李宇華
(山西大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山西太原 030006)
*一類(lèi)四階邊值問(wèn)題的變號(hào)解
李宇華
(山西大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山西太原 030006)
利用拓?fù)涠壤碚摵蚆o rse理論研究方程u(4)(t)=f(t,u),t∈(0,1),且?guī)в羞吔鐥l件u″(0)=u″(1)=0,u(0)=u(1)=0.在一定條件下,得到此問(wèn)題有六個(gè)解,其中兩個(gè)正解,兩個(gè)負(fù)解,兩個(gè)變號(hào)解.
臨界群;變號(hào)解;Mo rse理論
本文研究以下四階方程
目前已經(jīng)有許多文章研究四階邊值問(wèn)題(1),見(jiàn)文獻(xiàn)[1-3],例如,利用錐拉伸和錐壓縮不動(dòng)點(diǎn)定理,得到其正解的存在性,見(jiàn)文[1].利用臨界點(diǎn)理論得到非平凡解的存在性,見(jiàn)文獻(xiàn)[2],文獻(xiàn)[3]利用拓?fù)涠壤碚撗芯苛俗兲?hào)解的存在性.然而他們沒(méi)有考慮共振情形,也沒(méi)有考慮f0(t)和f∞(t)不等于常數(shù)的情形,本文把拓?fù)涠壤碚摵蚆orse理論結(jié)合起來(lái),考慮了各種情形下問(wèn)題(1)的變號(hào)解的存在性與多重性,把跨特征值和共振情形統(tǒng)一起來(lái),推廣了文獻(xiàn)[3]的結(jié)果.這是僅僅利用拓?fù)涠壤碚摶騇orse理論都無(wú)法得到的.本文假設(shè)f滿(mǎn)足以下條件:
[1] Liu B.Positive Solutions of Fourth-order Two Point Boundary Value Problems[J].Appl Math Com put,2004,148:407-420.
[2] Li F,Zhang Q,Liang Z.Existence and Multiplicity of Solutions of a kind of Fourth-order Boundary Value Problem[J].Nonlinear Anal,2005,62:803-816.
[3] Pang C,Dong W,Wei Z.Multiple Solutions fo r Fourth-order Boundary Value Problem s[J].J Math Anal A pp l,2006,314:464-476.
[4] Chang K C.Infinite Dimensional Morse Theory and Multiple Solution Problem s[M].Boston:Birkh?user,1993.
[5] Maw hin J,Willem M.Critical Point Theory and Hamiltonian System[M].Berlin:Sp ringer,1989.
[6] Li F,Li Y.Multiple Sign-changing Solutions to Semilinear Ellip tic Resonant Problem s[J].Nonlinear Anal,2010,72:3820-3827.
[7] Li S,Liu J.Computations of Critical Groups at Dgenerate Critical Point and Applications to Nonlinear Differential Equations w ith Resonance[J].Houston J Math,1999,25:563-582.
[8] Zou W,Li S,Liu J.Nontrivial Solutions fo r Resonant Cooperative Elliptic System s Via Computations of Critical Groups[J].Nonlinear Anal,1999,38:229-247.
[9] 郭大鈞.非線(xiàn)性泛函分析[M].2版.濟(jì)南:山東科學(xué)技術(shù)出版社,2003.
[10] Guo D,Lakshmikantham V.Nonlinear Problem s in Abstract Cones[M].New York:Academic Press,1988.
Sign-changing Solutions to Fourth-order Boundary Value Problem
LI Yu-hua
(School of Mathematical Sciences,Shanxi University,Taiyuan030006,China)
The problemu(4)(t)=f(t,u),t∈(0,1)with the boundary value conditionsu″(0)=u″(1)=0,u(0)=u(1)=0 is studied by using topological degree and Morse theory.Under some conditions,w e obtain this problem has at least six solutions,including two positive solutions,two negative solutions and two sign-changing solutions.
critical group;sign-changing solutions;Morse theory
O152.7
A
0253-2395(2011)01-0001-04*
2010-08-05;
2010-09-07
國(guó)家自然科學(xué)基金(10771128;11071149);山西省自然科學(xué)基金(2006011002;20100110011)
李宇華(1981-),女,山西五臺(tái)人,講師,在讀博士.E-mail:yhli@sxu.edu.cn