久久v久久| 国产女主播在线喷水免费视频网站 | 日韩亚洲欧美综合| 免费人成在线观看视频色| 黄片无遮挡物在线观看| 精品免费久久久久久久清纯| 尤物成人国产欧美一区二区三区| av在线蜜桃| 99九九线精品视频在线观看视频| 99在线视频只有这里精品首页| 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 麻豆成人午夜福利视频| 国产女主播在线喷水免费视频网站 | 欧美xxxx黑人xx丫x性爽| 韩国av在线不卡| 国产精品美女特级片免费视频播放器| 免费观看精品视频网站| 自拍偷自拍亚洲精品老妇| 两个人视频免费观看高清| videos熟女内射| 亚洲精品自拍成人| 99国产精品一区二区蜜桃av| 国产在视频线精品| 欧美不卡视频在线免费观看| 免费搜索国产男女视频| 欧美三级亚洲精品| 国产精华一区二区三区| 精品熟女少妇av免费看| 最近的中文字幕免费完整| 亚洲精品亚洲一区二区| 三级国产精品片| 国产一区二区在线观看日韩| 成人亚洲精品av一区二区| 久久国产乱子免费精品| 久久精品国产鲁丝片午夜精品| 久久久成人免费电影| 久久久久久久国产电影| 国产精品国产三级国产av玫瑰| 丝袜喷水一区| 日韩大片免费观看网站 | 成人高潮视频无遮挡免费网站| 一级二级三级毛片免费看| 国产午夜精品论理片| 91久久精品国产一区二区成人| 一个人看的www免费观看视频| 亚洲婷婷狠狠爱综合网| 大话2 男鬼变身卡| 精品人妻熟女av久视频| 寂寞人妻少妇视频99o| 亚洲av免费高清在线观看| 你懂的网址亚洲精品在线观看 | 午夜福利网站1000一区二区三区| 国产成人aa在线观看| 精品国产一区二区三区久久久樱花 | 国产精品三级大全| 亚洲av中文字字幕乱码综合| 一夜夜www| 欧美不卡视频在线免费观看| 成人无遮挡网站| 国产老妇女一区| 国产精品精品国产色婷婷| 成年版毛片免费区| 国模一区二区三区四区视频| 国产极品精品免费视频能看的| 中文乱码字字幕精品一区二区三区 | 91精品一卡2卡3卡4卡| 亚洲国产精品专区欧美| 欧美97在线视频| 欧美一区二区国产精品久久精品| 国产亚洲精品av在线| 久久综合国产亚洲精品| 久久精品熟女亚洲av麻豆精品 | 国产高清国产精品国产三级 | 久久久久久久久久黄片| 韩国av在线不卡| 亚洲精品aⅴ在线观看| 99国产精品一区二区蜜桃av| av线在线观看网站| 国产三级中文精品| 欧美性感艳星| 国产免费又黄又爽又色| 国产一区二区在线观看日韩| 少妇熟女欧美另类| 欧美区成人在线视频| 在线观看美女被高潮喷水网站| 99热这里只有是精品50| 精品国产三级普通话版| 国产视频内射| 成年女人看的毛片在线观看| 日本爱情动作片www.在线观看| 一级av片app| 日本免费在线观看一区| 天美传媒精品一区二区| 免费人成在线观看视频色| 秋霞在线观看毛片| 全区人妻精品视频| 最后的刺客免费高清国语| 免费看光身美女| 91久久精品国产一区二区三区| 级片在线观看| av播播在线观看一区| 亚洲最大成人手机在线| 亚洲经典国产精华液单| 欧美一区二区亚洲| 一级毛片aaaaaa免费看小| 久久精品国产自在天天线| 简卡轻食公司| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 亚洲一区高清亚洲精品| 黄色日韩在线| 乱人视频在线观看| 女的被弄到高潮叫床怎么办| 免费av毛片视频| 亚洲成av人片在线播放无| 精品免费久久久久久久清纯| 日本-黄色视频高清免费观看| 最近2019中文字幕mv第一页| 免费看a级黄色片| 国产单亲对白刺激| 又粗又硬又长又爽又黄的视频| a级一级毛片免费在线观看| 18禁在线播放成人免费| 国产白丝娇喘喷水9色精品| 成人无遮挡网站| 欧美不卡视频在线免费观看| 国模一区二区三区四区视频| 国产极品天堂在线| 精品99又大又爽又粗少妇毛片| 色吧在线观看| 麻豆一二三区av精品| 青春草亚洲视频在线观看| 九九在线视频观看精品| 国产黄色视频一区二区在线观看 | 亚洲av熟女| 中文亚洲av片在线观看爽| 欧美xxxx性猛交bbbb| 久久久午夜欧美精品| 免费黄网站久久成人精品| 亚洲精品,欧美精品| 午夜精品国产一区二区电影 | 国产乱人偷精品视频| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| 日韩高清综合在线| 日韩精品青青久久久久久| 久久精品国产亚洲网站| 亚洲一级一片aⅴ在线观看| 可以在线观看毛片的网站| 免费观看人在逋| 美女脱内裤让男人舔精品视频| 欧美丝袜亚洲另类| 最新中文字幕久久久久| 99热这里只有是精品50| 青春草亚洲视频在线观看| 欧美不卡视频在线免费观看| 少妇人妻精品综合一区二区| 欧美bdsm另类| 成人美女网站在线观看视频| 亚州av有码| 午夜久久久久精精品| 亚洲怡红院男人天堂| 晚上一个人看的免费电影| 国产亚洲5aaaaa淫片| 国产精品美女特级片免费视频播放器| 最近中文字幕2019免费版| 免费搜索国产男女视频| 日韩国内少妇激情av| 乱人视频在线观看| 成人无遮挡网站| 在线观看66精品国产| 国产免费视频播放在线视频 | 一级二级三级毛片免费看| 婷婷色av中文字幕| 国产亚洲5aaaaa淫片| 国产麻豆成人av免费视频| 97人妻精品一区二区三区麻豆| 精品人妻一区二区三区麻豆| 亚洲欧洲日产国产| 伊人久久精品亚洲午夜| 插阴视频在线观看视频| 国产乱人视频| 中文字幕亚洲精品专区| 97超视频在线观看视频| 赤兔流量卡办理| 岛国在线免费视频观看| 国产午夜福利久久久久久| 青春草国产在线视频| 26uuu在线亚洲综合色| 国产成人精品一,二区| 日韩强制内射视频| 大香蕉久久网| 欧美色视频一区免费| 午夜福利成人在线免费观看| www.色视频.com| 欧美潮喷喷水| or卡值多少钱|