• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Weighted Multi-sensor Data Level Fusion Method of Vibration Signal Based on Correlation Function

    2011-03-01 01:47:40BINGuangfuJIANGZhinongLIXuejunandDHILLON

    BIN Guangfu , JIANG Zhinong , LI Xuejun, and DHILLON B S

    1 Diagnosis and Self-recovery Engineering Research Center, Beijing University of Chemical Technology,Beijing 100029, China

    2 Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment,Hunan University of Science and Technology, Xiangtan 411201, China

    3 Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa K1B 6N5, Canada

    1 Introduction

    With the development of fault diagnosis and signal processing technology, data fusion has gained widespread use in different areas of measurement. The concept of multi-sensor data fusion and integration has been applied in military applications for many years[1–3]. Its applications have been in areas where the desired output of an analysis cannot be measured directly[4–6]. Nonetheless, the approach has gained widespread use in areas such as medical imaging, non-destructive testing, remote sensing, and fault diagnosis[7–10].

    There are many ways and models of data fusion in different fault diagnosis areas. In the area of rotary machine fault diagnosis, the data fusion model can be referred to the functional model presented by the Joint Directorate of Laboratories, the United States Department of Defense[11–12].Relative to the characterization of information, it is noted that the data fusion can be divided into three levels: data level fusion, feature level fusion, and decision-making level fusion, in which the method and effect of three levels fusion are different. The data level fusion is the process of data integration and analysis for the original measuring data without pre-processing to reflect the real state of target as far as possible. Data fusion can be developed at the data level, feature level, or decision-making level, while the choices of different fusion level are mainly depended on the characteristics of targets, the cost of implementation, and fusion performances. At the data level fusion, the estimated uncertainty factors or prediction the machine status can be determined by using the algorithms of quantity form, such as Kalman filtering[13]; for the feature level fusion, many methods are employed from the pattern classification or identification areas, such as intelligent neural network[14–15];for the decision-making level fusion is mainly based on the methods of uncertainty measurement, such as Bayesian rule,D-S evidence theory, and fuzzy decision-making[16–17].

    The reliability and accuracy of rotary machine fault diagnosis’s result are closely related to the measuring data.As the differences of sensor’s precision and some random factors are difficult to control, the actual measurement signals are far from the target signals. Data fusion can effectively deal with the noise, non-effective signals, and integrate the measured data to make it more accurate. The method of multi-sensor data fusion is an important development direction of fault diagnosis, which can make use of the information from multi-sensors to reduce or eliminate the information’s uncertainty of individual sensor,including the sensor’s measuring accuracy and the random factors in the process of measurement for improving the accuracy and precision of fault diagnosis’ result.

    In the failure analysis process of vibration signals from rotary machine, due to the interaction of common failure mode, the failure mode data usually have different degrees of intercross[18–19]. For example, the rotor imbalance fault and rotor misalignment fault are manifested with abnormalities in varying degrees of vibration signal; from the view point of fuzzy set theory, the application of conventional signal analysis methods to deal with the intercross problem of these two types of failure mode data easily leads to the miscarriage of justice[20–21]. The traditional data fusion methods, such as classical inference and weighted averaging algorithm usually lack dynamic adaptability; they can not adapt to the differences of temperature, operation, and environmental random factors in the process of measuring. The multi-sensor information fusion technology based on D-S evidence theory is applied to the rotary machine fault identification, and the accuracy of fault diagnosis has improved, however, the fusion effect needs to be improved because the leaked-judge phenomena are still appear when the threshold value of failure determination is large[22–23]. Therefore, to meet the need of eliminating or reducing the uncertainty effect of the rotary machine fault diagnosis, and to further improve the measuring precision and accuracy of vibration signal in the process of rotary machine fault diagnosis, this paper presents a novel approach to determine the weighted value of multi-sensor vibration signal data level fusion based on correlation function analysis.

    In section 2, by using the correlation function and data level fusion, the way to fast determine the weighted value of sensors on the basis of correlation measure of real-time data tested in the fusion process is presented. Then in section 3, we compare the dynamic adaptability, precision,fault-tolerance, and operability of proposed approach with the traditional weighted averaging approach through simulation and experiment analysis. Consequently, the simulation and experiment results analysis are presented in section 4, followed by discussions and conclusions.

    2 System Data Level Fusion Processes

    2.1 Correlation function

    There are two certainty and limited power signals x(n)and y(n), respectively. For their causal relationship, the correlation coefficient ρxybetween x(n) and y(n) is expressed by:

    In the vibration signals process, the correlation function can be used to describe the correlation measure for instantaneous value of the random sample function in different time. Autocorrelation function can be described as the instantaneous dependency relationship for the same random sample function in different time, which is also reflected by the cross compactness performance of the same random vibration signal waveform moving with time coordinate. Autocorrelation function of the discrete random vibration signal is expressed as follows:

    Cross-correlation function of vibration signals can be described as the dependency relationship of two different random samples function in different time, which is also reflected by the cross compactness performance of two random vibration signal waveforms moving along the time coordinate. The cross-correlation function of discrete random vibration signal is expressed as follows:

    The cross-correlation function can directly reflect the correlation of two signals, and it also is the measure of waveforms’ similarity.

    2.2 Data level fusion based on correlation function

    Fig. 1. Weighted fusion model

    Multi-sensors with same precision are measured on different parts of the same goal, and the validity of measuring data may be fuzzy when the sensor experiences unexpected situations such as strong external interferences,physical damage of sensor, and sensor failure. Under such conditions precision characteristics of sensors to distribute the weighted value is inappropriate. The data level fusion approach can distribute the weighted value based on the correlation measure of one signal with another signal[26–27].

    2.2.1 Weighted value determination

    Compared with the traditional methods of weighted average based on the precision of sensors, and self-adaptive weighted fused algorithm based on the prior knowledge about sensors to determine the weighted value, the data level fusion based on correlation function weighted method can take full advantage of the correlation function based on real-time measured signals to adjust the weighted value,and take into account the precision of sensors and random factors synthetically. To analyze the correlation function of any signal with others, the overall correlation measure is given greater weighted value for signal. More specifically,the signal that reflected the state of target has more energy.The energy of signal is usually used to express the correlation measure. Furthermore, the signal that has greater energy will have greater correlation measure.

    The energy of discrete signal is expressed as follows[28]:

    Where Eijis the correlation energy of signal after cross-correlation operation. The total correlation energy Eiof signal i correlated with other signals can be expressed as

    In order to mark obviously the target signal, the energy of correlative signal is usually used to express the correlation measure. According to the past experiences, it is noted that the weighted value is directly affected by the correlation measure, thus, we can consider that the weighted value wiis the direct proportion of the energy of correlation function[29]:

    Therefore, we can get the weighted value of each signal through the above two equations, and the result of data level fusion:

    2.2.2 Characteristics

    (1) Simple arithmetic and easy to use. The method directly analyzes the correlation measure of real-time data,and then it determines the weighted value without having the prior knowledge about sensors and considering the external random factors. Thus, this method, to determine the weighted value, is simple and easy to use.

    (2) Good dynamic adaptability. The weighted value of this method is determined after performing the correlation analysis for the real-time data. In other words, for any tested sensor signal, its weighted value is corresponding adjustment along with the change of correlation measure to other signals. Thus, it has better dynamic adaptability.

    (3) Strong anti-jamming performance. It is assumed that measured vibration signalscontain noiseand useful signal si(n), because the rotary machine signal s(n) is periodic signal. Thus, we can get the cross-correlation functionfor any two signals:

    It is generally believed that the relationship between signal and noise, noise and noise are not relevant[30–31], thus,we get:

    It can be noted from Eq. (14) that the distribution of the weighted value method is not subjected to unrelated noises,but only to useful signals and correlation measure of other signals. Therefore, the presented method has strong anti-jamming performance.

    3 Simulation and Experiment

    3.1 Simulation analysis

    It is assumed that the measuring signal is standard sine signal, and collected five groups of vibration signal by simulating sensors, as shown in Figs. 2(a), 2(b), 2(c), 2(d),and 2(e), respectively, in which signals 1, 2, and 3 are sine signal with the same amplitude from 1.5 mm to 2 mm;signal 4 is no signal, i.e., simulated the sensor failure;signal 5 is the white noise with 2 mm amplitude, i.e.,simulated the situation that sensors have not collected useful signal. As the state of collected data is the same, it can be seen that sensors have the same precision in the process of data acquisition.

    According to the data level fusion algorithm based on correlation function, we can get the weighted value: w1=w2= w3= 0.331 8, w4= 0, and w5= 0.004 6, and obtain the result of data level fusion, as shown in Fig. 2(f). It can be noted that w4and w5are far less than w1, w2, and w3, and satisfy the actual situation (i.e., signals 1, 2, and 3 are the effective simulating signals, in the nature of things, should be distributed correspondingly with larger weighted value).Therefore, this method can effectively inhibit unrelated signal (i.e., such as signal 5) in the process of data acquisition, and can effectively fuse useful information when parts of sensors are considered failed (i.e., such as sensor 4).

    On the other hand, we can get the result of data fusion by using the traditional method of weighted average after eliminating noise, as shown in Fig. 2(g). The weighted value: w1= w2= w3= w4= w5= 0.2. Obviously, this method can not achieve the effect of inhibition for invalid signals. In addition, we can get the errors between fused signal and standard signal, as shown in Fig. 2(h). Data1 symbolizes the error between fused signal based on correlation function weighted method with standard signal,and data 2 symbolizes the error between fused signals based on weighted average method with standard signal,respectively. Furthermore, it can be seen that the data 1 is only small fluctuation in the ‘0’ position, but the data 2 has large error and is evidently greater than data 1.

    Finally, it is added that the data level fusion based on correlation function weighted method is better than the traditional weighted average method with respect to dynamic adaptability, precision, and fault-toleration.

    Fig. 2. Vibration signals of simulating sensors

    3.2 Experiment analysis

    In order to explain the advantages of this method, we take the rotor dynamics and integrated fault simulator as an example. The system can easily diagnose many types of mechanical failures to meet the practical engineering need.Examples of these failures include rotor failures including unbalance, misalignment, bending, resonance, poor tightness, and dynamic instability of gap; bearing failures including bearing wear, bearing pit, and inadequate bearing lubrication; gear box failures including gear wear, gear eccentricity, and gear pitch error is too large. The Dewetron multi-channel data acquisition system is used to collecting signals, which is virtual instrument based on personal computer, and can access various types of sensors.

    To get the rotor supporting system loose failure, we deliberately loosen the No. 7 screw bolts. The working speed of rotor was set as 3 000 r/min, the sampling frequency was selected as 500 Hz, and the same type of displacement sensors were fixed at six different locations,including sensors 1, 2, 3, and 4 to collect the x direction of vibration signals, sensors 5, and 6 to collect the y direction of vibration signals. The time-domain and frequencydomain maps of collected vibration signals obtained are shown in Fig. 3 and Fig. 4, respectively.

    Fig. 3. Time-domain of rotor supporting system loose failure

    Fig. 4. Frequency-domain of rotor supporting system loose failure

    It is to be noted that the collected signals are quite in different positions from Fig. 3 and Fig. 4. Now the question is how can we find the useful information to reflect the signal failure? It is very difficult to judge the right answer from these 6 collected signals in the condition of unknown failure types. Adopting the correlation function based on weighted arithmetic presented in this paper to calculate the weighted value: w1= 0.340 0, w2= 0.010 3, w3= 0.170 6,w4= 0.009 8, w5= 0.420 7, and w6= 0.048 6. We can see that signals 1, 3, and 5 have greater weighted values, thus with respect to the actual situation, the failure source is close to them. Therefore, this method can effectively achieve the dynamic weighted value distribution of vibration signals.

    By eliminating the collected signals of Nos. 2, 4, and 6 sensors, and then distributing the weighted value for the three signals, we obtain: w′1= 0.332 2, w′3= 0.243 1, and w′5= 0.424 7. According to the spatial locations of sensors,and taking the phase compensation for these signals,respectively, we can obtain the signal waveform and frequency spectrum after data fusion, as shown in Fig. 5.we can observe that the distribution of frequency spectrum accords with the theoretic conclusion in which the loose-frequency characteristics of rotor supporting system represent in the baseband frequency, fraction harmonic, and multiplier frequency of 2x, 3x, .... Therefore, this method can effectively achieve the level of data fusion, and enhance the precision of data signal.

    Fig. 5. Result of signals data fusion

    4 Conclusions

    (1) According to the actual needs of multi-vibration signal processing in the rotary machine fault diagnosis, the data level fusion method based on correlation function analysis is presented that doesn’t require knowing the prior knowledge about measured data.

    (2) The method takes full advantage of sensor’s own-information to determine the weighted value based on the correlation measure of real-time data in the fusion process. That is also the greater weighted value is given to the greater correlation measure of sensor signals, and vice versa.

    (3) With simulation is taken and the data level fusion based on correlation function weighted method shows a good performance, especially in the terms of the dynamic adaptability, precision and fault-toleration is better than the traditional weighted average method.

    (4) The experiment of the rotor dynamics and integrated fault simulator with loose-frequency characteristics of rotor supporting system is implemented. The results verify the feasibility and advantages of the proposed approach which can effectively suppress large errors and make full use of sensor’s resources.

    [1] PRABHJOT S, WU Yanyan, ROBERT K, et al. Multimodal industrial inspection and analysis[J]. Journal of Computing and Information Science in Engineering, 2007, 7(1): 102–107.

    [2] XU Xusong, CAO Yanlong, YANG Jiangxin. Condition monitor of deep-hole drilling based on multi-sensor information fusion[J].Chinese Journal of Mechanical Engineering, 2006, 19(1): 144–146.

    [3] ESTEBAN J, STARR A, WILLETS R, et al. A review of data fusion models and architectures: towards engineering guidelines[J]. Neural Comput & Applic, 2005, 14(4): 273–281.

    [4] MORE K, INGMAN D. Quality approach for multi-parametric data fusion [J]. NDT & E International, 2008, 41(3): 155–162.

    [5] BOYD J E, LITTLE J J. Complementary data fusion for limited-angle tomography[C]//Proceedings of the IEEE computer society conference on computer vision and pattern recognition, Los Alamitos, 1994: 288–294.

    [6] GROS X E. NDT data fusion[M]. New York: Wiley, 1997.

    [7] HORN D, MAYO W R. NDE reliability gains from combining eddy-current and ultrasonic testing[J]. NDT & E International, 2000,33(6): 351–362.

    [8] RICHARD T A. Principles of effective multisensory data fusion[J].Military Technology, 2003, 27(5): 29–37.

    [9] HARRIS C J, BAILEY A, DODD T J. Multi-sensor data fusion in defence and aerospace[J]. Aeronautical Journal, 1998, 102(1 015):229–244.

    [10] HOLM-HANSEN B T, GAO R X. Vibration analysis of a sensor-integrated ball bearing[J]. Journal of Vibration and Acoustics,2000, 122(5): 384–392.

    [11] CHEN Liyuan, HUANG Jin. Motor fault diagnosis with multisensor data fusion[J]. Proceedings of the CSU-EPSA, 2005, 17(1): 48–51.

    [12] LI Xuejun, LI Ping, CHU Fulei. Data fusion of multi-sensor vibration signal using correlation function[J]. Journal of Vibration,Measurement & Diagnosis, 2009, 29(2): 179–183. (in Chinese)

    [13] SHAFER G. A mathematical theory of evidence[M]. New Jersey:Princeton University Press, 1976.

    [14] ZHU Daqi, CHEN E K. A quantum neural networks fault diagnosis algorithm for rotating machinery[J]. Proceedings of the CSEE, 2006,26(1): 132–136.

    [15] SUN Q, CHEN P, ZHANG D, et al. Pattern recognition for automatic machinery fault diagnosis[J]. Journal of Vibration and Acoustics, 2004, 126(2): 307–316.

    [16] BYINGTON C S, GARGA A K. Handbook of multi-sensor data Fusion[M]. New York: CRC Press, 2001.

    [17] WANG Fengtao, MA Xiaojiang, ZHU Hong, et al. Research on fault diagnosis method based on Dempster-Shafer evidential theory[J].Journal of Dalian University of Technology, 2003, 20(4): 470–474.(in Chinese)

    [18] LENG Yonggang, WANG Taiyong, LI Ruixin. Scale transformation stochastic resonance for the monitoring and diagnosis of electromotor faults[J]. Proceedings of the CSEE, 2003, 23(11):111–115.

    [19] CHEN Tiehua, CHEN Qijuan. Fuzzy clustering analysis based vibration fault diagnosis of hydroelectric generating unit[J].Proceedings of the CSEE, 2002, 22(3): 43–48.

    [20] YANG Dingxin, HU Niaoqing, ZHANG Zhaozhong. Early fault detection of electric machine rotor-bearing system based on complexity measure analysis[J]. Proceedings of the CSEE, 2004,24(11): 126–129.

    [21] HOU Xinguo, WU Zhengguo, XIA Li. Stator winding fault diagnosis method of induction motor based on coherence analysis[J].Proceedings of the CSEE, 2005, 25(4): 83–86.

    [22] QI Zhanwei, GU Chenglin. Application of fault diagnosis to equipment based on modified D-S evidential theory[J]. Journal of Naval University of Engineering, 2008, 13(1): 60–64.

    [23] CAI Xingguo, MA Ping. Study on simultaneous fault diagnosis based on information fusion technique[J]. Proceedings of the CSEE,2003, 23(5): 112–115.

    [24] SUN C. Application of multi-sensor fusion technology in diesel engine oil analysis[C]//Proceedings of the 3rd International Conference on Signal Processing ICSP, Piscataway, NJ, USA, 1996:1 695–1 698.

    [25] ROY J, et al. Quantitative comparison of sensor fusion architectural approaches in an algorithm-level test bed[J]. Proceedings of SPIE -The International Society for Optical Engineering, 1996, 2 759:373–384.

    [26] WANG Ji, HU Xiao. Application of MATLAB in vibration signal processing[M]. Beijing: China water conservancy and hydropower press, 2006. (in Chinese)

    [27] DENG Zili, GAO Yuan, LI Chun-bo, et al. Self-tuning decoupled information fusion Wiener state component filters and their convergence[J]. Automatica, 2008, 44(3): 685–695.

    [28] LU Wenxiang, DU Runsheng. Engineering testing and signal processing[M]. Wuhan: Huazhong University of Science &technology Press, 2002. (in Chinese)

    [29] ZHONG Chongquan, ZHANG Liyong, YANG Suying, et al. A weighted fusion algorithm of multi-sensor based on the principle of least squares[J]. Chinese Journal of Scientific Instrument, 2003,24(4): 427–430. (in Chinese)

    [30] LANG Hong, WANG Weichan, MICHAEL L. Multiplatform multisensor fusion with adaptive-rate data communication[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1):274–282.

    [31] GUO Xincheng, LUO Dacheng, CAO Yong. Application of correlation function in digital signal processing[J]. Electronics Optics & Control, 2006, 13(6): 78–80. (in Chinese)

    Chinese Journal of Mechanical Engineering2011年5期

    Chinese Journal of Mechanical Engineering的其它文章
    Preface
    www.自偷自拍.com| 久久精品人人爽人人爽视色| av线在线观看网站| 春色校园在线视频观看| 校园人妻丝袜中文字幕| 欧美精品国产亚洲| 免费在线观看黄色视频的| 国产 一区精品| 男的添女的下面高潮视频| 欧美人与善性xxx| 1024香蕉在线观看| 97在线人人人人妻| 午夜影院在线不卡| 如何舔出高潮| 精品久久久精品久久久| 好男人视频免费观看在线| 亚洲欧美清纯卡通| 99久国产av精品国产电影| 久久国产亚洲av麻豆专区| av在线播放精品| 两个人看的免费小视频| 熟女少妇亚洲综合色aaa.| 搡女人真爽免费视频火全软件| 国产熟女午夜一区二区三区| 汤姆久久久久久久影院中文字幕| 国产白丝娇喘喷水9色精品| 国产欧美亚洲国产| 久久鲁丝午夜福利片| 人人妻人人爽人人添夜夜欢视频| 蜜桃在线观看..| 亚洲国产精品国产精品| 男人舔女人的私密视频| 狠狠精品人妻久久久久久综合| 曰老女人黄片| 亚洲国产欧美网| 91在线精品国自产拍蜜月| 桃花免费在线播放| 视频区图区小说| 国产97色在线日韩免费| 女人精品久久久久毛片| 五月伊人婷婷丁香| 伊人亚洲综合成人网| 亚洲一码二码三码区别大吗| 美女脱内裤让男人舔精品视频| 中文字幕人妻丝袜一区二区 | 飞空精品影院首页| 最近的中文字幕免费完整| 丝袜脚勾引网站| 欧美 亚洲 国产 日韩一| 亚洲精品日本国产第一区| 不卡av一区二区三区| 欧美人与性动交α欧美软件| 色婷婷久久久亚洲欧美| 国产片特级美女逼逼视频| 夜夜骑夜夜射夜夜干| 亚洲成人手机| 亚洲色图综合在线观看| 丰满迷人的少妇在线观看| 97在线视频观看| 国产亚洲最大av| 多毛熟女@视频| 国产精品 欧美亚洲| 亚洲国产欧美在线一区| 大码成人一级视频| 欧美少妇被猛烈插入视频| 男女国产视频网站| 亚洲内射少妇av| 国产高清国产精品国产三级| 青春草亚洲视频在线观看| 我的亚洲天堂| 色播在线永久视频| 亚洲综合精品二区| 一二三四在线观看免费中文在| 精品少妇一区二区三区视频日本电影 | 韩国高清视频一区二区三区| 国产精品一二三区在线看| 婷婷成人精品国产| 久热久热在线精品观看| 午夜精品国产一区二区电影| 国产一级毛片在线| 久久精品国产亚洲av天美| 久久久久久人人人人人| av在线老鸭窝| 久久婷婷青草| 不卡视频在线观看欧美| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美一区二区三区久久| 亚洲情色 制服丝袜| 国产精品三级大全| 欧美少妇被猛烈插入视频| 丰满乱子伦码专区| 国产黄频视频在线观看| 亚洲国产精品一区二区三区在线| 黑丝袜美女国产一区| 亚洲国产精品一区二区三区在线| 老鸭窝网址在线观看| 国产精品成人在线| 亚洲美女视频黄频| 成人国语在线视频| 一级片'在线观看视频| 亚洲精品国产色婷婷电影| 日本爱情动作片www.在线观看| 丝袜美足系列| 亚洲精品国产av成人精品| 亚洲欧美精品综合一区二区三区 | 久久精品国产亚洲av涩爱| 99国产精品免费福利视频| 午夜福利在线免费观看网站| 天堂中文最新版在线下载| 精品人妻偷拍中文字幕| 日本av免费视频播放| 国产成人免费观看mmmm| 久久影院123| 亚洲成人手机| 亚洲精品国产av成人精品| 国产精品嫩草影院av在线观看| 如何舔出高潮| 伊人久久国产一区二区| 两个人免费观看高清视频| 伦理电影大哥的女人| av网站免费在线观看视频| 波多野结衣一区麻豆| 18禁裸乳无遮挡动漫免费视频| 国产一区二区 视频在线| 亚洲成人手机| 亚洲欧美一区二区三区国产| 久久久久久久国产电影| 巨乳人妻的诱惑在线观看| 久久毛片免费看一区二区三区| 精品少妇黑人巨大在线播放| 精品国产乱码久久久久久男人| 人成视频在线观看免费观看| 亚洲天堂av无毛| 18禁裸乳无遮挡动漫免费视频| 久久午夜综合久久蜜桃| 国产成人a∨麻豆精品| 最近的中文字幕免费完整| 欧美成人午夜免费资源| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻丝袜一区二区 | 亚洲第一区二区三区不卡| 欧美精品一区二区免费开放| 女人精品久久久久毛片| 国产一区二区 视频在线| 99久国产av精品国产电影| 久久久精品区二区三区| 国产乱人偷精品视频| 国产不卡av网站在线观看| 亚洲经典国产精华液单| 丝袜人妻中文字幕| 国产麻豆69| 制服人妻中文乱码| 91精品国产国语对白视频| 国产精品久久久久成人av| 国产日韩欧美视频二区| 丝袜喷水一区| 欧美+日韩+精品| 寂寞人妻少妇视频99o| 午夜av观看不卡| 可以免费在线观看a视频的电影网站 | av.在线天堂| 99热国产这里只有精品6| 国产亚洲最大av| 老司机影院成人| 亚洲av综合色区一区| 久久久a久久爽久久v久久| 欧美+日韩+精品| 永久免费av网站大全| 国产熟女午夜一区二区三区| 亚洲国产精品一区三区| 亚洲一区中文字幕在线| 亚洲伊人色综图| 亚洲男人天堂网一区| 亚洲一区二区三区欧美精品| 亚洲av成人精品一二三区| 欧美另类一区| 亚洲婷婷狠狠爱综合网| 精品国产超薄肉色丝袜足j| 亚洲第一av免费看| 90打野战视频偷拍视频| av在线观看视频网站免费| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 欧美成人午夜免费资源| 深夜精品福利| 日本-黄色视频高清免费观看| 汤姆久久久久久久影院中文字幕| 亚洲成国产人片在线观看| 91精品国产国语对白视频| 一边摸一边做爽爽视频免费| 久久久a久久爽久久v久久| 国产成人精品福利久久| a级毛片在线看网站| 精品午夜福利在线看| 亚洲综合精品二区| 国产精品一二三区在线看| 国产又爽黄色视频| 波野结衣二区三区在线| 国产精品无大码| 日本猛色少妇xxxxx猛交久久| 午夜91福利影院| 久久久久久免费高清国产稀缺| 男人添女人高潮全过程视频| 99国产综合亚洲精品| 观看av在线不卡| 丰满乱子伦码专区| 亚洲欧美清纯卡通| 天天躁夜夜躁狠狠躁躁| 免费在线观看完整版高清| 成人毛片a级毛片在线播放| 日韩一卡2卡3卡4卡2021年| 午夜福利视频精品| 丝袜在线中文字幕| 亚洲第一青青草原| 国产伦理片在线播放av一区| 久久久久久久国产电影| 热99国产精品久久久久久7| 国产成人精品一,二区| 久久综合国产亚洲精品| 精品久久久久久电影网| 亚洲一级一片aⅴ在线观看| 亚洲成人手机| 亚洲国产欧美日韩在线播放| 国产精品香港三级国产av潘金莲 | av女优亚洲男人天堂| 十八禁高潮呻吟视频| 国产一区二区激情短视频 | 一本色道久久久久久精品综合| 丝袜美足系列| 中文字幕制服av| 亚洲,欧美,日韩| 日韩av在线免费看完整版不卡| 自拍欧美九色日韩亚洲蝌蚪91| 91精品伊人久久大香线蕉| 国产无遮挡羞羞视频在线观看| 免费少妇av软件| 欧美激情高清一区二区三区 | 亚洲av.av天堂| 国产成人a∨麻豆精品| 飞空精品影院首页| 国产探花极品一区二区| 两性夫妻黄色片| 中国国产av一级| 一边摸一边做爽爽视频免费| 赤兔流量卡办理| 丝袜人妻中文字幕| 男女边吃奶边做爰视频| 婷婷色综合www| 久久久久久久亚洲中文字幕| 精品国产乱码久久久久久男人| 亚洲国产av新网站| 国产精品久久久久久av不卡| 亚洲美女搞黄在线观看| 国产免费现黄频在线看| 亚洲熟女精品中文字幕| 成人漫画全彩无遮挡| 侵犯人妻中文字幕一二三四区| 国产精品国产av在线观看| 一级片免费观看大全| 有码 亚洲区| 9热在线视频观看99| 日韩电影二区| 高清黄色对白视频在线免费看| 成年女人毛片免费观看观看9 | 搡老乐熟女国产| 九色亚洲精品在线播放| 久久久a久久爽久久v久久| 大香蕉久久网| 日韩中字成人| 人人澡人人妻人| 国产精品一二三区在线看| 少妇被粗大的猛进出69影院| 日韩人妻精品一区2区三区| 一边亲一边摸免费视频| 欧美日韩精品网址| 国产精品香港三级国产av潘金莲 | 如何舔出高潮| 亚洲成色77777| 国产成人免费观看mmmm| 欧美日韩国产mv在线观看视频| 中文字幕制服av| 黄色一级大片看看| 中文欧美无线码| 高清不卡的av网站| 美女视频免费永久观看网站| 欧美+日韩+精品| 一区在线观看完整版| 精品少妇久久久久久888优播| 国产精品久久久久久精品古装| 日本黄色日本黄色录像| 少妇被粗大猛烈的视频| 午夜日韩欧美国产| 国产深夜福利视频在线观看| 看十八女毛片水多多多| 色婷婷av一区二区三区视频| 国产在视频线精品| 亚洲国产看品久久| 久久久亚洲精品成人影院| 亚洲国产精品一区三区| 国产精品久久久久久精品古装| 欧美日本中文国产一区发布| 婷婷色综合大香蕉| 在线观看国产h片| 青春草国产在线视频| 岛国毛片在线播放| 精品一区二区免费观看| 又黄又粗又硬又大视频| 久久久欧美国产精品| 国产熟女午夜一区二区三区| 天美传媒精品一区二区| 青春草国产在线视频| 国产精品国产av在线观看| 视频在线观看一区二区三区| 久久久久人妻精品一区果冻| 国产日韩欧美视频二区| 欧美人与善性xxx| 观看av在线不卡| 久久精品国产综合久久久| 波多野结衣av一区二区av| 永久网站在线| 黑人猛操日本美女一级片| 最近的中文字幕免费完整| 久久鲁丝午夜福利片| 成人国产麻豆网| 一区二区三区乱码不卡18| 男女无遮挡免费网站观看| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 婷婷成人精品国产| 久久精品人人爽人人爽视色| 爱豆传媒免费全集在线观看| 国产日韩欧美视频二区| 老司机影院毛片| 一级毛片电影观看| 亚洲美女搞黄在线观看| 满18在线观看网站| √禁漫天堂资源中文www| 免费观看a级毛片全部| 国产成人a∨麻豆精品| 日韩精品免费视频一区二区三区| 一区二区三区精品91| 国产成人a∨麻豆精品| 国产亚洲精品第一综合不卡| 欧美日韩综合久久久久久| 成人国产av品久久久| 国产探花极品一区二区| 最新中文字幕久久久久| videossex国产| 精品视频人人做人人爽| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 国产在线一区二区三区精| 国产精品一区二区在线观看99| 各种免费的搞黄视频| 一边摸一边做爽爽视频免费| 亚洲在久久综合| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说| 亚洲精品久久成人aⅴ小说| 91午夜精品亚洲一区二区三区| 国产人伦9x9x在线观看 | 天天躁夜夜躁狠狠久久av| 两个人看的免费小视频| 18禁观看日本| 成人毛片a级毛片在线播放| 国产精品女同一区二区软件| 日本91视频免费播放| 亚洲一区二区三区欧美精品| 观看美女的网站| 国产在线一区二区三区精| 欧美精品人与动牲交sv欧美| 久久热在线av| 久久精品国产鲁丝片午夜精品| 久久久久久久久久久久大奶| 久久青草综合色| 免费少妇av软件| av免费观看日本| 一本大道久久a久久精品| 久久这里有精品视频免费| 婷婷色综合大香蕉| 中文字幕精品免费在线观看视频| 80岁老熟妇乱子伦牲交| 最新中文字幕久久久久| 亚洲av免费高清在线观看| 18禁国产床啪视频网站| 精品一区二区三区四区五区乱码 | 久久av网站| 日韩制服骚丝袜av| 99热全是精品| 大陆偷拍与自拍| 久久久久久久久免费视频了| 日本91视频免费播放| 18在线观看网站| 亚洲欧美一区二区三区久久| 国产不卡av网站在线观看| 欧美日韩一级在线毛片| 不卡av一区二区三区| 欧美人与善性xxx| 18禁裸乳无遮挡动漫免费视频| 在线观看www视频免费| 日本免费在线观看一区| 久久人人爽av亚洲精品天堂| 午夜福利视频在线观看免费| 亚洲精品,欧美精品| 中文乱码字字幕精品一区二区三区| 日本黄色日本黄色录像| 97在线视频观看| 亚洲精品国产av蜜桃| 男的添女的下面高潮视频| 久久97久久精品| 秋霞伦理黄片| 人人妻人人澡人人看| 免费黄色在线免费观看| 99国产综合亚洲精品| 成人影院久久| 精品亚洲成a人片在线观看| 日本色播在线视频| 国产精品熟女久久久久浪| 深夜精品福利| 爱豆传媒免费全集在线观看| 丝袜在线中文字幕| 天天躁夜夜躁狠狠久久av| 午夜91福利影院| 高清视频免费观看一区二区| 熟女少妇亚洲综合色aaa.| 亚洲美女搞黄在线观看| a级毛片在线看网站| 天天躁日日躁夜夜躁夜夜| 十八禁网站网址无遮挡| 国产精品三级大全| 91成人精品电影| 69精品国产乱码久久久| 97人妻天天添夜夜摸| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| 亚洲三级黄色毛片| 99热国产这里只有精品6| 精品少妇一区二区三区视频日本电影 | 久久青草综合色| 久热这里只有精品99| 国产麻豆69| 飞空精品影院首页| 18在线观看网站| 成年人午夜在线观看视频| 国产成人精品在线电影| 国产综合精华液| 亚洲视频免费观看视频| 少妇的丰满在线观看| 亚洲伊人色综图| 只有这里有精品99| 9热在线视频观看99| 狠狠婷婷综合久久久久久88av| 国产1区2区3区精品| av视频免费观看在线观看| 久久久久视频综合| 久久精品国产鲁丝片午夜精品| 一级片免费观看大全| 美国免费a级毛片| 波野结衣二区三区在线| 啦啦啦中文免费视频观看日本| av视频免费观看在线观看| 日韩大片免费观看网站| 国产野战对白在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 国产精品香港三级国产av潘金莲 | 亚洲三级黄色毛片| 久久久精品国产亚洲av高清涩受| 亚洲三区欧美一区| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 午夜福利在线免费观看网站| 国精品久久久久久国模美| 久久亚洲国产成人精品v| 亚洲,一卡二卡三卡| 国产成人一区二区在线| 丰满乱子伦码专区| 国产淫语在线视频| 亚洲国产欧美在线一区| videos熟女内射| 亚洲欧美成人综合另类久久久| 久热久热在线精品观看| 国产精品成人在线| 欧美成人午夜精品| 91午夜精品亚洲一区二区三区| 男人爽女人下面视频在线观看| 欧美xxⅹ黑人| 亚洲综合精品二区| 美女脱内裤让男人舔精品视频| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜| 卡戴珊不雅视频在线播放| 久久久久国产网址| 精品少妇久久久久久888优播| 中文字幕人妻丝袜一区二区 | 嫩草影院入口| 90打野战视频偷拍视频| 丝袜美足系列| 色网站视频免费| 午夜老司机福利剧场| 午夜福利在线免费观看网站| 王馨瑶露胸无遮挡在线观看| 免费高清在线观看日韩| 一二三四中文在线观看免费高清| 国产探花极品一区二区| 人人澡人人妻人| 国产精品二区激情视频| 我的亚洲天堂| 不卡视频在线观看欧美| 久久久久久久久免费视频了| 久久亚洲国产成人精品v| 青青草视频在线视频观看| 一区二区日韩欧美中文字幕| 国产成人精品婷婷| 日韩视频在线欧美| 大码成人一级视频| 久久国产精品男人的天堂亚洲| 国产精品人妻久久久影院| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 午夜福利乱码中文字幕| 多毛熟女@视频| 国产又色又爽无遮挡免| 在线观看国产h片| 免费在线观看完整版高清| 天堂8中文在线网| 亚洲在久久综合| 一区二区三区四区激情视频| 大香蕉久久网| 久久国内精品自在自线图片| 亚洲色图 男人天堂 中文字幕| 亚洲国产毛片av蜜桃av| 午夜免费鲁丝| 成人毛片60女人毛片免费| 国产精品久久久久久久久免| 2018国产大陆天天弄谢| 伦理电影大哥的女人| 欧美精品亚洲一区二区| 亚洲国产av影院在线观看| 久久久欧美国产精品| 久久精品国产综合久久久| 男的添女的下面高潮视频| 三级国产精品片| 亚洲美女黄色视频免费看| 亚洲精品国产av蜜桃| 成人国产av品久久久| 综合色丁香网| 大香蕉久久网| 欧美日韩国产mv在线观看视频| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| 日韩人妻精品一区2区三区| 国产精品国产三级国产专区5o| 欧美日韩视频精品一区| 欧美成人午夜免费资源| 亚洲一级一片aⅴ在线观看| 国产免费又黄又爽又色| 欧美另类一区| 中文字幕人妻丝袜一区二区 | 欧美日韩瑟瑟在线播放| 最近最新免费中文字幕在线| 精品国产亚洲在线| 人人妻人人澡人人看| 色在线成人网| 国产激情久久老熟女| 亚洲成人国产一区在线观看| 欧美最黄视频在线播放免费 | av网站在线播放免费| 国产精品久久久人人做人人爽| 国产精品一区二区免费欧美| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 51午夜福利影视在线观看| 少妇 在线观看| 欧美色视频一区免费| 亚洲全国av大片| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 亚洲欧洲精品一区二区精品久久久| 18禁国产床啪视频网站| 脱女人内裤的视频| 大陆偷拍与自拍| 手机成人av网站| 成人手机av| www.自偷自拍.com| 精品午夜福利视频在线观看一区| 国产免费av片在线观看野外av| 人人澡人人妻人| 亚洲av电影在线进入| 在线十欧美十亚洲十日本专区| 久久精品成人免费网站| 一进一出抽搐gif免费好疼 | 精品久久久久久,| 丰满人妻熟妇乱又伦精品不卡| 一二三四社区在线视频社区8| 亚洲中文日韩欧美视频| 满18在线观看网站| 热re99久久精品国产66热6| 1024香蕉在线观看| 欧美性长视频在线观看| 国产国语露脸激情在线看| 黄片小视频在线播放| 亚洲一区中文字幕在线| 亚洲欧美激情综合另类| 91精品三级在线观看| 激情在线观看视频在线高清| 热99re8久久精品国产| 18禁国产床啪视频网站| 久久久久国产精品人妻aⅴ院| 亚洲人成伊人成综合网2020| 国产精品二区激情视频| 777久久人妻少妇嫩草av网站| 久久久久久亚洲精品国产蜜桃av| a级片在线免费高清观看视频| 一级毛片精品|