• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a Test Apparatus for Measurem ent of Hydraulic Fluid Efficiency

    2011-01-04 07:20:16MattJacksonBrianKoehler
    潤(rùn)滑油 2011年5期

    Matt Jackson,Brian Koehler

    (Southwest Research Institute,U.S.A.)

    Development of a Test Apparatus for Measurem ent of Hydraulic Fluid Efficiency

    Matt Jackson,Brian Koehler

    (Southwest Research Institute,U.S.A.)

    With increasing demand for nonrenewable resources,energy conservation is critical.Efficiency gains allow more work to be performed whilemaintaining or even decreasing the energy expended in the process.Reducing the energy consumed by a system results in favorable economic and environmental impact.An apparatus has been developed tomeasure hydraulic fluid efficiency in a stationary application.The system can be used to developmore efficient fluids,leading to increased work output or decreased energy consumption.

    mechanical and volumetric efficiency;test pump;test procedure

    0 Introduction

    Efficiency in hydraulic systemsmay be expressed in terms of overall efficiency by comparing the power output of the pump to the amountof power required to drive it.Overall efficiency can,in turn,be further analyzed in terms of both mechanical and volumetric efficiency.

    High-accuracy measurements of input(driving) torque,pump shaft speed,output flow and pressure are all necessary for the calculation of overall hydraulic efficiency.An inline torque sensor ofappropriate range,alongwith an accurate transducer at the pump outlet provided the torque and pressure data necessary to calculate mechanical efficiency.Pump shaft speed wasmeasured via amagnetic pickup and a Coriolis mass flow meter provided precise measurement of pump output flow.Volumetric efficiency can be derived from the resulting speed and output flow data.

    Pump speed was controlled using an electric motor and variable frequency drive.Output pressure was set through the use of a proportionally-controlled relief valve downstream of the pump.Fluid temperature was controlled with a shell-and-tube heat exchanger.

    The hydraulic circuit components and instrumentation employed in this study are of key importance.The use of high precision devices to directlymeasure torque and speed formechanical input power calculation and pressure and flow for hydraulic output power calculation represents significant improvement over earliermethods.

    The focus of this study was the development of a stationary hydraulic test apparatus that,incorporating precise measurements of speed,torque,pressure,flow,and temperature,can be used to determine efficiencies of hydraulic fluid.Application of this apparatus will allow comparative fluid studies for the optim ization of fluid formulations and the possible prediction of fluid behavior in both stationary andmobile equipment,without the need for costly field trials.

    1 Apparatus

    The pump selected for developmentof the hydraulic efficiency apparatus was the Eaton 35VQ25A vane pump.This pump,shown in Figure 1,was selected due to itswide use as a fixed displacement test pump for fluid performance testing.To reduce wear-in effects,a unit with over 100 hours of operation at a broad range of conditionswas selected.The pump was inspected before and after testing to ensure proper function and to determine that no mechanical degradation had occurred.

    A modified ASTM D6973-08 apparatus was used as the test bench.Input power was p rovided by an electric motor and shaft speed was controlled using a variab le frequency d rive.C losed loop ou tput p res-sure control was accom p lished using an e lectron ically operated proportional valve.Temperatu re was con tro lled by routing the flu id through a she ll-and-tube heat exchanger in a low p ressu re portion o f the c ircuit.A fu ll-flow filter was used to minimize particulate contamination.

    Figure 1 Eaton 35VQ25A test pump

    Torquewasmeasured at the pump input shaft using a 0.05%accuracy class digital flange-mounted,non-contact torquemeter.A magnetic pickup on a 60-tooth gear measured shaft speed with a total system accuracy of 0.1%.

    A Coriolismass flow meter was used to provide direct measurement ofmass flow and density.The Coriolismeter is immune to flow profile effects and has a volume flow accuracy of±0.10%of rate and repeatability of±0.05% of rate.Electronic transducers were used to measure pressure at the pump inlet and outlet.The outlet transducer has a range of0 to 690 bar and an accuracy of0.1%.The inlet transducer has a range of 0 to 1.7 bar and an accuracy of 0.1%.

    A stainless steel K-type thermocouple wasmounted 15 mm from the pump inlet tomeasure inlet temperature.In order to eliminate inlet system and reservoir design variables,the pump inlet pressurewas controlled.The inlet pressure was set at0.21 bar to simulate elevation of the reservoir above the pump in mobile or stationary applications.The system is shown in Figure 2.

    Figu re 2 Sw RIhydraulic e fficiency test rig

    2 Test Fluids

    Hydraulic efficiency depends largely on fluid viscosity.Higher viscosity fluids tend to produce higher volumetric efficiencies due to reduced internal pump leakage and lowermechanical efficiencies due to the increased power required to pump them.Conversely,lower viscosity fluids give highermechanical efficiencies because they are easier to pump,butalso produce lower volumetric efficiencies due to increased leakage within the pump.

    Three fluids were evaluated in developing the hydraulic efficiency testapparatus.Fluids A and B were ISO-32 grade fluids thatwere tested to determine the ability of the apparatus to measure efficiency differences between fluids of the same nominal viscosity.Fluid C was an ISO-46 monograde fluid tested to compare efficiency across viscosity grades.

    Fluids A and B exhibited the same nominal kinematic viscosities at40℃and 100℃.However,each fluid had a different high shear rate viscosity,achieved by custom blending two Group IIbase stockswhile using two different types of viscosity index improvers.These two types were a conventional linear molecule Poly Alkyl Methacrylate(PMA)and a star-shaped molecule PMA.These are listed in Table 1 as Fluid A(Polymer A)and Fluid B(Polymer B).

    Fluid C used a similar star PMA as Fluid B.Themolecular weight,shear stability,and percent activeswere identical. The monomers differed slightly to improve low temperature performance.

    Table 1 provides a summary of the test fluid viscometric characteristics.

    Table 1 Test fluid viscometrics

    3 Test Procedure

    The test fluidswere evaluated at conditions representative of field operation.Shaft speeds(1200,1800,and 2400 rpm) and output pressures(103,155,and 207 bar)were selected to reflect field conditions near the upper end of equipment ratings.Temperature conditions ranging from 50℃to 90℃represent thewidest practical range for the apparatus.

    A summary of the test conditions is presented in Table2.

    Table 2 Test conditions

    Prior to each test sequence,the test conditions were stabilized for one hour at the maximum speed,pressure,and temperature combination.All shaft speedswere evaluated at a given temperature and pressure before continuing to the next pressure,and all pressures were tested before proceeding to the next temperature.

    Test conditions were stabilized before and after the data acquisition period.Data was recorded once perminute following stabilization.The data used for efficiency calculation was an average of the first fiveminutes of stable operation at each condition.Test conditions were maintained for a minimum of oneminute after data acquisition was complete before proceeding to the next combination in order to eliminate the possibility of transients in the data set.

    4 Data Analysis

    Overall,mechanical,and volumetric efficiencies were calculated for each operating condition according to the following equations:

    Overall efficiency[1]:

    where

    P=Pump outlet pressure(bar)

    Q=Pump output flow(liters/min)

    T=Shaft torque(Nm)

    N=Shaft speed(rev/min)

    Vp=Pump displacement(81.6 m l/rev)[2]

    Based upon the calculated efficiencies,some general trends were observed.Fluids were more volumetrically efficient at higher speeds(Figures 3 through 5)and more mechanically efficientathigher pressures(Figures6 through 8).

    Figure 3 Volumetric efficiency vs.tem perature,2400 rpm

    Figure 4 Volumetric efficiency vs.tem perature,1800 rpm

    Figure 5 Volumetric efficiency vs.tem perature,1200 rpm

    Figure 6 Mechanicale fficiency vs.tem perature,2400 rpm

    Figure 7 Mechanicale fficiency vs.tem perature,1800 rpm

    Figure 8 Mechanicalefficiency vs.temperature,1200 rpm

    Increases in temperature hadmixed results formechanical efficiency.At the lower end of the temperature range,mechanical efficiency increased with temperature.Athigher temperatures,however,the rate of increase becamemore gradual and seemed to indicate thatmechanical efficiencymight stabilize or even decrease athigher temperatures.This phenomenon wasmost pronounced at lower speeds and higher pressures(Figure 8).

    Lower temperatures produced higher volumetric and overall efficiency(Figures 3 through 5 and Figures 9 through 11).

    Figure 9 Overall efficiency vs.tem pe rature,2400 rpm

    Figure 10 Overa ll efficiency vs.temperature,1800 rpm

    Figu re 11 Overalle fficiency vs.tem perature,1200 rpm

    Overall efficiency trends followed those exhibited by the volumetric efficiency data,suggesting that volumetric effects have a larger impact on overall efficiency.

    Table 3 summarizes the average efficiency differences among the three fluids across all conditions.

    Table 3 Average efficiency differences

    Fluids A and B did not exhibit significant differences in efficiency.Fluid C produced the highest volumetric and overall efficiencies of the three fluids(Figures 3 through 5 and Figures 9 through 11).Fluid C exhibited notable separation from Fluids A and B,likely due to the differences in their viscosities(Figures 3 through 5 and Figure 11).

    5 Uncertainty and Repeatability

    Uncertainties for the results of the efficiency investigationswere quantified using the rootsum of squares rule[3]The published torquemeter accuracywas 0.05%.The accuracy of the flow meter,pressure transducer,and speed sensor was 0.1%for each device.The square rootof the sum of the squares of the accuracy values yields uncertainty values of±0.18% for overall efficiency,±0.11%for mechanical efficiency,and±0.14%for volumetric efficiency.

    An example calculation for uncertainty in the overall efficiency values is shown in Equation 4.

    Repeatability was determined by recording data multiple times on a single fluid atone setof conditions(1800 rpm,155 bar output pressure,85℃inlet temperature).Four data sets were recorded on two different days with a minimum of three hours of cold soak time between each set.Data was recorded and averaged according to the same procedure used for the full investigation.These repeatability tests resulted in a range of 0.15%for overall efficiency,with the ranges formechanical and volumetric efficiency at0.09%and 0.14%,respectively.

    It should be noted thatoverall accuracy will also be influenced by the accuracies of all devices in each signal path.Further quantification of these influences iswarranted.

    6 Conclusions

    From the data gathered during the developmentof the hydraulic fluid efficiency apparatus,it can be concluded that changes in volumetric efficiency have amuch larger effect on overall efficiency than changes inmechanical efficiency.

    Efficiency results for fluids in the same viscosity grade are similar,while differences in efficiency are much more pronounced for fluids of differing viscosity grades.Therewere no appreciable differencesmeasured in terms ofmechanical efficiency.

    The hydraulic fluid efficiency apparatus can be a useful tool for comparing efficiency among fluids.As with any new test,additional follow up work is warranted to enhance the method and more fully develop the data set.

    Additional fluids of differing characteristics should be evaluated.Data to date was recorded over multiple combinations of temperature,pressure,and speed conditions in order to provide a generaloverview of the performance of the apparatus.Repeated testsof the same fluids ateach condition should be performed in order to establish a confidence interval for the efficiencymeasurements.

    Further investigation may involve variable displacement pumps or pumps of other design or manufacture.Testing across awider range of fluid temperatures in order to assess efficiency at extreme operating conditions is another avenueworthy of exploration.Wear measurements of pump components before and after testing will better quantify pump degradation effects.

    Acknowledgements

    The authors wish to thank Dr.Barton Schober,F(xiàn)abrice Herrero and Jon Carlson of The Lubrizol Corporation for their support and guidance.Thanks also go to Michael Lochte,Henry Crowder,Mario Dominguez,Jesse Molleda,Brian Bentley,Jacob Hedrick,and Stephen Thompson of Southwest Research Institute for their support in developing the test procedure and in performing the efficiency evaluations.

    [1]James A Sullivan.Fluid Power Theory and Applications[M].3rd ed.New Jersey:Prentice Hall,1989:123-128.

    [2]EATON Vickers.EATON Vane Pump and Motor De

    sign Guide for Mobile Equipment[M].Revised 08/98.47.

    [3]H Coleman,W Steele.Experimentation and Uncertainty A-nalysis for Engineers[M].John Wiley&Sons,1989.

    TE626.3

    A

    1002-3119(2011)05-0028-06

    2010-10-13。

    Matt Jackson,male,following graduation from

    Texas A&M University in 1994 with a Bachelor of Science degree in Mechanical Engineering,joined in Southwest Research Institute.He is themanager of the Specialty and Driveline Fluid Evaluations Section in Fuels and Lubricants Research Division.Matt has authored technical papers on elasticmodulus and vibration damping in metalmatrix composites,hydraulic fluid testing,test development for themeasurementof fluid aeration and deaeration,and low speed carbon fiber clutch testing.He is amember of the Society of Automotive Engineers and Tau Beta Pi.

    男人舔奶头视频| 亚洲欧美日韩高清在线视频| 国产精品1区2区在线观看.| 波多野结衣高清无吗| 亚洲,欧美精品.| 久久精品国产亚洲av高清一级| x7x7x7水蜜桃| 日日摸夜夜添夜夜添小说| 国产视频一区二区在线看| 18禁黄网站禁片免费观看直播| 欧美一区二区国产精品久久精品 | 日韩国内少妇激情av| 国内少妇人妻偷人精品xxx网站 | 一边摸一边抽搐一进一小说| 欧美大码av| 国产乱人伦免费视频| 女人高潮潮喷娇喘18禁视频| 久久中文字幕一级| x7x7x7水蜜桃| 特级一级黄色大片| 亚洲自拍偷在线| 90打野战视频偷拍视频| 国产欧美日韩一区二区精品| 国产99久久九九免费精品| 日本黄色视频三级网站网址| 国产欧美日韩精品亚洲av| 禁无遮挡网站| 中文字幕久久专区| 国产一级毛片七仙女欲春2| 久久天堂一区二区三区四区| 最近最新免费中文字幕在线| 亚洲天堂国产精品一区在线| 精品一区二区三区视频在线观看免费| 老汉色av国产亚洲站长工具| 一进一出抽搐动态| 看片在线看免费视频| 亚洲一区二区三区色噜噜| 国产精品,欧美在线| 色精品久久人妻99蜜桃| www.熟女人妻精品国产| 欧美精品亚洲一区二区| 亚洲片人在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产精品日韩av在线免费观看| 最近在线观看免费完整版| 亚洲人成网站高清观看| 又紧又爽又黄一区二区| 他把我摸到了高潮在线观看| 青草久久国产| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看 | 亚洲午夜精品一区,二区,三区| 国产成人系列免费观看| 18禁美女被吸乳视频| 精品久久蜜臀av无| 成人高潮视频无遮挡免费网站| 久久国产乱子伦精品免费另类| 99国产综合亚洲精品| xxxwww97欧美| 欧美激情久久久久久爽电影| 免费av毛片视频| 18美女黄网站色大片免费观看| 国产久久久一区二区三区| 女生性感内裤真人,穿戴方法视频| 午夜福利视频1000在线观看| 国产激情偷乱视频一区二区| 男人舔女人的私密视频| 国产午夜精品久久久久久| av福利片在线| 韩国av一区二区三区四区| 亚洲真实伦在线观看| 舔av片在线| av片东京热男人的天堂| 亚洲自偷自拍图片 自拍| 少妇人妻一区二区三区视频| 亚洲黑人精品在线| 亚洲国产精品久久男人天堂| 不卡一级毛片| 亚洲精品粉嫩美女一区| 久久这里只有精品19| 午夜日韩欧美国产| 色在线成人网| 夜夜爽天天搞| 50天的宝宝边吃奶边哭怎么回事| 婷婷精品国产亚洲av在线| 亚洲狠狠婷婷综合久久图片| 欧美丝袜亚洲另类 | 欧美又色又爽又黄视频| 久久中文字幕一级| 成人三级做爰电影| 在线十欧美十亚洲十日本专区| 99re在线观看精品视频| 亚洲五月天丁香| 久久久久精品国产欧美久久久| 女同久久另类99精品国产91| 在线免费观看的www视频| 少妇熟女aⅴ在线视频| 久久人人精品亚洲av| 亚洲欧美一区二区三区黑人| 欧美大码av| 身体一侧抽搐| 免费看美女性在线毛片视频| 级片在线观看| 亚洲一区二区三区色噜噜| 国产精品九九99| 亚洲人成伊人成综合网2020| 无限看片的www在线观看| 亚洲成人中文字幕在线播放| 色精品久久人妻99蜜桃| 欧美一级a爱片免费观看看 | 法律面前人人平等表现在哪些方面| 欧美日韩精品网址| 国产精品一及| x7x7x7水蜜桃| 三级男女做爰猛烈吃奶摸视频| 宅男免费午夜| 免费在线观看亚洲国产| 久久久久国产精品人妻aⅴ院| 丁香欧美五月| 成年人黄色毛片网站| 一级毛片高清免费大全| 97人妻精品一区二区三区麻豆| 成人午夜高清在线视频| 天堂影院成人在线观看| 黄色 视频免费看| 91成年电影在线观看| 国产69精品久久久久777片 | 99久久精品热视频| 午夜精品在线福利| 欧美高清成人免费视频www| 午夜福利18| 人成视频在线观看免费观看| 国产99久久九九免费精品| 精品人妻1区二区| 国产黄色小视频在线观看| 法律面前人人平等表现在哪些方面| 全区人妻精品视频| 久久久久久久午夜电影| 婷婷丁香在线五月| 亚洲人成网站在线播放欧美日韩| 99在线人妻在线中文字幕| 国产视频内射| 一边摸一边做爽爽视频免费| 国产黄a三级三级三级人| 桃色一区二区三区在线观看| 久久香蕉精品热| 国产av不卡久久| aaaaa片日本免费| 国产精品乱码一区二三区的特点| 天堂√8在线中文| 免费在线观看成人毛片| 手机成人av网站| 欧美黄色片欧美黄色片| 女警被强在线播放| 一本大道久久a久久精品| 男女下面进入的视频免费午夜| 18禁裸乳无遮挡免费网站照片| 中文字幕久久专区| 美女大奶头视频| 18美女黄网站色大片免费观看| 免费在线观看日本一区| 久久人人精品亚洲av| 亚洲国产欧美一区二区综合| 国产片内射在线| av免费在线观看网站| 国产精品一区二区三区四区久久| 亚洲第一欧美日韩一区二区三区| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 欧美日韩亚洲国产一区二区在线观看| 天天躁夜夜躁狠狠躁躁| 人成视频在线观看免费观看| 麻豆一二三区av精品| 美女免费视频网站| 亚洲精品久久国产高清桃花| 好看av亚洲va欧美ⅴa在| 男女下面进入的视频免费午夜| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 久久精品夜夜夜夜夜久久蜜豆 | 午夜激情av网站| АⅤ资源中文在线天堂| 老司机午夜福利在线观看视频| 国产亚洲精品久久久久久毛片| 欧美性猛交黑人性爽| 久久久久国产一级毛片高清牌| 一边摸一边做爽爽视频免费| 精品免费久久久久久久清纯| 国产av麻豆久久久久久久| 国产精品久久久av美女十八| 后天国语完整版免费观看| 91九色精品人成在线观看| 婷婷六月久久综合丁香| 亚洲成人久久爱视频| 欧美日韩瑟瑟在线播放| 亚洲熟妇熟女久久| 精品午夜福利视频在线观看一区| 日韩免费av在线播放| 搡老妇女老女人老熟妇| 黄色a级毛片大全视频| 亚洲乱码一区二区免费版| 最近最新免费中文字幕在线| 久久精品亚洲精品国产色婷小说| АⅤ资源中文在线天堂| 亚洲男人的天堂狠狠| 欧美一区二区精品小视频在线| 亚洲七黄色美女视频| 国产精品一区二区免费欧美| 国产一区在线观看成人免费| 无人区码免费观看不卡| 国产精品1区2区在线观看.| 久久久久久久午夜电影| 天堂影院成人在线观看| 亚洲自拍偷在线| 青草久久国产| 国语自产精品视频在线第100页| 亚洲精品粉嫩美女一区| 高清在线国产一区| 国产野战对白在线观看| 成人手机av| 香蕉久久夜色| 久久久久久国产a免费观看| 熟女少妇亚洲综合色aaa.| 欧美一区二区精品小视频在线| 99国产精品一区二区蜜桃av| 欧美日本视频| 男女床上黄色一级片免费看| 亚洲第一电影网av| av中文乱码字幕在线| 国模一区二区三区四区视频 | 亚洲真实伦在线观看| 十八禁人妻一区二区| 好看av亚洲va欧美ⅴa在| 美女高潮喷水抽搐中文字幕| 欧美中文综合在线视频| 日本五十路高清| 日韩高清综合在线| 久久精品亚洲精品国产色婷小说| 亚洲av日韩精品久久久久久密| www.熟女人妻精品国产| 亚洲欧美日韩无卡精品| 麻豆成人午夜福利视频| 一二三四在线观看免费中文在| 国产精品日韩av在线免费观看| 日本在线视频免费播放| 久久精品国产亚洲av香蕉五月| 在线观看免费午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | a级毛片a级免费在线| 久久午夜综合久久蜜桃| 啦啦啦免费观看视频1| 国产成人aa在线观看| 一级黄色大片毛片| 精品国产乱码久久久久久男人| 精品第一国产精品| 成人三级黄色视频| 女警被强在线播放| 精品国产亚洲在线| 亚洲精华国产精华精| 国产熟女xx| 男女床上黄色一级片免费看| 国产人伦9x9x在线观看| av国产免费在线观看| 欧美日韩一级在线毛片| 日韩中文字幕欧美一区二区| 午夜福利在线观看吧| 好看av亚洲va欧美ⅴa在| 亚洲国产欧洲综合997久久,| 日韩欧美国产在线观看| 国产一区二区在线观看日韩 | 久久中文字幕一级| 国产激情偷乱视频一区二区| 宅男免费午夜| 伦理电影免费视频| 欧美在线黄色| 久久久久久亚洲精品国产蜜桃av| 久久久久亚洲av毛片大全| 高清毛片免费观看视频网站| 在线观看66精品国产| 香蕉丝袜av| 欧美最黄视频在线播放免费| 亚洲男人天堂网一区| 欧美日韩亚洲国产一区二区在线观看| 成人三级黄色视频| 国产视频内射| 精品人妻1区二区| 精品欧美国产一区二区三| 婷婷精品国产亚洲av| 久久中文字幕人妻熟女| 免费一级毛片在线播放高清视频| 五月玫瑰六月丁香| 最新美女视频免费是黄的| 午夜福利欧美成人| 成年免费大片在线观看| 嫩草影视91久久| 给我免费播放毛片高清在线观看| 国产精品一区二区精品视频观看| 日韩av在线大香蕉| 又黄又粗又硬又大视频| 国产精品爽爽va在线观看网站| 亚洲人成网站高清观看| 宅男免费午夜| 国产又黄又爽又无遮挡在线| 国产免费av片在线观看野外av| 狂野欧美激情性xxxx| 国产三级中文精品| 精品欧美国产一区二区三| 又紧又爽又黄一区二区| 一个人观看的视频www高清免费观看 | 亚洲 欧美一区二区三区| 18禁国产床啪视频网站| 国产精品 欧美亚洲| av国产免费在线观看| 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av| 久久精品成人免费网站| 国语自产精品视频在线第100页| 日本免费a在线| 波多野结衣巨乳人妻| 老汉色av国产亚洲站长工具| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 精品一区二区三区av网在线观看| 日本精品一区二区三区蜜桃| 国产在线精品亚洲第一网站| 精品乱码久久久久久99久播| 欧美大码av| 久久99热这里只有精品18| 精品日产1卡2卡| 最好的美女福利视频网| 97超级碰碰碰精品色视频在线观看| 天天躁夜夜躁狠狠躁躁| 日本一区二区免费在线视频| 欧美+亚洲+日韩+国产| 久9热在线精品视频| 久久精品91蜜桃| 麻豆av在线久日| 亚洲av五月六月丁香网| 18禁美女被吸乳视频| 中文资源天堂在线| 丝袜美腿诱惑在线| 亚洲一区二区三区不卡视频| 国产黄色小视频在线观看| 国产熟女xx| 亚洲av电影在线进入| 看片在线看免费视频| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 19禁男女啪啪无遮挡网站| 国内精品久久久久精免费| 亚洲av美国av| 亚洲av成人精品一区久久| 久久中文看片网| 级片在线观看| 亚洲av美国av| 国产99久久九九免费精品| 一二三四社区在线视频社区8| 精品久久久久久久久久免费视频| 天堂动漫精品| 亚洲 欧美一区二区三区| 十八禁网站免费在线| 久久国产精品人妻蜜桃| 天堂动漫精品| 亚洲精品av麻豆狂野| 九色成人免费人妻av| 亚洲欧美日韩高清在线视频| 国产一区二区在线av高清观看| 人妻丰满熟妇av一区二区三区| 国产免费av片在线观看野外av| 国产精品 欧美亚洲| 久久这里只有精品中国| 成人18禁在线播放| 日韩欧美一区二区三区在线观看| 亚洲欧洲精品一区二区精品久久久| 久久这里只有精品中国| 国产高清videossex| 一进一出好大好爽视频| 国产在线精品亚洲第一网站| 久久久水蜜桃国产精品网| 亚洲 欧美一区二区三区| 亚洲熟妇熟女久久| 在线国产一区二区在线| 欧美日韩亚洲综合一区二区三区_| 9191精品国产免费久久| 日本免费a在线| 欧美性长视频在线观看| 男女视频在线观看网站免费 | 最近在线观看免费完整版| 老汉色∧v一级毛片| tocl精华| 国内少妇人妻偷人精品xxx网站 | 久久精品亚洲精品国产色婷小说| av视频在线观看入口| 国内精品一区二区在线观看| 久久天躁狠狠躁夜夜2o2o| av福利片在线观看| 一本久久中文字幕| 亚洲成人久久性| 毛片女人毛片| 日韩欧美 国产精品| 午夜精品久久久久久毛片777| 成人av一区二区三区在线看| 很黄的视频免费| 午夜影院日韩av| 成年女人毛片免费观看观看9| av国产免费在线观看| 99热这里只有精品一区 | 亚洲国产欧美人成| 欧美乱码精品一区二区三区| 亚洲欧美一区二区三区黑人| 在线观看66精品国产| 亚洲五月婷婷丁香| 国内少妇人妻偷人精品xxx网站 | 搞女人的毛片| 母亲3免费完整高清在线观看| 午夜激情av网站| 99riav亚洲国产免费| 亚洲中文字幕一区二区三区有码在线看 | 免费在线观看成人毛片| 97人妻精品一区二区三区麻豆| 人妻久久中文字幕网| 亚洲美女视频黄频| 久久热在线av| 国产精品日韩av在线免费观看| 久久精品国产综合久久久| 国产伦人伦偷精品视频| 国产精品免费视频内射| 欧美乱妇无乱码| 男女午夜视频在线观看| 国产视频内射| 成人三级黄色视频| 黄色丝袜av网址大全| 两个人免费观看高清视频| 正在播放国产对白刺激| 日韩三级视频一区二区三区| 51午夜福利影视在线观看| 欧美精品啪啪一区二区三区| 丝袜人妻中文字幕| 999久久久精品免费观看国产| 在线观看免费日韩欧美大片| 久久精品人妻少妇| 午夜激情福利司机影院| 精品久久久久久,| 99热这里只有精品一区 | a级毛片a级免费在线| 免费在线观看视频国产中文字幕亚洲| 国产精品久久视频播放| 老汉色∧v一级毛片| 三级毛片av免费| 午夜福利18| 欧美中文综合在线视频| www.999成人在线观看| 色综合婷婷激情| а√天堂www在线а√下载| 亚洲色图av天堂| 禁无遮挡网站| 久久久久亚洲av毛片大全| 91麻豆av在线| 亚洲,欧美精品.| 真人做人爱边吃奶动态| 两个人视频免费观看高清| 国产亚洲av高清不卡| 久久久国产成人免费| 国产男靠女视频免费网站| 色av中文字幕| 中文字幕人妻丝袜一区二区| 91九色精品人成在线观看| cao死你这个sao货| 精品国产超薄肉色丝袜足j| 国产成人av教育| 亚洲国产精品999在线| 高清在线国产一区| 女生性感内裤真人,穿戴方法视频| 欧美日韩国产亚洲二区| 18美女黄网站色大片免费观看| 每晚都被弄得嗷嗷叫到高潮| 夜夜夜夜夜久久久久| 午夜a级毛片| 久久久精品大字幕| 亚洲九九香蕉| 国产精品98久久久久久宅男小说| 99精品久久久久人妻精品| 亚洲自拍偷在线| 丰满人妻熟妇乱又伦精品不卡| 日本精品一区二区三区蜜桃| 欧美日韩国产亚洲二区| 丝袜人妻中文字幕| 男人舔奶头视频| 校园春色视频在线观看| 久久久久久久久久黄片| 久久久久免费精品人妻一区二区| 啪啪无遮挡十八禁网站| 99久久久亚洲精品蜜臀av| 成年免费大片在线观看| 久久天堂一区二区三区四区| 看黄色毛片网站| 亚洲黑人精品在线| 一进一出抽搐gif免费好疼| 国产亚洲欧美98| 婷婷六月久久综合丁香| 看片在线看免费视频| 最近最新中文字幕大全免费视频| 动漫黄色视频在线观看| 欧美色欧美亚洲另类二区| 婷婷六月久久综合丁香| 麻豆一二三区av精品| 99国产精品一区二区蜜桃av| 两个人的视频大全免费| 精品午夜福利视频在线观看一区| 国产精品一区二区三区四区久久| 欧美乱色亚洲激情| 十八禁人妻一区二区| 久久久久亚洲av毛片大全| 午夜成年电影在线免费观看| 国产三级黄色录像| 白带黄色成豆腐渣| 亚洲成av人片免费观看| 在线视频色国产色| 精品久久久久久久久久免费视频| 免费观看人在逋| 熟女电影av网| 免费在线观看亚洲国产| 一进一出好大好爽视频| 久久精品国产综合久久久| 国模一区二区三区四区视频 | 国产精品精品国产色婷婷| 国产精品1区2区在线观看.| 可以在线观看的亚洲视频| 日韩精品免费视频一区二区三区| 成人欧美大片| 99国产精品一区二区蜜桃av| 老熟妇仑乱视频hdxx| 成熟少妇高潮喷水视频| 国产一区二区在线av高清观看| 色老头精品视频在线观看| 久久香蕉激情| 国产又色又爽无遮挡免费看| 99精品在免费线老司机午夜| 色播亚洲综合网| 12—13女人毛片做爰片一| 人妻久久中文字幕网| 久久久水蜜桃国产精品网| 又黄又爽又免费观看的视频| 操出白浆在线播放| 国产精品香港三级国产av潘金莲| 免费一级毛片在线播放高清视频| 欧美黑人巨大hd| 999久久久国产精品视频| 欧洲精品卡2卡3卡4卡5卡区| 90打野战视频偷拍视频| 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| 1024香蕉在线观看| 国产精品亚洲美女久久久| 青草久久国产| 美女午夜性视频免费| 国产激情欧美一区二区| 欧美黑人巨大hd| 国产精品影院久久| 成人18禁高潮啪啪吃奶动态图| 成在线人永久免费视频| 动漫黄色视频在线观看| 特大巨黑吊av在线直播| 国产亚洲欧美在线一区二区| 在线a可以看的网站| 夜夜夜夜夜久久久久| 深夜精品福利| 久久久久国产精品人妻aⅴ院| 操出白浆在线播放| 日韩欧美一区二区三区在线观看| 国产熟女xx| 一本一本综合久久| 亚洲国产看品久久| 黄色毛片三级朝国网站| 亚洲精华国产精华精| 免费看a级黄色片| 91老司机精品| 成人午夜高清在线视频| 成人国产一区最新在线观看| 制服人妻中文乱码| 亚洲欧美一区二区三区黑人| 国内少妇人妻偷人精品xxx网站 | 动漫黄色视频在线观看| 人妻久久中文字幕网| 视频区欧美日本亚洲| 国产亚洲精品久久久久久毛片| 欧美中文日本在线观看视频| 黄色视频不卡| 麻豆成人av在线观看| 亚洲一区高清亚洲精品| АⅤ资源中文在线天堂| 国产精品1区2区在线观看.| e午夜精品久久久久久久| 亚洲18禁久久av| 成年版毛片免费区| 欧美色欧美亚洲另类二区| www.999成人在线观看| 国产黄片美女视频| 国产97色在线日韩免费| 亚洲熟妇熟女久久| 在线观看66精品国产| 国产成人欧美在线观看| 亚洲中文av在线| 国产精品亚洲一级av第二区| 中出人妻视频一区二区| 国产精品日韩av在线免费观看| 欧美成人午夜精品| 老司机福利观看| 一个人免费在线观看的高清视频| 国产99白浆流出| 日韩欧美在线二视频| 国产精品av久久久久免费| 午夜视频精品福利| 久久午夜综合久久蜜桃| 大型av网站在线播放|