• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal Plasticity Finite Element Process Modeling for Hydro-forming Micro-tubular Components

    2011-03-01 01:47:38ZHUANGWeiminWANGShiwenBALINTDanielandLINJianguo

    ZHUANG Weimin , WANG Shiwen, BALINT Daniel, and LIN Jianguo

    1 State Key Laboratory of Automotive Dynamic Simulation, Jilin University, Changchun 130022, China

    2 Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK

    1 Introduction

    Hydro-forming is a metal forming technology based on the application of pressurized liquid media to generate defined workpiece shapes from tubular materials or sheet metals. Tube hydro-forming has been widely used in automotive and aircraft industries in recent years[1]. Compared with conventional punching and drawing processes,tube hydro-forming has the advantage of part consolidation,weight reduction, improved structural strength and stiffness, fewer secondary operations, reduced dimensional variations, and reduced scrap. Hydro-forming provides the possibility to form hollow complex-shaped components with integrated structures from single initial workpieces[2].Currently, modern products for electronic, telecommunication and medical technology applications require tubular micro-components for an ever-growing market. Microhydroforming is an efficient and time saving production method that offers the required productivity and accuracy for the manufacturing of these components.

    Since the tube is much larger than the grain size of the metal from which it is made, conventional macromechanics finite element(FE) is generally effective in modeling hydroforming processes[3–6]. In hydro-forming of a micro-tube, for example, the outer diameters of the initial and the formed tube are 800 μm and 1 030 μm, respectively, the wall thickness is 40 μm and the average grain size is about 30 μm. Cracking occurs as shown in Fig. 1 for the formed parts due to the localized thinning of the material in the hydro-forming process. Many tubes were formed using the same hydro-forming parameters and it was found that cracking takes place at different locations.The random nature of the cracking in hydro-forming of micro-tubes cannot be captured by using conventional macro-mechanics process modeling techniques.

    Fig. 1. Examples of hydro-formed micro-tubes with random cracking observed.

    In micro-forming, the grain size can be comparable to the smallest dimension of the part. Thus any region within a micro-part may contain fewer than ten grains, compared with hundreds or thousands in macro-forming. Due to the differences in the deformation characteristics at the micro and macro levels of the forming process, the workpiece for a micro part can no longer be regarded as a homogeneous continuum for process simulation purposes[7]. Crystal plasticity(CP) theory, which assumes that crystalline slip is the dominant deformation mechanism in crystalline materials,has attracted significant attention due to its ability to relate the plastic behavior of micro-parts to their microstructures.The main objective of this paper is to develop an integrated crystal plasticity finite element(CPFE) polycrystal modeling technique for capturing the localized thinning features for the hydroforming of micro-tubes.

    A set of crystal viscoplastic constitutive equations is introduced in section 2. The FE model and the integrated numerical process, including the virtual grain generation facility, are presented in section 3. Computational results,which include localized thinning features for different microstructures of the material and under different deformation conditions, are detailed in section 3. Finally,conclusions are given in section 4.

    2 Numerical Procedures for Micromechanics Hydro-forming Simulation

    2.1 Crystal viscoplasticity constitutive equations

    Crystal plasticity theories are used to represent the flow of dislocations along slip systems in metallic crystals in terms of resolved shear strains[8]. In particular, the crystalline slip is assumed to obey Schmidt’s law, i.e., the slipping rateαγ˙ in any particular slip system α is related to the shear stress, τα, on the same plane. The crystal plasticity theory used in this paper follows the pioneering work of TAYLOR[9], HILL, et al[10], and ASARO[11]. The set of crystal viscoplasticity constitutive equations used in the simulations is summarized below:

    where Cijklis the fourth order stiffness tensor and the indices i, j, k and l take values between 1 and 3.is an average slip plane normal andis an average normal direction, and

    The αth slip system is defined by a combination ofandThe number of slip systems and their orientations depend on the crystal lattice, e.g., an face centered cubic(FCC) crystal has 4 slip planes and each slip plane has 3 slip directions, i.e., α=1, 2,…, 12. In an FE analysis, each grain is divided into a certain number of elements (Nel). At the beginning of the deformation, τα=0, and the slip plane normaland slip directionare the same for all the elements within a grain, which takes its initial grain orientation from the virtual GRAIN (VGRAIN) software, which will be introduced later, according to a probability distribution embedded within the system. When plastic deformation occurs,andmay have different values in the different elements within a grain. The use ofandensures that the same orientation is assigned to all the elements within a grain.

    Material strain hardening is specified based on slip system strain hardness, gα. The self, hαα, and latent, hαβ, hardening moduli are defined by ASARO[11]and PEIRCE, et al[12], which is directly related to the accumulated shear strain γ. They are defined by

    where h0is the initial hardening modulus, g0is the initial shear strength, gsis the break through stress when plastic flow initiates and q is a hardening factor. In Taylor’s isotropic hardening assumption, the self and latent hardening rates are assumed to be the same. Hence, the value of the hardening factor, q, is taken to be equal to one. In the initial state (t=0), σij=0, γα=0, gα=g0and εkl=0. The material constants used with the equation set for 316L stainless steel are listed in Table. Young’s modulus and Poisson’s ratio are 193 GPa and 0.34, respectively[13]. The high value of n used here is chosen to reduce the viscoplastic effect of the material, as the deformation is at low temperature.

    Table. Values of material constants in Eqs. (1) and (2)

    The CP material model is implemented in ABAQUS via the user-defined subroutine VUMAT. This implementation was based on an implicit algorithm developed by HUANG[14]and further developed by HAREWOOD, et al[13]. In explicit finite element calculation procedures, the task can be split up easily and solved by a number of processors. Hence, the VUMAT can be constructed with a vectorized interface. This means that when a simulation is carried out using multiple processors, the analysis data can be split up into blocks and solved independently. Thus,vectorization can be preserved in the writing of the subroutine so that optimal processor parallelization can be achieved.

    2.2 Integrated micro-mechanics forming simulation system

    (1) Voronoi diagram. Significant research has been carried out which has demonstrated that Voronoi tessellation can be used to generate polygonal grain-structures[15]. Voronoi tessellation divides a region into convex polygons or cells, which fills the space without overlap. Voronoi tessellations can be constructed in either two- or threedimensions. For the CPFE applications in this paper, 2D Voronoi tessellations are used. Firstly, N nuclei (or seeds)are generated in a planar (x-y) area. A Cartesian-coordinate system is chosen, with nucleation points being created in the area by generating x- and y-coordinates independently from pseudo-random numbers distributed evenly between zero and unity. After the first point has been specified, each subsequent random point is accepted only if it is greater than a minimum allowable distance from any existing point, until N nuclei are seeded; a more-detailed description of the method can be found in Ref. [16]. The distribution of the seeds can be approximated by the oneparameter gamma distribution:

    (2) Definition of initial grain orientations. Another important feature in virtual microstructure generation is the assignment of the initial orientations of every grain within the model. Crystals, with their inherent directions of slip(i.e., slip planes), are usually oriented randomly. To simulate the crystal deformation in micro-mechanics modeling,the grain orientations need to be defined based on their intrinsic physical features. Two angles (θ =[0, 2π] and ψ =[0, π]), which are relative to global coordinates, are used to define the initial grain-orientations and are shown in Fig. 2[17].

    Fig. 2. Relation between spherical coordinates and the global coordinates

    An orientation matrix, g, expressed in terms of the spherical coordinates of the sample directions, e.g., x= RD(rolling direction), y = TD (transverse direction) and z=ND (normal direction), in the coordinate system of the crystal directions, can be obtained as follows:

    In the VGRAIN software package, two angles θ and ψ can be assigned according to probability theory. These angles describe the components of the initial orientation for each grain. In an FE analysis, each grain is divided into a number of elements and the determination of grain orientations in the subsequent increments will be discussed in a later section. The crystal orientations can also be represented by pole figures, which are commonly used and accepted in materials science.

    (3) Numerical procedures. A VGRAIN system, which is described in detail by CAO, et al[15], has been developed and used to generate virtual grain structures according to the physical parameters of a material. The grain structure within a defined region is generated according to the input values of average, maximum and minimum grain sizes(Fig. 3). Orientations of grains are assigned according to a probability distribution either in a random form or with a prescribed distribution. The generated grain structures together with grain orientations are input to commercially available FE codes, such as ABAQUS, where further FE pre-processing, such as meshing, boundary and loading conditions, can be carried out. In this work, the generated virtual grain distributions with their orientation information are transferred into ABAQUS/CAE for further preprocessing. A flow diagram for the overall integrated CPFE modeling system is shown in Fig. 4.

    Fig. 3. Main interface of the VGRAIN system for generating virtual grain structures using a Gamma distribution based on physical parameters

    Fig. 4. Integrated numerical procedure for micro-mechanics modeling

    2.3 FE model for micro-mechanics hydro-forming process modeling

    The geometry (with dimensions) and the FE model of the cross-section of a micro-tube are shown in Fig. 5.

    Fig. 5. Micro-mechanics model, with grains and grain boundaries, for tube hydro-forming

    In the CPFE model, a quarter section of the micro-tube is considered. The minimum, average and maximum grain sizes of the material are 25, 30 and 40 μm, respectively,and 95% of the grains are within that range. Hence there are about 1–2 grains across the thickness of the tube section on average. The grains and their orientations are generated by using the VGRAIN system, which are read into ABAQUS/CAE for further mesh generation, boundary and loading definitions. The die is defined in ABAQUS/CAE as well. The maximum applied loading pressure is 400 MPa; this high pressure ensures the workpiece is deformed to the die completely. A friction coefficient of 0.1 is used when the workpiece and the die are in contact during the forming process. For simplicity, a 2D plane strain CPFE analysis was carried out here.

    It is worth mentioning that CPFE analyses require considerable computer CPU time. 2D CPFE analyses could reduce the computational time significantly while still allowing the interesting features, such as localized thinning,failure, etc, in hydro-forming of micro-tubes to be captured.The fully-developed CPFE process modeling technique can be readily used for 3D hydro-forming simulations, if the 3D grain structures can be constructed effectively for the initial metal tubes.

    3 Computational Results

    3.1 Unpredictable thinning in polycrystals with large grains

    Polycrystalline structures and grain orientations are generated using the VGRAIN system automatically as previously mentioned. To simulate the deformation and thinning behavior of two hydro-formed micro-tubes, which are taken from the same piece of the material, the grain structures are generated twice using the same microstructure control parameters defined above, and the orientations of both are assigned randomly based on the embedded probability theories within the VGRAIN system. This indicates that the microstructures and grain orientations may be different between the two CPFE models, although they are within the range of the material specification. The results of the virtually hydro-formed micro-tubes are shown in Fig. 6. It can be observed that the minimum and maximum values of the wall thickness of the formed tubes, shown in Fig. 6(a) (20.2 μm and 31.4 μm) and Fig. 6(b) (20.7 μm and 33.1 μm), are different for the two cases studied. The wall thicknesses of the two hydro-formed micro-tubes with random grain orientations are not uniform and are difficult to predict. This is due to the variation in grain size and grain orientation, and the relationship between grains and their neighbors. This complicated relationship and the localized thinning features cannot be captured using conventional macro-mechanics FE techniques. It can also be observed that localized thinning occurs at different locations. This is mainly due to the grain orientations of the workpiece material, which are also difficult to control in practice.

    3.2 Deformation effects for polycrystalline microstructures

    To investigate the deformation effects in thinning of hydro-formed micro-tubes with polycrystal material microstructures, two cases were studied. The grain structures and grain orientations of the workpiece for the two cases are identical, but the deformation ratios are different. This simulates the process of forming the tubes with different diameters from the same workpiece. In the first case (Fig.7(a)), the radii of the die and the outside of the tube are 515 μm and 400 μm, respectively, thus, the ratio of the deformation is 1.3. For the other case shown in Fig. 7(b),the radius of the die is 596 μm and the deformation ratio is 1.5.

    Fig. 6. Predicted thinning features of the part with two microstructures generated with the same control parameters

    The predicted localized thinning features for the two cases are shown in Fig. 7. It can be clearly seen that the wall thickness of the formed tube is not uniform and the amount of the localized thinning increases with the increase in deformation dramatically and non-proportionally.The ratios of the two maximum and minimum values of wall thickness shown in Figs. 7(a) and 7(b) are 0.97(31.9/32.9 for maximum values) and 0.64 (13.7/21.4 for minimum values), respectively. It can also be seen that the maximum values of the wall thickness for the two cases are almost the same as the deformation progresses, but the minimum values of the wall thickness of the tubes decreases sharply with the increase in deformation. This indicates that once localized necking takes place at a location,it would progress very quickly and lead to the localized failure of the material. The necking position is related to the angle between the directions of the slip systems and the hoop stress, which is also governed by the orientations and sizes of the neighboring grains. Hence, for a polycrystal case, the position and the amount of localized necking are difficult to control in practice if there are only one or two grains through the thickness of the tubular part. One example of localized failure in hydro-forming of micro-tubes is shown in Fig. 1. The location of failure is random and cannot be predicted. This experimentally observed random localized thinning/failure feature has been reproduced by the CPFE analysis carried out in this work. Furthermore,the CPFE analysis results confirm that traditional macromechanics FE process modeling techniques cannot be used to predict the localized failure in hydro-forming of microtubes.

    Fig. 7. Comparison of thinning features for the deformation ratios of 1.3 and 1.5

    4 Conclusions

    (1) Traditional macro-mechanics FE techniques can only be used for process simulation in forming of macrocomponents. However, in hydro-forming of micro-tubes, if the ratio of the wall thickness of the micro-tube and the grain size of the material is low, CPFE analysis must be used. Otherwise, the important localized thinning features resulting from the microstructure variation and grain orientations of the material cannot be captured.

    (2) It has been demonstrated that the location of localized thinning cannot be predicted for polycrystalline cases,which occurs randomly. This occurs because the grain size distribution and individual grain orientations are not fixed.

    (3) Once necking takes place at a preferred location, it progresses very quickly and leads to localized failure as observed in the experiments.

    [1] AHMETOGLU M, ALTAN T. Tube hydroforming, state of the art and future trends[J]. Journal of Materials Processing Technology,2000, 98(1): 25–33.

    [2] HARTL Ch. Research and advances in fundamentals and industrial applications of hydroforming[J]. Journal of Materials Processing Technology, 2005, 167(2–3): 383–392.

    [3] LEI Liping, FANG Gang, ZENG Pan. Numerical simulation of hydroforming process for automobile lower arm[J]. Chinese Journal of Mechanical Engineering, 2002, 38(10): 90–94.

    [4] AUE-U-LAN Y, NGAILE G, ALTAN T. Optimizing tube hydroforming using process simulation and experimental verification[J].Journal of Materials Processing Technology, 2004, 146(1): 137–143.

    [5] KIM J, KIM W J, KANG B S. Analytical and numerical approach to prediction of forming limit in tube hydroforming[J]. International Journal of Mechanical Sciences, 2005, 47(7): 1 023–1 037.

    [6] KANG S J, KIM H K, KANG B S. Size effect on hydroforming formability[J]. Journal of Materials Processing Technology, 2005,160(1): 24–33.

    [7] ZHUANG Weimin, WANG Shiwen, CAO Jian, et al. Hydroforming of micro tubes: crystal plasticity FE modeling[J]. Steel Research International, 2008, 79(11): 293–300.

    [8] PI Huachun, HAN Jingtao, XUE Yongdong, et al. Development on crystal plasticity finite element modeling in metal forming[J].Chinese Journal of Mechanical Engineering, 2006, 42(2): 15–21.

    [9] TAYLOR G I. Plastic strains in metals[J]. Journal of Institute of Metals, 1938, 62: 307–324.

    [10] HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401–413.

    [11] ASARO R J. Crystal plasticity[J]. Journal of Applied Mechanic,1938, 50(4b): 921–934.

    [12] PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31(12): 1 951–1 976.

    [13] HAREWOOD F J, MCHUGH P E. Comparison of the implicit and explicit finite element methods using crystal plasticity[J].Computational Materials Science, 2007, 39(2): 481–494.

    [14] HUANG Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program[R]. Harvard University, 1991, MECH 178.

    [15] CAO Jian, ZHUANG Weimin, WANG Shiwen, et al. An integrated crystal plasticity FE system for microforming simulation[J].International Journal of Multiscale Modelling, 2009, 1(1): 107–124.

    [16] ZHU H X, THORPE S M, WINDLE A H. The geometrical properties of irregular two dimensional Voronoi tessellations[J]. Philosophical Magazine A, 2001, 81(12): 2 765–2 783.

    [17] BUNGE H J. Texture analysis in materials science: mathematical methods[M]. Gattingen: Cuvillier Verlag, 1993.

    女性被躁到高潮视频| 亚洲九九香蕉| 久久欧美精品欧美久久欧美| 精品福利观看| 午夜成年电影在线免费观看| 后天国语完整版免费观看| 女警被强在线播放| 国产精品爽爽va在线观看网站 | 男女下面插进去视频免费观看| 一区福利在线观看| 在线免费观看的www视频| 日韩欧美国产一区二区入口| 中文亚洲av片在线观看爽| 999久久久精品免费观看国产| 国产精品野战在线观看 | 欧美av亚洲av综合av国产av| 亚洲成人久久性| 午夜免费激情av| 亚洲人成电影免费在线| 国产成人啪精品午夜网站| 一级毛片女人18水好多| 久久精品亚洲熟妇少妇任你| 亚洲精品成人av观看孕妇| 精品人妻1区二区| 他把我摸到了高潮在线观看| 90打野战视频偷拍视频| 一级,二级,三级黄色视频| 国产精品成人在线| 亚洲人成77777在线视频| 天天添夜夜摸| 国产一区在线观看成人免费| 中文字幕人妻丝袜一区二区| 在线观看一区二区三区| 中文亚洲av片在线观看爽| 侵犯人妻中文字幕一二三四区| 50天的宝宝边吃奶边哭怎么回事| 男女高潮啪啪啪动态图| 色尼玛亚洲综合影院| 黄色片一级片一级黄色片| 日韩人妻精品一区2区三区| 99在线视频只有这里精品首页| 男女下面插进去视频免费观看| 欧美色视频一区免费| 欧美黑人精品巨大| 亚洲自偷自拍图片 自拍| 一级a爱视频在线免费观看| 伦理电影免费视频| 日韩三级视频一区二区三区| 欧美精品啪啪一区二区三区| 999久久久精品免费观看国产| 91九色精品人成在线观看| 黑人欧美特级aaaaaa片| 亚洲中文日韩欧美视频| 久久久久精品国产欧美久久久| 丝袜人妻中文字幕| 国产一卡二卡三卡精品| 久久久国产精品麻豆| 男女床上黄色一级片免费看| 在线观看一区二区三区激情| 亚洲精品一区av在线观看| 亚洲av片天天在线观看| 女同久久另类99精品国产91| 黄色毛片三级朝国网站| 免费在线观看视频国产中文字幕亚洲| 曰老女人黄片| 水蜜桃什么品种好| 久久香蕉精品热| 一进一出抽搐gif免费好疼 | 色婷婷av一区二区三区视频| 国产欧美日韩综合在线一区二区| 桃红色精品国产亚洲av| 性少妇av在线| 精品一区二区三区av网在线观看| 国产亚洲欧美98| 国产成人欧美在线观看| 国产精品亚洲av一区麻豆| 国产精品一区二区在线不卡| 日韩大尺度精品在线看网址 | 不卡av一区二区三区| 国产亚洲精品久久久久久毛片| 最好的美女福利视频网| 无遮挡黄片免费观看| 动漫黄色视频在线观看| 午夜免费成人在线视频| 亚洲成人国产一区在线观看| 亚洲男人天堂网一区| 欧美日韩亚洲综合一区二区三区_| 欧美激情高清一区二区三区| 成年人黄色毛片网站| 超色免费av| 首页视频小说图片口味搜索| 日韩一卡2卡3卡4卡2021年| 国内久久婷婷六月综合欲色啪| 美女扒开内裤让男人捅视频| 看片在线看免费视频| 一级黄色大片毛片| 中文字幕高清在线视频| 国产高清videossex| 美国免费a级毛片| 亚洲午夜理论影院| av国产精品久久久久影院| 久久国产精品影院| 老司机深夜福利视频在线观看| 天堂俺去俺来也www色官网| 一边摸一边抽搐一进一出视频| 国产99久久九九免费精品| 亚洲自偷自拍图片 自拍| 动漫黄色视频在线观看| 久久狼人影院| videosex国产| 亚洲国产欧美一区二区综合| 在线av久久热| 日日夜夜操网爽| 久久久国产一区二区| 最近最新中文字幕大全电影3 | 亚洲情色 制服丝袜| 久久人妻av系列| 日韩国内少妇激情av| 久久人人爽av亚洲精品天堂| 色婷婷久久久亚洲欧美| 日韩免费高清中文字幕av| 亚洲 欧美 日韩 在线 免费| 搡老岳熟女国产| 韩国精品一区二区三区| 国产一区在线观看成人免费| 国产av一区二区精品久久| 国内毛片毛片毛片毛片毛片| 国产成人影院久久av| tocl精华| 欧美一级毛片孕妇| 国产激情欧美一区二区| 97人妻天天添夜夜摸| 亚洲欧美日韩无卡精品| 日本黄色日本黄色录像| 五月开心婷婷网| 成年人黄色毛片网站| 国内久久婷婷六月综合欲色啪| 国产成人av教育| √禁漫天堂资源中文www| 首页视频小说图片口味搜索| 一级毛片高清免费大全| 亚洲人成网站在线播放欧美日韩| 在线观看一区二区三区激情| 免费高清在线观看日韩| 51午夜福利影视在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲精华国产精华精| 国产精品秋霞免费鲁丝片| 精品久久久久久成人av| 美女福利国产在线| 国产成人欧美| 国产亚洲av高清不卡| 好男人电影高清在线观看| 欧美黑人欧美精品刺激| 琪琪午夜伦伦电影理论片6080| 嫁个100分男人电影在线观看| tocl精华| 成人影院久久| 可以在线观看毛片的网站| 欧美一级毛片孕妇| 一边摸一边抽搐一进一出视频| 99久久久亚洲精品蜜臀av| 丁香欧美五月| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区综合在线观看| 国产精品自产拍在线观看55亚洲| 黄片大片在线免费观看| 国产亚洲欧美精品永久| 色综合欧美亚洲国产小说| 欧美 亚洲 国产 日韩一| 国产99久久九九免费精品| www日本在线高清视频| 动漫黄色视频在线观看| 1024香蕉在线观看| 国产伦人伦偷精品视频| 99国产精品一区二区蜜桃av| 大码成人一级视频| 麻豆一二三区av精品| 黄色 视频免费看| 99热只有精品国产| 久久中文字幕人妻熟女| 欧美日韩视频精品一区| 波多野结衣一区麻豆| 欧美久久黑人一区二区| 欧美最黄视频在线播放免费 | 香蕉久久夜色| 国产亚洲精品第一综合不卡| 国产亚洲精品第一综合不卡| 99国产极品粉嫩在线观看| 久久精品人人爽人人爽视色| 真人一进一出gif抽搐免费| 国产精品永久免费网站| 不卡av一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇熟女久久| 久久久久久大精品| 午夜老司机福利片| 久久久久国产一级毛片高清牌| 亚洲成a人片在线一区二区| 亚洲国产精品一区二区三区在线| 女人被狂操c到高潮| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产色婷婷电影| 久久性视频一级片| 我的亚洲天堂| 国产视频一区二区在线看| 成人av一区二区三区在线看| 亚洲第一青青草原| 国产成年人精品一区二区 | 免费久久久久久久精品成人欧美视频| 久久精品国产综合久久久| 国产成人精品久久二区二区免费| 97碰自拍视频| 天天添夜夜摸| 久久人妻福利社区极品人妻图片| 国产精品 国内视频| 久久伊人香网站| 50天的宝宝边吃奶边哭怎么回事| 999精品在线视频| 国产精品免费一区二区三区在线| 在线观看午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 亚洲专区字幕在线| 操美女的视频在线观看| 啦啦啦在线免费观看视频4| 国产欧美日韩一区二区精品| 中文欧美无线码| 国产成人av激情在线播放| 亚洲五月色婷婷综合| 国产一区二区三区视频了| 亚洲av成人av| 一区二区三区精品91| 精品第一国产精品| 国产熟女xx| 欧美成人午夜精品| 免费在线观看完整版高清| 制服诱惑二区| 国产在线精品亚洲第一网站| 中文亚洲av片在线观看爽| 午夜福利一区二区在线看| 十八禁人妻一区二区| 精品第一国产精品| 男男h啪啪无遮挡| ponron亚洲| 精品国产一区二区三区四区第35| 亚洲国产精品一区二区三区在线| 高清在线国产一区| 在线观看66精品国产| 亚洲国产看品久久| 日韩人妻精品一区2区三区| 99香蕉大伊视频| 国产激情久久老熟女| 黄网站色视频无遮挡免费观看| 国产蜜桃级精品一区二区三区| 免费观看人在逋| 久久草成人影院| 亚洲色图av天堂| 亚洲国产精品sss在线观看 | 亚洲一区高清亚洲精品| 99热国产这里只有精品6| 久久 成人 亚洲| 亚洲三区欧美一区| 丁香六月欧美| 纯流量卡能插随身wifi吗| 国产男靠女视频免费网站| 纯流量卡能插随身wifi吗| 一个人免费在线观看的高清视频| 狠狠狠狠99中文字幕| 国产高清国产精品国产三级| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品在线观看二区| 久久久精品欧美日韩精品| 久久精品国产99精品国产亚洲性色 | 精品日产1卡2卡| 水蜜桃什么品种好| 国产91精品成人一区二区三区| 亚洲狠狠婷婷综合久久图片| 免费在线观看黄色视频的| 欧美乱色亚洲激情| 亚洲成人精品中文字幕电影 | 久久久国产一区二区| 男女高潮啪啪啪动态图| 少妇粗大呻吟视频| 欧美老熟妇乱子伦牲交| 日韩有码中文字幕| 国产免费男女视频| 欧美日韩av久久| 国产一区二区三区综合在线观看| 久久久水蜜桃国产精品网| 最新在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品久久久久久毛片| 五月开心婷婷网| 首页视频小说图片口味搜索| 亚洲中文日韩欧美视频| 成人永久免费在线观看视频| 一区福利在线观看| 欧美精品一区二区免费开放| 夜夜躁狠狠躁天天躁| 亚洲一区二区三区色噜噜 | 美女 人体艺术 gogo| 人妻丰满熟妇av一区二区三区| 亚洲av成人不卡在线观看播放网| 黑丝袜美女国产一区| 校园春色视频在线观看| 国产成人精品久久二区二区免费| 精品一品国产午夜福利视频| 久久人妻福利社区极品人妻图片| 免费不卡黄色视频| 97人妻天天添夜夜摸| 亚洲国产毛片av蜜桃av| 91国产中文字幕| 亚洲精品国产色婷婷电影| 三上悠亚av全集在线观看| av有码第一页| 日韩欧美在线二视频| 热re99久久国产66热| av在线播放免费不卡| 午夜福利在线观看吧| xxx96com| 中文亚洲av片在线观看爽| 国产成人精品在线电影| 日韩av在线大香蕉| 久久青草综合色| 黑人巨大精品欧美一区二区蜜桃| av在线天堂中文字幕 | 午夜91福利影院| 18禁观看日本| 亚洲欧美一区二区三区黑人| 法律面前人人平等表现在哪些方面| 老司机靠b影院| 悠悠久久av| 国产精品av久久久久免费| 国产区一区二久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产人伦9x9x在线观看| 亚洲avbb在线观看| 亚洲精品在线美女| 午夜亚洲福利在线播放| 国产伦人伦偷精品视频| 最近最新中文字幕大全电影3 | 19禁男女啪啪无遮挡网站| 热re99久久精品国产66热6| 90打野战视频偷拍视频| 日本一区二区免费在线视频| xxxhd国产人妻xxx| 国产又爽黄色视频| 真人一进一出gif抽搐免费| 国产99久久九九免费精品| 日韩欧美国产一区二区入口| 视频在线观看一区二区三区| 美女 人体艺术 gogo| 黑人巨大精品欧美一区二区mp4| 亚洲片人在线观看| 狠狠狠狠99中文字幕| 大香蕉久久成人网| 色婷婷av一区二区三区视频| 又黄又爽又免费观看的视频| 自线自在国产av| 中亚洲国语对白在线视频| 夫妻午夜视频| 欧美日本亚洲视频在线播放| 国产人伦9x9x在线观看| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区精品| 好看av亚洲va欧美ⅴa在| 搡老岳熟女国产| 午夜福利在线观看吧| 久久精品国产综合久久久| 午夜久久久在线观看| 嫩草影视91久久| a级毛片在线看网站| 高清av免费在线| 亚洲专区国产一区二区| 国产有黄有色有爽视频| 免费在线观看日本一区| 免费少妇av软件| 99久久精品国产亚洲精品| 亚洲一区二区三区不卡视频| 男女做爰动态图高潮gif福利片 | 在线观看免费视频网站a站| av福利片在线| 一级毛片女人18水好多| 婷婷精品国产亚洲av在线| 亚洲国产欧美一区二区综合| 精品久久久久久成人av| 久久人人97超碰香蕉20202| 日韩欧美免费精品| 男女高潮啪啪啪动态图| 午夜精品国产一区二区电影| 亚洲色图 男人天堂 中文字幕| 女同久久另类99精品国产91| 欧美日韩乱码在线| 日韩大尺度精品在线看网址 | 免费高清视频大片| 精品欧美一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| av超薄肉色丝袜交足视频| 在线国产一区二区在线| 十八禁网站免费在线| 丰满迷人的少妇在线观看| 免费看a级黄色片| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频 | 国产黄a三级三级三级人| 亚洲欧美精品综合久久99| 变态另类成人亚洲欧美熟女 | 亚洲精品中文字幕一二三四区| 免费观看精品视频网站| 村上凉子中文字幕在线| 久9热在线精品视频| 亚洲三区欧美一区| 天堂中文最新版在线下载| 人人澡人人妻人| 另类亚洲欧美激情| 欧美一级毛片孕妇| 亚洲精品一区av在线观看| 69精品国产乱码久久久| 亚洲熟女毛片儿| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 老汉色av国产亚洲站长工具| 成人亚洲精品av一区二区 | 精品一区二区三区四区五区乱码| 久久久久久免费高清国产稀缺| 黄频高清免费视频| 香蕉久久夜色| 国产一区二区三区在线臀色熟女 | 80岁老熟妇乱子伦牲交| 国产97色在线日韩免费| 大型黄色视频在线免费观看| www.www免费av| 久久精品亚洲精品国产色婷小说| 亚洲午夜理论影院| 亚洲,欧美精品.| 亚洲国产中文字幕在线视频| 成人特级黄色片久久久久久久| 亚洲九九香蕉| 校园春色视频在线观看| av天堂在线播放| 母亲3免费完整高清在线观看| 久久九九热精品免费| 亚洲欧美日韩另类电影网站| 久久久久久久精品吃奶| 欧美成人免费av一区二区三区| av中文乱码字幕在线| av网站免费在线观看视频| 国产精品久久电影中文字幕| 欧美激情久久久久久爽电影 | av在线播放免费不卡| e午夜精品久久久久久久| 少妇粗大呻吟视频| 亚洲精品美女久久av网站| 久久草成人影院| 亚洲美女黄片视频| 日本一区二区免费在线视频| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| 久久性视频一级片| 午夜两性在线视频| 麻豆av在线久日| 亚洲五月婷婷丁香| 手机成人av网站| 欧美激情高清一区二区三区| 99久久99久久久精品蜜桃| 在线观看一区二区三区| 嫁个100分男人电影在线观看| 看黄色毛片网站| 久久久久久久午夜电影 | 侵犯人妻中文字幕一二三四区| 高清黄色对白视频在线免费看| 看免费av毛片| 欧美日韩瑟瑟在线播放| 欧美成人性av电影在线观看| 香蕉久久夜色| 国产亚洲精品第一综合不卡| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 成人国产一区最新在线观看| 欧美日韩福利视频一区二区| 12—13女人毛片做爰片一| 国产黄a三级三级三级人| 日韩大尺度精品在线看网址 | 亚洲三区欧美一区| 桃红色精品国产亚洲av| 超碰成人久久| 欧美日韩乱码在线| 最新美女视频免费是黄的| 亚洲第一青青草原| 亚洲情色 制服丝袜| 亚洲av五月六月丁香网| 免费搜索国产男女视频| 国产熟女xx| 少妇裸体淫交视频免费看高清 | 国产精品 国内视频| 日日摸夜夜添夜夜添小说| 国产精品日韩av在线免费观看 | 中文字幕最新亚洲高清| 亚洲国产毛片av蜜桃av| 亚洲第一欧美日韩一区二区三区| 老司机深夜福利视频在线观看| 天堂中文最新版在线下载| 午夜91福利影院| 女生性感内裤真人,穿戴方法视频| 性欧美人与动物交配| 免费少妇av软件| 国产成人啪精品午夜网站| 欧美一区二区精品小视频在线| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 国产有黄有色有爽视频| 成年人黄色毛片网站| 老汉色∧v一级毛片| 国产熟女午夜一区二区三区| 三上悠亚av全集在线观看| 亚洲久久久国产精品| 一级毛片精品| 99精国产麻豆久久婷婷| 97超级碰碰碰精品色视频在线观看| 久久人人97超碰香蕉20202| 亚洲欧美激情综合另类| 波多野结衣av一区二区av| 成年女人毛片免费观看观看9| 日韩成人在线观看一区二区三区| 91麻豆av在线| 在线观看一区二区三区| 高清在线国产一区| 亚洲第一青青草原| 亚洲 欧美一区二区三区| 国产成人精品在线电影| 精品久久久精品久久久| 国产成人精品在线电影| 国产熟女xx| 99国产精品一区二区蜜桃av| 久久国产精品影院| 国产精品偷伦视频观看了| 少妇粗大呻吟视频| x7x7x7水蜜桃| 在线视频色国产色| 免费久久久久久久精品成人欧美视频| 另类亚洲欧美激情| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图| 一二三四社区在线视频社区8| 男男h啪啪无遮挡| 嫩草影院精品99| 国产熟女xx| 人成视频在线观看免费观看| 精品少妇一区二区三区视频日本电影| 黄片大片在线免费观看| 天天躁夜夜躁狠狠躁躁| 在线av久久热| 黄色女人牲交| 午夜免费鲁丝| 成人免费观看视频高清| 超碰成人久久| 一边摸一边抽搐一进一小说| 亚洲精品在线美女| 国产成人av教育| 久久久国产欧美日韩av| 久久久国产一区二区| 精品乱码久久久久久99久播| 看片在线看免费视频| 精品免费久久久久久久清纯| 侵犯人妻中文字幕一二三四区| 成人黄色视频免费在线看| 欧美乱色亚洲激情| 国产精品 国内视频| 亚洲一区二区三区色噜噜 | 国产精品乱码一区二三区的特点 | 色婷婷av一区二区三区视频| 欧美在线黄色| 亚洲国产中文字幕在线视频| 午夜福利,免费看| 色综合婷婷激情| 99国产精品一区二区蜜桃av| 日韩中文字幕欧美一区二区| 国产国语露脸激情在线看| 国产一区在线观看成人免费| 久久人妻av系列| 91成年电影在线观看| 欧美精品啪啪一区二区三区| 午夜免费激情av| 乱人伦中国视频| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看完整版高清| 亚洲av片天天在线观看| 国产成人精品无人区| 国产99白浆流出| 99久久精品国产亚洲精品| 男女做爰动态图高潮gif福利片 | 夫妻午夜视频| 99在线人妻在线中文字幕| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看 | 欧美日韩亚洲高清精品| av片东京热男人的天堂| 日韩欧美一区视频在线观看| 国产在线精品亚洲第一网站| 黑丝袜美女国产一区| 97人妻天天添夜夜摸| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久av美女十八| 久久国产精品人妻蜜桃| 国产成人精品在线电影| av免费在线观看网站| 又大又爽又粗| 欧美+亚洲+日韩+国产| 免费久久久久久久精品成人欧美视频| 一二三四社区在线视频社区8| 成人永久免费在线观看视频| 午夜免费激情av| 亚洲伊人色综图| 欧洲精品卡2卡3卡4卡5卡区|