羅旋 綜述 王琳 范志宏 審校
脂肪干細(xì)胞應(yīng)用于脂肪移植的新進(jìn)展
羅旋 綜述 王琳 范志宏 審校
脂肪干細(xì)胞(Adipose derived stem cells,ADSC)具有多向分化和自我復(fù)制能力,逐漸成為損傷修復(fù)及再生醫(yī)學(xué)研究的熱點(diǎn)。ADSC能夠分化為脂肪細(xì)胞以及血管內(nèi)皮細(xì)胞,可分泌細(xì)胞因子,促進(jìn)血管新生,改善炎癥損傷的微環(huán)境,并抑制細(xì)胞凋亡。在脂肪移植中應(yīng)用脂肪干細(xì)胞,可以明顯降低移植后脂肪組織的液化吸收,減少不良反應(yīng)發(fā)生率,提高遠(yuǎn)期療效。
脂肪干細(xì)胞脂肪移植血管新生微環(huán)境
自體脂肪組織作為軟組織填充物不發(fā)生免疫排斥反應(yīng),并且質(zhì)地自然、獲取容易,然而脂肪細(xì)胞液化吸收、組織纖維囊形成等問(wèn)題一直未能解決。以往的研究主要采用優(yōu)化手術(shù)操作技巧、增加漂洗、低溫保護(hù)等措施,以降低脂肪組織的損傷,但沒(méi)能從根本上解決移植物損傷嚴(yán)重、存活困難的問(wèn)題。脂肪干細(xì)胞的引入,給脂肪移植后的組織存活帶來(lái)革命性的改進(jìn)。由于具有自我復(fù)制能力和多向分化潛能,能分泌多種細(xì)胞因子和生長(zhǎng)因子,脂肪干細(xì)胞添加到移植物中,大大提高了脂肪細(xì)胞移植后的存活率,降低了壞死、液化、纖維化、鈣化等不良反應(yīng)的發(fā)生率。
吸脂術(shù)的出現(xiàn)使大量脂肪組織的獲得成為可能,然而負(fù)壓吸引和機(jī)械損傷使成熟脂肪細(xì)胞破裂和壞死明顯增加,并且抽吸出的脂肪組織相比切取的脂肪組織,缺少了結(jié)締組織、血管等成份,其脂肪干細(xì)胞的獲得量是切取脂肪組織獲得量的一半[1]。大量脂肪干細(xì)胞留在供區(qū),只有少數(shù)脂肪干細(xì)胞隨成熟脂肪細(xì)胞團(tuán)塊被注射到受區(qū)。Matsumoto等把同一供者來(lái)源的脂肪抽吸物與切取的完整脂肪組織相比較,抽吸物中的脂肪干細(xì)胞數(shù)較切取的脂肪組織中少(48±13)%。另有學(xué)者將添加了脂肪干細(xì)胞的顆粒脂肪和單純顆粒脂肪,分別注射到免疫缺陷小鼠皮下,4周后,添加脂肪干細(xì)胞組的移植物體積比單純顆粒脂肪移植組平均高35%,且移植后組織中血管密度顯著增加[2]?;谝陨辖Y(jié)果可知,吸脂術(shù)中得來(lái)的脂肪因缺乏完整脂肪組織中的干細(xì)胞及基質(zhì)成分,難以在移植后長(zhǎng)期存活。Yoshimura等利用富含脂肪干細(xì)胞的基質(zhì)血管成份(Stromal vascular fraction,SVF)添加到移植的脂肪組織中,提高了移植物中干細(xì)胞的比例,稱為細(xì)胞輔助的脂肪移植(Cell assisted lipo-transfer,CAL)。在自體脂肪移植隆乳術(shù)中,初始注射脂肪體積平均270 mL,兩個(gè)月時(shí)為100~200 mL;40名受試者中除4人出現(xiàn)纖維囊或鈣化形成,絕大多數(shù)人對(duì)手術(shù)結(jié)果很滿意[3]。該結(jié)果揭示了脂肪干細(xì)胞在顆粒脂肪移植中的應(yīng)用前景。
目前,脂肪干細(xì)胞的分離、富集多是采取膠原酶消化皮下脂肪,獲得一個(gè)混雜的細(xì)胞群體——SVF,再利用細(xì)胞表面分子分選,或通過(guò)體外培養(yǎng)傳代,獲得較純的脂肪干細(xì)胞[4]。因此,對(duì)細(xì)胞的表型分析可用于脂肪干細(xì)胞的純化和鑒定。
目前還沒(méi)有一個(gè)單一的分子能夠作為脂肪干細(xì)胞的特異性表型,公認(rèn)的脂肪干細(xì)胞表面表達(dá)量較高的分子有:基質(zhì)相關(guān)標(biāo)志(CD29、CD44),間充質(zhì)標(biāo)志(CD73、CD90)等[5],而SVF中混雜的其他細(xì)胞標(biāo)志,如血管內(nèi)皮細(xì)胞(CD31)、管壁細(xì)胞(CD140)、單核細(xì)胞(CD14)、巨噬細(xì)胞(CD11)、造血細(xì)胞(CD45)、紅細(xì)胞(Ter119)、淋巴細(xì)胞(CD3、CD4、CD8、CD19)等均呈陰性表達(dá)[6-10]。
分離的原代脂肪干細(xì)胞,經(jīng)體外培養(yǎng)傳代3次后,表型會(huì)有所變化。CD34是一種黏附分子,在介導(dǎo)細(xì)胞間黏附時(shí)發(fā)揮重要作用,還參與造血干細(xì)胞的運(yùn)輸、定植,參與炎癥反應(yīng)及淋巴細(xì)胞的歸巢,被認(rèn)為是干細(xì)胞和祖細(xì)胞多向分化潛能的標(biāo)志之一。在未經(jīng)體外培養(yǎng)的脂肪干細(xì)胞表面高表達(dá),傳代3次后表達(dá)消失,然而CD34的表達(dá)與否對(duì)脂肪干細(xì)胞的分化活性沒(méi)有影響[9-14]。CD105是一種內(nèi)皮糖蛋白,也被視為多向分化潛能的標(biāo)志,其表達(dá)隨著體外培養(yǎng)傳代次數(shù)的增加而逐漸上調(diào)[15]。
另外,脂肪干細(xì)胞表面還發(fā)現(xiàn)了一些分子,雖不像上述分子表達(dá)量高,但反映了脂肪干細(xì)胞的間充質(zhì)來(lái)源和其在組織中基質(zhì)血管旁的定位。這些分子包括:間充質(zhì)標(biāo)志(CD10、CD13)[5,11],細(xì)胞間黏附分子(CD54),血管細(xì)胞黏附分子(CD59、CD146)[6],白細(xì)胞活化黏附因子(纖連蛋白、內(nèi)皮粘液素、平滑肌特異性α肌動(dòng)蛋白、鈣調(diào)蛋白、鈣結(jié)合蛋白、波形蛋白等[16])。極少數(shù)(<10%)脂肪干細(xì)胞表達(dá)STRO-1[10]。
2.1 脂肪干細(xì)胞分化為脂肪細(xì)胞,維持移植物的體積
脂肪干細(xì)胞分化為體積較大的成熟脂肪細(xì)胞,補(bǔ)充移植過(guò)程中損傷壞死的脂肪細(xì)胞,是維持移植物體積、保證移植后長(zhǎng)期療效的關(guān)鍵。應(yīng)用激素、細(xì)胞因子等誘導(dǎo)脂肪干細(xì)胞向脂肪細(xì)胞分化已經(jīng)實(shí)現(xiàn)。在脂肪干細(xì)胞中,CD24+的細(xì)胞被證明有較高的成脂分化能力[8];體內(nèi)試驗(yàn)中,脂肪干細(xì)胞復(fù)合海綿狀膠原能在裸鼠體內(nèi),經(jīng)8周時(shí)間形成脂肪樣組織[17]。向脂肪細(xì)胞分化的脂肪干細(xì)胞表達(dá)脂蛋白脂肪酶、轉(zhuǎn)錄因子aP2、過(guò)氧化物酶體增殖激活性受體-γ(Peroxisome proliferator-activated receptor-γ,PPAR-γ)和葡萄糖轉(zhuǎn)運(yùn)蛋白4(Glucose transporter protein 4,Glut4)等脂肪細(xì)胞相關(guān)基因[18]。其他影響內(nèi)環(huán)境的因素,如內(nèi)外源性的生長(zhǎng)因子、氧分壓、pH值、細(xì)胞外基質(zhì)中的黏附分子、相鄰細(xì)胞的作用、生物力學(xué)因素等,都會(huì)作用于細(xì)胞,使之增殖或改變其分化能力??梢源_定能促進(jìn)脂肪干細(xì)胞成脂分化的因素有:糖皮質(zhì)激素、生長(zhǎng)激素、胰島素、前列腺素、甲狀腺激素、胰島素樣生長(zhǎng)因子(insulin-like growth factor-1,IGF-1)等,而表皮生長(zhǎng)因子(epithelial growth factor,EGF)和腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)則抑制成脂分化。
2.2 脂肪干細(xì)胞促進(jìn)血管結(jié)構(gòu)的生成,增加移植物血供
成熟的脂肪細(xì)胞對(duì)缺血、缺氧很敏感,在氧分壓較低的環(huán)境中很容易發(fā)生一系列應(yīng)激性改變,如吐出胞質(zhì)中的脂滴、細(xì)胞體積逐漸縮?。徊⑶耶?dāng)氧分壓低于所能耐受的閾值?時(shí),24 h內(nèi)就會(huì)死亡。然而,移植后受區(qū)基底組織中的毛細(xì)血管長(zhǎng)入需要7 d時(shí)間[19],因此盡早建立血供才能減少移植后組織細(xì)胞凋亡,維持移植物的體積[20]。
脂肪組織生長(zhǎng)時(shí),血管生成也很活躍,且是最先開始的,抑制血管生成將會(huì)導(dǎo)致脂肪組織萎縮[9]。脂肪干細(xì)胞參與血管構(gòu)建過(guò)程,已被多次證實(shí)[9,11,21-23]:Borges等將人的脂肪干細(xì)胞和血管內(nèi)皮細(xì)胞共同移植,能有效構(gòu)建雞的絨毛尿囊膜的微血管網(wǎng)絡(luò),肯定了脂肪干細(xì)胞促進(jìn)血管生成的作用[20];添加了成纖維細(xì)胞生長(zhǎng)因子(Fibroblast growth factor,F(xiàn)GF)的脂肪干細(xì)胞注入鼠缺血后肢肌肉間隙,能使之耐受缺氧并保護(hù)周邊的細(xì)胞,使其在缺氧環(huán)境中減少損傷,明顯提高毛細(xì)血管血液灌流和缺血肌肉的存活率;還有研究表明,在隨意皮瓣缺血損傷動(dòng)物模型中,脂肪干細(xì)胞的注入可以使皮瓣毛細(xì)血管密度增加,血液灌流增加,成活率提高[9,24];Ebrahimian等[25]的皮膚創(chuàng)傷修復(fù)研究中,脂肪干細(xì)胞的應(yīng)用提高了創(chuàng)傷后皮膚血液灌流以及毛細(xì)血管密度。
2.2.1 脂肪干細(xì)胞分化為血管內(nèi)皮細(xì)胞,形成血管結(jié)構(gòu)
Amos等[26]的實(shí)驗(yàn)表明,未分化的脂肪干細(xì)胞不表達(dá)任何內(nèi)皮細(xì)胞表面標(biāo)志,接種于基質(zhì)上培養(yǎng)會(huì)呈現(xiàn)類似血管內(nèi)皮細(xì)胞形態(tài)的多角形。在內(nèi)皮細(xì)胞生長(zhǎng)添加劑(Endothelial cell growth supplement,ECGS)和生物剪切力的協(xié)同作用下,脂肪干細(xì)胞重新排列,攝取乙酰化低密度脂蛋白(acLDL),表達(dá)血管內(nèi)皮細(xì)胞表面標(biāo)志CD31和血管干細(xì)胞相關(guān)分子,如血小板源性生長(zhǎng)因子(Platelet derived growth factor-BB,PDGFBB)、血管內(nèi)皮生長(zhǎng)因子165(Vascular endothelial growth factor-165,VEGF-165);還表達(dá)周細(xì)胞表面標(biāo)志,如平滑肌α肌動(dòng)蛋白、神經(jīng)膠質(zhì)細(xì)胞抗原2。雖然未能檢測(cè)到表達(dá)一氧化氮合成酶(Nitric oxide synthase,eNOS)、血管假性血友病因子(Von Willebrand factor,vWF)[25,27],但足以說(shuō)明脂肪干細(xì)胞經(jīng)過(guò)一定的環(huán)境誘導(dǎo)可以向內(nèi)皮細(xì)胞分化。
2.2.2 脂肪干細(xì)胞通過(guò)旁分泌作用促進(jìn)血管新生
大多數(shù)脂肪干細(xì)胞注入受區(qū)后定位于毛細(xì)血管周圍,而不是參與其構(gòu)成;脂肪干細(xì)胞和血管內(nèi)皮細(xì)胞共培養(yǎng)時(shí)可見(jiàn)脂肪干細(xì)胞聚集在血管周圍,緊貼血管壁,同時(shí)血管伸出新芽,聯(lián)結(jié)成網(wǎng)絡(luò)結(jié)構(gòu)的能力明顯增強(qiáng)[5];脂肪干細(xì)胞的條件培養(yǎng)液使體外培養(yǎng)的毛細(xì)血管內(nèi)皮細(xì)胞存活率從50%提高到100%。以上現(xiàn)象提示,未分化的脂肪干細(xì)胞在促進(jìn)血管新生和穩(wěn)定血管結(jié)構(gòu)的過(guò)程中,主要以旁分泌形式發(fā)揮作用[12,28-29]。脂肪干細(xì)胞本身就能較高水平地分泌血管內(nèi)皮細(xì)胞生長(zhǎng)因子(Vascular endothelial growth factor,VEGF)、肝細(xì)胞生長(zhǎng)因子(Hepatocyte growth factor,HGF)、轉(zhuǎn)化生長(zhǎng)因子-β(Transforming growth factor-β,TGF-β),少量分泌粒細(xì)胞-巨噬細(xì)胞集落細(xì)胞刺激因子(Granulocyte-macrophage colony-stimulating factor,GM-CSF)、堿性成纖維細(xì)胞生長(zhǎng)因子(Basic fibroblast growth factor,bFGF)等促進(jìn)血管生成、抗凋亡的生長(zhǎng)因子。在缺氧的環(huán)境中,脂肪干細(xì)胞被激活而分泌更多的VEGF[9],發(fā)揮抗缺血、抗炎修復(fù)功能。脂肪干細(xì)胞還可以分泌胰島素樣生長(zhǎng)因子-1(Insulin like growth factor-1,IGF-1)[30],除能抑制細(xì)胞凋亡[5],還有動(dòng)員內(nèi)皮祖細(xì)胞(Endothelial progenitor cells,EPCs)等作用[31],促進(jìn)血管生成。脂肪干細(xì)胞分泌的其他活性因子也具有抗炎修復(fù)能力,包括炎癥因子:IL-6、IL-8、IL-11、IL-17;細(xì)胞趨化因子:?jiǎn)魏思?xì)胞趨化蛋白1和2、巨噬細(xì)胞集落刺激因子(Macrophage colony-stimulating factor,MCSF)等[5],對(duì)血管生成起著輔助的協(xié)同作用。
2.3 脂肪干細(xì)胞調(diào)節(jié)受損組織局部微環(huán)境
脂肪細(xì)胞在移植到受區(qū)后幾個(gè)月內(nèi)就會(huì)死亡,由新生的脂肪細(xì)胞取代,所以建立有利于組織生存的微環(huán)境對(duì)于移植后的修復(fù)和重建至關(guān)重要。脂肪干細(xì)胞可以分泌一系列細(xì)胞因子和生長(zhǎng)因子到周圍組織液中,調(diào)節(jié)組織微環(huán)境,形成有利于干細(xì)胞生長(zhǎng)的微環(huán)境——“干細(xì)胞巢”,招募來(lái)自于受體的內(nèi)源性干細(xì)胞到達(dá)靶點(diǎn),并使其向所需要的特定組織細(xì)胞定向分化。脂肪干細(xì)胞本身能夠耐受缺氧,同時(shí)在缺氧的環(huán)境中還能釋放抗氧化物質(zhì)、自由基清除劑、分子伴侶、熱休克蛋白等,清除受損局部的細(xì)胞毒性物質(zhì),促進(jìn)尚存活的細(xì)胞復(fù)蘇,在脂肪移植后形成有利于組織細(xì)胞存活和功能維持的微環(huán)境[4]。
在顆粒脂肪移植技術(shù)中添加脂肪干細(xì)胞,能夠明顯減少脂肪液化吸收,改善長(zhǎng)期效果。首先,脂肪干細(xì)胞能夠分化為脂肪細(xì)胞,補(bǔ)充因損傷而減少的脂肪細(xì)胞數(shù)量;其次,脂肪干細(xì)胞分化為血管內(nèi)皮細(xì)胞,通過(guò)旁分泌促進(jìn)血管新生,促進(jìn)血供恢復(fù);此外,脂肪干細(xì)胞通過(guò)旁分泌作用,調(diào)整組織局部微環(huán)境,減少細(xì)胞損傷,提高移植后組織細(xì)胞存活率,使得脂肪游離移植的長(zhǎng)期效果更穩(wěn)定。
雖然已有早期的臨床實(shí)驗(yàn)初步證明,在顆粒脂肪移植中添加脂肪干細(xì)胞可以有效提高成活率,改善不良反應(yīng),提高長(zhǎng)期效果[3]。然而,移植物中干細(xì)胞與脂肪組織的最佳比例及脂肪細(xì)胞與脂肪干細(xì)胞之間的相互作用和轉(zhuǎn)歸等,還有待進(jìn)一步研究。
相比SVF,傳代培養(yǎng)的脂肪干細(xì)胞抗原性減弱,當(dāng)與異體外周單核細(xì)胞共培養(yǎng)時(shí),不會(huì)刺激混合淋巴細(xì)胞反應(yīng),提示脂肪干細(xì)胞在體內(nèi)不會(huì)引起細(xì)胞毒T細(xì)胞反應(yīng)[13,32-33],即脂肪干細(xì)胞有一定的免疫抑制能力,然而脂肪干細(xì)胞在臨床實(shí)踐中是否能夠用于同種異體移植,以及長(zhǎng)期應(yīng)用是否具有成瘤性等安全問(wèn)題,還有待更多更深入的研究來(lái)進(jìn)一步驗(yàn)證[4]。
在機(jī)體生長(zhǎng)發(fā)育到衰老過(guò)程中,干細(xì)胞的數(shù)目逐漸減少,多向分化的活性逐漸減弱[34],所以,如同建立臍帶血干細(xì)胞庫(kù)一樣,建立脂肪干細(xì)胞庫(kù),及時(shí)將脂肪干細(xì)胞保存起來(lái),可能是再生醫(yī)學(xué)今后發(fā)展的趨勢(shì)。
[1]Eto H,Suga H,Matsumoto D,et al.Characterization of structure and cellular components of aspirated and excised adipose tissue [J].Plast Reconstr Surg,2009,124(4):1087-1097.
[2]Matsumoto D,Sato K,Gonda K,et al.Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection[J].Tissue Eng,2006,12(12): 3375-3382.
[3]Yoshimura K,Sato K,Aoi N,et al.Cell-assisted lipotransfer for cosmetic breast augmentation:supportive use of adipose-derived stem/stromal cells[J].Aesthetic Plast Surg,2008,32(1):48-55.
[4]Gimble JM,Katz AJ,Bunnell BA.Adipose-derived stem cells for regenerative medicine[J].Circ Res,2007,100(9):1249-1260.
[5]Traktuev DO,Merfeld-Clauss S,Li J,et al.A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers,reside in a periendothelial location, and stabilize endothelial networks[J].Circ Res,2008,102(1):77-85.
[6]Rigotti G,Marchi A,Galie M,et al.Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant:a healing process mediated by adipose-derived adult stem cells[J].Plast Reconstr Surg,2007, 119(5):1409-1422.
[7]Boquest AC,Shahdadfar A,Fronsdal K,et al.Brinchmann,Isolation and transcription profiling of purified uncultured human stromal stem cells:alteration of gene expression after in vitro cell culture [J].Mol Biol Cell,2005,16(3):1131-1141.
[8]Rodeheffer MS,Birsoy K,Friedman JM.Identification of white adipocyte progenitor cells in vivo[J].Cell,2008,135(2):240-249.
[9]Rehman J,Traktuev D,Li J,et al.Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells[J].Circulation, 2004,109(10):1292-1298.
[10]Yang YI,Kim HI,Choi MY,et al.Ex vivo organ culture of adipose tissue for in situ mobilization of adipose-derived stem cells and defining the stem cell niche[J].J Cell Physiol,2010,224(3):807-816.
[11]Hong SJ,Traktuev DO,March KL.Therapeutic potential of adiposederived stem cells in vascular growth and tissue repair[J].Curr Opin Organ Transplant,2010,15(1):86-91.
[12]Schaffler A,Buchler C.Concise review:adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies[J].Stem Cells,2007,25(4):818-827.
[13]McIntosh K,Zvonic S,Garrett S,et al.The immunogenicity of human adipose-derived cells:temporal changes in vitro[J].Stem Cells,2006,24(5):1246-1253.
[14]Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284 (5411):143-147.
[15]Yoshimura K,Suga H,Eto H.Adipose-derived stem/progenitor cells:roles in adipose tissue remodeling and potential use for soft tissue augmentation[J].Regen Med,2009,4(2):265-273.
[16]Sugii S,Kida Y,Kawamura T,et al.Human and mouse adiposederived cells support feeder-independent induction of pluripotent stem cells[J].Proc Natl Acad Sci U S A,2010,107(8):3558-3563. [17]von Heimburg D,Zachariah S,Heschel I,et al.Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo[J].Biomaterials,2001,22(5):429-438.
[18]Wickham MQ,Erickson GR,Gimble JM,et al.Multipotent stromal cells derived from the infrapatellar fat pad of the knee[J].Clin Orthop Relat Res,2003,412:196-212.
[19]Nishimura T,Hashimoto H,Nakanishi I,et al.Microvascular angiogenesis and apoptosis in the survival of free fat grafts[J]. Laryngoscope,2000,110(8):1333-1338.
[20]Borges J,Mueller MC,Padron NT,et al.Engineered adipose tissue supplied by functional microvessels[J].Tissue Eng,2003,9(6): 1263-1270.
[21]Kim Y,Kim H,Cho H,et al.Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia[J].Cell PhysiolBiochem,2007,20(6):867-876.
[22]Moon MH,Kim SY,Kim YJ,et al.Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia[J].Cell Physiol Biochem,2006, 17(5-6):279-290.
[23]Cho SW,Moon SH,Lee SH,et al.Improvement of postnatal neovascularization by human embryonic stem cell derived endotheliallike cell transplantation in a mouse model of hindlimb ischemia [J].Circulation,2007,116(21):2409-2419.
[24]Lu F,Mizuno H,Uysal CA,et al.Improved viability of random pattern skin flaps through the use of adipose-derived stem cells [J].Plast Reconstr Surg,2008,121(1):50-58.
[25]Ebrahimian TG,Pouzoulet F,Squiban C,et al.Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing[J].Arterioscler Thromb Vasc Biol, 2009,29(4):503-510.
[26]Amos PJ,Shang H,Bailey AM,et al.IFATS collection:the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype[J].Stem Cells, 2008,26(10):2682-2690.
[27]Fischer LJ,McIlhenny S,Tulenko T,et al.Endothelial differentiation of adipose-derived stem cells:effects of endothelial cell growth supplement and shear force[J].J Surg Res,2009,152(1):157-166. [28]Bhang SH,Cho SW,Lim JM,et al.Locally delivered growth factor enhances the angiogenic efficacy of adipose-derived stromal cells transplanted to ischemic limbs[J].Stem Cells,2009,27(8):1976-1986.
[29]Uysal AC,Mizuno H,Tobita M,et al.The effect of adipose-derived stem cells on ischemia-reperfusion injury:immunohistochemical and ultrastructural evaluation[J].Plast Reconstr Surg,2009,124(3): 804-815.
[30]Zhu M,Zhou Z,Chen Y,et al.Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention [J].Ann Plast Surg,2010,64(2):222-228.
[31]Kondo K,Shintani S,Shibata R,et al.Implantation of adiposederived regenerative cells enhances ischemia-induced angiogenesis [J].Arterioscler Thromb Vasc Biol,2009,29(1):61-66.
[32]Puissant B,Barreau C,Bourin P,et al.Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells[J].Br J Haematol,2005,129 (1):118-129.
[33]Cui L,Yin S,Yang P,et al.Human adipose derived stem cells suppress lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J].Zhonghua Yi Xue Za Zhi,2005,85(27):1890-1894.
[34]Moseley TA,Zhu M,Hedrick MH.Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery[J]. Plast Reconstr Surg,2006,118(3 Suppl):121S-128S.
Application of Adipose Derived Stem Cells in Autologous Fat Transplantation
Adipose derived stem cells;Autologous lipo-transfer;Angiogenesis;Microenvironment
R622+.9
B
1673-0364(2011)03-0171-04
LUO Xuan,WANG Lin,FAN Zhihong.
Department of Plastic Surgery,Renji Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200127,China. Corresponding author:FAN Zhihong(E-mail:renji_plastic@vip.163.com).
2011年2月3日,
2011年3月11日)
10.3969/j.issn.1673-0364.2011.03.015
200127上海市上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院整形外科。
范志宏(E-mail:renji_plastic@vip.163.com)。
【Summary】Adipose derived stem cells(ADSC)is an ideal source for regenerative medicine and tissue engineering,owing to its multipotential differentiation and self-replicating ability.ADSC can differentiate into fat cells and vascular endothelial cells.It can secrete cell factors,promote angiogenesis,improve the environment of inflammatory lesions,and inhibit cell apoptosis.Application of ADSC in autologous lipo-transfer has the advantages:reduction of the liquefaction and absorption of adipose tissue after transplantation,minimal adverse reactions,and long-term outcomes.