• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of sodium salicylate on oxidative stress and insulin resistance induced by free fatty acids

    2010-12-14 01:44:16BingHeShengZhaoWeiZhangYanLiandPingHan

    Bing He, Sheng Zhao, Wei Zhang, Yan Li and Ping Han

    Shenyang, China

    Effect of sodium salicylate on oxidative stress and insulin resistance induced by free fatty acids

    Bing He, Sheng Zhao, Wei Zhang, Yan Li and Ping Han

    Shenyang, China

    (Hepatobiliary Pancreat Dis Int 2010; 9: 49-53)

    free fatty acids;sodium salicylate;oxidative stress;insulin resistance;hepatic glucose production

    Introduction

    The association among obesity, insulin resistance,and type 2 diabetes mellitus is well documented,[1]and free fatty acids (FFAs) have been implicated as an important causative link among them.[2]An elevation of plasma FFAs has been reported to impair insulin action, to accelerate β-cell apoptosis, and might be a major risk factor for type 2 diabetes.[2,3]

    Almost 100 years ago, Williamson[4]showed that high-dose salicylate treatment reduces the severity of glycosuria in diabetic patients, and in 1957, Reid et al[5]further demonstrated that 10-14 days of aspirin treatment improves the results of oral glucose tolerance tests in diabetic patients. It has been reported recently that high-dose salicylate improves FFA-induced insulin resistance and β-cell dysfunction,[6,7]but the mechanism remains uncertain. Previously we found that in insulinresistant rats, the supplementation of sodium salicylate is associated with a reduction of plasma malondialdehyde(MDA), a marker of oxidative stress. To date, few studies have investigated the impact of salicylates on oxidative stress levels in animal models. While oxidative stress is associated with a wide variety of pathologies, including diabetes, cardiovascular disease, and cancer, diabetes mellitus is particularly strongly associated.[8]Thus, the objective of this study was to assess the impact of theanti-in fl ammatory drug sodium salicylate on insulin sensitivity and to explore the potential mechanism by which it improves hepatic and peripheral insulin resistance.

    MethodsAnimal models

    Forty-eight normal male Wistar rats, weighing 230-260 g,were housed in the Department of Laboratory Animals,China Medical University (Shenyang, China). The rats were housed under controlled temperature (23 ℃) and were exposed to a 12∶12-hour light-dark cycle with ad libitum access to water and standard rat chow. After 3-5 days of adaptation to the facility, the rats were anesthetized, and indwelling catheters were inserted as described previously.[9]The rats were allowed 3-4 days of postsurgical recovery before experiments.

    Experimental design

    The rats were fasted overnight for 14 hours and randomized to three groups, one of which received intralipid (20% intralipid+20 U/ml heparin, 5.5 μl/min;IH group, n=16), one was a saline-treated control (equal volume; SAL group, n=16), while another group received sodium salicylate (20% intralipid+20 U/ml heparin, 5.5 μl/min+sodium salicylate, 0.117 mg/kg per minute; IHS group, n=16). The duration of infusion in each group was 7 hours, and [6-3H] glucose (20 μCi, bolus+0.4 μCi/min infusion) was given during the last 2 hours of the experiment to assess endogenous glucose production(EGP) and glucose utilization (GU). Further, the rats were divided into 2 groups of 8 each: a basal infusion group and a hyperinsulinemic-euglycemic clamping group. Clamping was made to maintain blood glucose concentrations at 5.0 mmol/L during the last 2 hours, while steady-state human insulin infusion (5 mU/kg per minute) was given by infusing 20% glucose at a variable rate. Blood samples for testing glucose, insulin, FFAs, C-peptide, and [6-3H]glucose-speci fi c activity were taken during the last 30 minutes. The total blood volume withdrawn was 3.0-3.3 ml during the basal experiment and 3.5-3.8 ml during the clamping experiment. After plasma separation, red blood cells diluted 1∶1 in heparinized saline (4 U/ml)were reinfused into the rats. At the end of the experiment,liver and gastrocnemius samples were removed within 45 seconds of anesthetic injection while infusion was maintained through the jugular vein.

    Laboratory methods

    Plasma glucose was measured with the glucose oxygenase method (BIOSEN5030, Germany). Plasma radioactivity from [6-3H] glucose was determined after deproteinization with Ba(OH)2and ZnSO4. The intraassay coef fi cient of variation was 6.5%. Insulin and C-peptide levels were determined by radioimmunoassay(Beijing Furui Biological Engineering Co., China).The coef fi cients of variation were <8% and 10.5%respectively. Plasma FFA levels were measured using a colorimetric kit, MDA levels and glutathione peroxidase(GSH-PX) activity in the liver and muscle were also measured using colorimetric kits (Nanjing Jiancheng Institute of Bio-engineering, China).

    Calculations

    Glucose turnover (rate of appearance of glucose determined with [6-3H] glucose) was calculated using the steady-state formula.[10]Data were presented as average values in samples taken in the last 30 minutes of the experiment.

    Statistical analysis

    The data were expressed as mean±SD. All calculations were performed using the SPSS12.0 software package.Experimental results were analyzed using one-way ANOVA with a probability for type 1 error set at P<0.05.

    ResultsPlasma levels of FFAs, glucose, insulin, and C-peptide

    IH elevated plasma FFA levels by 2-fold, and increased basal plasma insulin and C-peptide levels by 0.6 and 0.7-fold respectively. Plasma glucose levels were higher with IH vs. SAL infusion in the basal experiments but were maintained at 5.0 mmol/L during the clamping(Table). Sodium salicylate decreased FFAs slightly,signi fi cantly decreased basal plasma glucose level by 70%, and reduced basal plasma insulin and C-peptide levels by 39% and 32%, respectively (Table).

    Hepatic glucose production (HGP)

    In the basal state, IH increased HGP by 1.5-fold,while sodium salicylate decreased HGP by 16%. During the hyperinsulinemic-euglycemic clamping, HGP in the IH group was 2-fold that in the SAL group and the infusion of sodium salicylate resulted in a decrease of 20% in HGP.

    Glucose utilization (GU)

    Under basal state conditions, IH increased GU by 1.6-fold. GU was reduced by 20% with intralipidinfusion during the clamping, as compared with that with SAL infusion. Sodium salicylate decreased GU by 18% in the basal state, and increased GU by 14% in clamping conditions, compared with the IH group.

    Table. Plasma levels of FFAs, glucose, insulin, and C-peptide in basal fasting state and in the clamped state (insulin infusion rate: 5 mU/kg per minute)

    Fig. 1. Liver and muscle MDA levels. Data were expressed as mean±SD; SAL: saline; IH: intralipid + heparin; IHS: intralipid+heparin+sodium salicylate; *: P<0.05, vs. SAL; **: P<0.01, vs.SAL; #: P<0.01, vs. IH.

    Fig. 2. Liver and muscle GSH-PX activity. Data were expressed as mean±SD; SAL: saline; IH: intralipid+heparin; IHS: intralipid+heparin+sodium salicylate; *: P<0.01, vs. SAL; #: P<0.05, vs. IH;##: P<0.01, vs. IH.

    MDA levels and GSH-PX activity in the liver and muscle

    After intralipid infusion, MDA levels in the liver and muscle were increased by 2- and 4-fold, while GSHPX activity decreased by 45% and 46%, respectively.Compared to the IH group, sodium salicylate treatment reduced MDA content in the liver and muscle by 63%and 66%, and elevated the GSH-PX activity by 35% and 37%, respectively (Figs. 1, 2).

    Discussion

    The elevation of plasma FFAs has been shown to impair insulin action and cause insulin resistance. Insulin resistance is a key etiological factor for type 2 diabetes mellitus. Additional 41 million people are prediabetic with a constellation of insulin resistance, hypertension,and dyslipidemia, which puts them at increased risk for cardiovascular morbidity and mortality.[11]Thus,there is an urgent need for effective interventions to prevent diabetes in insulin-resistant populations. In recent studies, the improvement of insulin resistance by anti-in fl ammatory salicylates has been investigated,but the molecular target remains uncertain. A better understanding of the mechanisms will be required to combat the epidemics of type 2 diabetes and cardiovascular diseases that are fueled by obesityassociated insulin resistance. In this study, the effects of FFAs on hepatic and skeletal muscle glucose metabolism were tested. In addition, we determined whether highdose anti-in fl ammatory salicylates prevent FFA-induced alterations of insulin action and the biochemical mechanisms that underlie these effects.

    In our animal model, IH elevated basal plasma FFAs to above the physiological range but within the FFA elevation seen in uncontrolled diabetes. The FFA levels in the clamping were lower than the basal FFA levels,which are consistent with the antilipolytic and FFA reesteri fi cation effects of insulin.[12]IH increased insulin and C-peptide levels in all groups, because of increased insulin secretion in the basal state and a decreased insulin clearance during the clamping.[13]Sodium salicylate down-regulated high FFA-induced endogenous insulin secretion, and decreased plasma glucose levels accordingly. Acetylsalicylic acid was reported to promote fatty acid oxidation and reduce the plasma FFA level.[14]However, we did not fi nd a signi fi cant decrease of FFAs after sodium salicylate infusion, which may be due to the short infusion time.

    Previous studies have reported that FFAs cause insulin resistance by increasing gluconeogenesis in the liver,[15]impairing the insulin-mediated suppression of HGP, and inhibiting insulin-stimulated glucose uptake in skeletal muscle.[16]The skeletal muscle is the major site for insulin-stimulated glucose disposal, and is the major target for peripheral insulin resistance.[17]Our study showed that FFAs induced hepatic insulin resistance by elevating HGP levels and induced peripheral insulin resistance by decreasing GU and metabolism. A 7-hour infusion of sodium salicylate resulted in signi fi cant improvements in insulin sensitivity, including a 20%decrease in HGP and a 15% increase in GU.

    We found that IH increased MDA levels in the liver and skeletal muscle by 2- and 4-fold, and reduced the GSH-PX activity by 45% and 46%, respectively. MDA is a marker of oxidative stress, while GSH-PX re fl ects the capacity for elimination of free radicals. These results showed that FFAs are strongly associated with a persistent imbalance between the production of highly reactive molecular species and antioxidant defense.[18]It has been reported that the increased production of these active molecules or a reduced capacity for elimination causes abnormal changes in intracellular signaling and gene expression, ultimately resulting in a pathological situation that includes insulin resistance.[19]After administration of sodium salicylate, MDA levels in the liver and muscle decreased by 63% and 64%,and the GSH-PX activity increased by 35% and 37%,respectively. These results indicated that sodium salicylate signi fi cantly relieves the degree of oxidative stress in the liver and skeletal muscle. At the same time,it improved hepatic and peripheral insulin resistance by decreasing HGP and increasing GU. High doses of salicylate (4-10 g/d), including sodium salicylate and aspirin, have been used to treat in fl ammatory conditions such as rheumatic fever and rheumatoid arthritis. These high doses are thought to inhibit nuclear factor kappa B (NF-κB) and its upstream activator IκB kinase β (IKK-β), as opposed to working through cyclooxygenases, the classical targets of non-steroidal anti-in fl ammatory drugs.[20,21]High doses of salicylates also lower blood glucose concentrations although their potential for treating diabetes has been all but forgotten by modern biomedical science. In this study, we found that the anti-in fl ammatory drug, sodium salicylate,relieved oxidative damage in the liver and skeletal muscle, and improved FFA-induced insulin resistance.Thus we presumed that sodium salicylate might inhibit IKK-β- and NF-κB-mediated transcription, which in certain cells would enhance the production of low-level in fl ammatory cytokines, such as TNF-α and IL-6. It has been demonstrated that in fl ammatory cytokines increase the transcription and translation of reactive molecular species and activate some reactive molecular species.[22,23]Ultimately, the anti-in fl ammatory drug sodium salicylate may improve insulin resistance through abating the degree of oxidative stress in the liver and skeletal muscle.

    In summary, our data demonstrate that the shortterm elevation of fatty acids induces insulin resistance by enhancing oxidative stress levels in the liver and skeletal muscle. Also, in this study we preliminarily assessed the ef fi cacy of the anti-in fl ammatory drug sodium salicylate as a new treatment for insulin resistance.This effect was associated with at least one mechanism:Sodium salicylate reduced the degree of oxidative stress in the liver and skeletal muscle, and therefore improved hepatic and peripheral insulin resistance. IKK-β and NF-κB might provide a potential pathogenic link to oxidative stress.

    Funding: This study was supported by a grant from the Bureau of Education of Liaoning Province, China (No. 20060999).

    Ethical approval: Not needed.

    Contributors: HB proposed the study and wrote the fi rst draft.ZS analyzed the data. HP carried out the experiments. All authors contributed to the design and interpretation of the study and to further drafts. HP is the guarantor.

    Competing interest: No bene fi ts in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    1 Westphal SA. Obesity, abdominal obesity, and insulin resistance.Clin Cornerstone 2008;9:23-31.

    2 Wilding JP. The importance of free fatty acids in the development of Type 2 diabetes. Diabet Med 2007;24:934-945.

    3 Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C,Park E, et al. Free fatty acid-induced reduction in glucosestimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 2007;56:2927-2937.

    4 Williamson RT. On the treatment of glycosuria and diabetes mellitus with sodium salicylate. Br Med J 1901;1:760-762.

    5 Reid J, MacDougall AI, Andrews MM. Aspirin and diabetes mellitus. Br Med J 1957;2:1071-1074.

    6 Manrique C, Lastra G, Palmer J, Gardner M, Sowers JR.Aspirin and Diabetes Mellitus: revisiting an old player. Ther Adv Cardiovasc Dis 2008;2:37-42.

    7 Zeender E, Maedler K, Bosco D, Berney T, Donath MY, Halban PA. Pioglitazone and sodium salicylate protect human betacells against apoptosis and impaired function induced by glucose and interleukin-1beta. J Clin Endocrinol Metab 2004;89:5059-5066.

    8 Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008;44:1973-2001.

    9 Han P, Zhang YY, Lu Y, He B, Zhang W, Xia F. Effects of different free fatty acids on insulin resistance in rats.Hepatobiliary Pancreat Dis Int 2008;7:91-96.

    10 Lam TK, van de Werve G, Giacca A. Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites. Am J Physiol Endocrinol Metab 2003;284:E281-290.

    11 Misra A, Khurana L. Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 2008;93:S9-30.

    12 Wiesenthal SR, Sandhu H, McCall RH, Tchipashvili V, Yoshii H, Polonsky K, et al. Free fatty acids impair hepatic insulin extraction in vivo. Diabetes 1999;48:766-774.

    13 Lam TK, Yoshii H, Haber CA, Bogdanovic E, Lam L, Fantus IG, et al. Free fatty acid-induced hepatic insulin resistance:a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab 2002;283:E682-691.

    14 van der Crabben SN, Allick G, Ackermans MT, Endert E, Romijn JA, Sauerwein HP. Prolonged fasting induces peripheral insulin resistance, which is not ameliorated by highdose salicylate. J Clin Endocrinol Metab 2008;93:638-641.

    15 Li L, Yang GY. Effect of hepatic glucose production on acute insulin resistance induced by lipid-infusion in awake rats.World J Gastroenterol 2004;10:3208-3211.

    16 Lam TK, Carpentier A, Lewis GF, van de Werve G, Fantus IG,Giacca A. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab 2003;284:E863-873.

    17 Abdul-Ghani MA, Matsuda M, DeFronzo RA. Strong association between insulin resistance in liver and skeletal muscle in non-diabetic subjects. Diabet Med 2008;25:1289-1294.

    18 Yang R, Shi Y, Li W, Yue P. Effect of lipoic acid on gene expression related to oxidative stress, lipid and glucose metabolism of mice fed with high fat diet. Wei Sheng Yan Jiu 2008;37:560-562, 565.

    19 Evans JL, Maddux BA, Gold fi ne ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 2005;7:1040-1052.

    20 Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al.Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005;11:183-190.

    21 Hundal RS, Petersen KF, Mayerson AB, Randhawa PS,Inzucchi S, Shoelson SE, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002;109:1321-1326.

    22 Martínez JA. Mitochondrial oxidative stress and in fl ammation:an slalom to obesity and insulin resistance. J Physiol Biochem 2006;62:303-306.

    23 Tilg H, Moschen AR. In fl ammatory mechanisms in the regulation of insulin resistance. Mol Med 2008;14:222-231.

    BACKGROUND: It has been reported that high-dose salicylates improve free fatty acids (FFAs)-induced insulin resistance and β-cell dysfunction in vitro, but the mechanism remains uncertain. In insulin-resistant rats, we found that the supplementation of sodium salicylate is associated with a reduction of plasma malondialdehyde (MDA), a marker of oxidative stress. Few studies have investigated the effects of salicylates on oxidative stress levels in insulin-resistant animal models. This study aimed to assess the effect of sodium salicylate on insulin sensitivity and to explore the potential mechanism by which it improves hepatic and peripheral insulin resistance.

    METHODS: Intralipid+heparin (IH), saline (SAL), or intralipid+heparin+sodium salicylate (IHS) were separately infused for 7 hours in normal Wistar rats. During the last 2 hours of the infusion, hyperinsulinemic-euglycemic clamping was performed with [6-3H] glucose tracer. Plasma glucose was measured using the glucose oxygenase method. Plasma insulin and C-peptide were determined by radioimmunoassay. MDA levels and glutathione peroxidase (GSH-PX) activity in the liver and skeletal muscle were measured with colorimetric kits.RESULTS: Compared with infusion of SAL, IH infusion increased hepatic glucose production (HGP), and decreased glucose utilization (GU) (P<0.05). The elevation of plasma free fatty acids increased the MDA levels and decreased the GSH-PX activity in the liver and muscle (P<0.01). Sodium salicylate treatment decreased HGP, elevated GU (P<0.05),reduced MDA content by 60% (P<0.01), and increased the GSH-PX activity by 35% (P<0.05).CONCLUSIONS: Short-term elevation of fatty acids induces insulin resistance by enhancing oxidative stress levels in the liver and muscle. The administration of the anti-in fl ammatory drug sodium salicylate reduces the degree of oxidative stress,therefore improving hepatic and peripheral insulin resistance.IKK-β and NF-κB provide potential pathogenic links to oxidative stress.

    Author Af fi liations: Department of Endocrinology, Shengjing Af fi liated Hospital, China Medical University, Shenyang 110004, China (He B,Zhao S, Li Y and Han P); and Department of Internal Medicine, Fourth Af fi liated Hospital, China Medical University, Shenyang 110032, China(Zhang W)

    Ping Han, MD, Department of Endocrinology,Shengjing Af fi liated Hospital, China Medical University, Shenyang 110004,China (Tel: 86-24-83955273; Fax: 86-24-83955273; Email: hanping85@hotmail.com)

    ? 2010, Hepatobiliary Pancreat Dis Int. All rights reserved.

    February 2, 2009

    Accepted after revision November 7, 2009

    久久综合国产亚洲精品| 两个人视频免费观看高清| 精品久久久精品久久久| 欧美日韩亚洲高清精品| kizo精华| 日韩av不卡免费在线播放| 精品久久久久久电影网| 久久6这里有精品| 99热6这里只有精品| 中文字幕久久专区| 国产女主播在线喷水免费视频网站 | 国产成人免费观看mmmm| 一本久久精品| 国产色爽女视频免费观看| 欧美不卡视频在线免费观看| 免费无遮挡裸体视频| 国产成人精品福利久久| 久久久久免费精品人妻一区二区| 久久久久久久亚洲中文字幕| 成年版毛片免费区| 欧美bdsm另类| 男女视频在线观看网站免费| 久久精品国产亚洲av天美| 日本熟妇午夜| 国产不卡一卡二| 少妇裸体淫交视频免费看高清| 亚洲欧美一区二区三区国产| 成人午夜精彩视频在线观看| 午夜福利在线在线| 观看美女的网站| 人妻系列 视频| 日韩欧美一区视频在线观看 | 精品人妻熟女av久视频| 久久精品熟女亚洲av麻豆精品 | 91在线精品国自产拍蜜月| 青春草国产在线视频| 波多野结衣巨乳人妻| 成人毛片60女人毛片免费| 国产一区亚洲一区在线观看| 国产片特级美女逼逼视频| 国产高清三级在线| 亚洲成人av在线免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品久久午夜乱码| 国产单亲对白刺激| 久久久久久久久久久免费av| 九九久久精品国产亚洲av麻豆| 欧美zozozo另类| 久久久久久久大尺度免费视频| 伦精品一区二区三区| 亚洲自拍偷在线| 搡老乐熟女国产| 亚洲精品成人av观看孕妇| 亚洲av中文字字幕乱码综合| 久久99精品国语久久久| 国产av国产精品国产| 欧美日韩亚洲高清精品| 色网站视频免费| av免费在线看不卡| 久久久午夜欧美精品| 欧美极品一区二区三区四区| 国产在视频线在精品| 蜜桃亚洲精品一区二区三区| videos熟女内射| 午夜免费男女啪啪视频观看| 最近中文字幕2019免费版| 欧美精品一区二区大全| 免费观看a级毛片全部| 99久久中文字幕三级久久日本| 丰满人妻一区二区三区视频av| 97在线视频观看| 女人十人毛片免费观看3o分钟| 国产高潮美女av| 亚洲熟女精品中文字幕| 99久久中文字幕三级久久日本| 亚洲av电影在线观看一区二区三区 | 亚洲电影在线观看av| 国产精品无大码| 国产真实伦视频高清在线观看| 国产精品爽爽va在线观看网站| 99热6这里只有精品| 中国美白少妇内射xxxbb| 亚洲精品,欧美精品| 18禁在线播放成人免费| 欧美高清性xxxxhd video| h日本视频在线播放| 国产精品av视频在线免费观看| 大片免费播放器 马上看| 99久久人妻综合| 一级毛片黄色毛片免费观看视频| 国产视频首页在线观看| 中文字幕亚洲精品专区| 欧美日韩一区二区视频在线观看视频在线 | freevideosex欧美| 国产免费视频播放在线视频 | 97在线视频观看| 麻豆乱淫一区二区| 国产精品.久久久| 亚洲怡红院男人天堂| 久久久久九九精品影院| 美女被艹到高潮喷水动态| 亚洲av国产av综合av卡| 国精品久久久久久国模美| 免费黄网站久久成人精品| 亚洲成色77777| 免费电影在线观看免费观看| 国产黄色视频一区二区在线观看| 免费看光身美女| 少妇丰满av| 18禁在线无遮挡免费观看视频| 又爽又黄a免费视频| 亚洲欧美精品自产自拍| av在线天堂中文字幕| 亚洲精品中文字幕在线视频 | 舔av片在线| 成人二区视频| 三级经典国产精品| 少妇的逼好多水| 午夜激情福利司机影院| 少妇高潮的动态图| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 大香蕉久久网| 精品久久国产蜜桃| 精品久久久久久成人av| 天堂中文最新版在线下载 | 国产黄片视频在线免费观看| 男女那种视频在线观看| 亚洲真实伦在线观看| 久久99热这里只频精品6学生| 成年av动漫网址| 99视频精品全部免费 在线| 极品少妇高潮喷水抽搐| 爱豆传媒免费全集在线观看| 色综合站精品国产| 最后的刺客免费高清国语| 亚洲精品456在线播放app| av专区在线播放| 成人亚洲欧美一区二区av| 国产黄频视频在线观看| 又粗又硬又长又爽又黄的视频| 国产免费视频播放在线视频 | 成人亚洲欧美一区二区av| 亚洲乱码一区二区免费版| 亚洲熟妇中文字幕五十中出| 午夜老司机福利剧场| 亚洲美女搞黄在线观看| 国产探花极品一区二区| 亚洲成人中文字幕在线播放| 一本一本综合久久| 亚洲无线观看免费| 日韩大片免费观看网站| 久久精品国产亚洲网站| 黄色配什么色好看| 日韩av免费高清视频| 天堂俺去俺来也www色官网 | 一区二区三区乱码不卡18| 色尼玛亚洲综合影院| 寂寞人妻少妇视频99o| 国产av不卡久久| 99热这里只有是精品在线观看| 熟妇人妻久久中文字幕3abv| 美女黄网站色视频| 亚洲成人久久爱视频| 内射极品少妇av片p| 免费av毛片视频| 亚洲欧美中文字幕日韩二区| 少妇熟女aⅴ在线视频| 99热网站在线观看| 国产乱来视频区| 精品酒店卫生间| 亚洲一级一片aⅴ在线观看| 国产成人aa在线观看| 国产一区二区三区综合在线观看 | av免费观看日本| 国产精品一二三区在线看| 80岁老熟妇乱子伦牲交| av免费在线看不卡| 国产精品蜜桃在线观看| 亚洲精品自拍成人| videossex国产| a级一级毛片免费在线观看| 久久国产乱子免费精品| 麻豆成人午夜福利视频| 久久久久久久久久久免费av| 成人漫画全彩无遮挡| 精品久久久久久成人av| 国产极品天堂在线| 毛片女人毛片| 黄色一级大片看看| 激情五月婷婷亚洲| 乱码一卡2卡4卡精品| 国产有黄有色有爽视频| 在线天堂最新版资源| 91久久精品国产一区二区三区| 午夜福利成人在线免费观看| 日韩av在线免费看完整版不卡| 国产av国产精品国产| 免费观看精品视频网站| 亚洲av男天堂| 91精品国产九色| 亚洲欧美精品自产自拍| 美女内射精品一级片tv| 高清视频免费观看一区二区 | 免费观看精品视频网站| 永久网站在线| 欧美bdsm另类| 22中文网久久字幕| 精品一区在线观看国产| 干丝袜人妻中文字幕| 欧美激情久久久久久爽电影| 国产一区二区三区av在线| 久久韩国三级中文字幕| 国产v大片淫在线免费观看| 看免费成人av毛片| 欧美日韩在线观看h| 亚洲aⅴ乱码一区二区在线播放| 观看免费一级毛片| 国内少妇人妻偷人精品xxx网站| 久久精品综合一区二区三区| 国产亚洲一区二区精品| 中文资源天堂在线| 亚洲乱码一区二区免费版| 一个人观看的视频www高清免费观看| 亚洲精品一区蜜桃| 你懂的网址亚洲精品在线观看| 又粗又硬又长又爽又黄的视频| 成人av在线播放网站| 成人一区二区视频在线观看| 日韩欧美 国产精品| 亚州av有码| 精品一区二区三区视频在线| 免费少妇av软件| 亚洲精品aⅴ在线观看| 精品久久国产蜜桃| 97精品久久久久久久久久精品| 国产午夜精品一二区理论片| 亚洲激情五月婷婷啪啪| 久久久精品94久久精品| 最近的中文字幕免费完整| 国产午夜精品一二区理论片| 亚洲真实伦在线观看| 亚洲欧美日韩卡通动漫| 日韩欧美国产在线观看| 日本黄大片高清| 色哟哟·www| av线在线观看网站| 亚洲欧美日韩无卡精品| 午夜激情欧美在线| 亚洲欧美一区二区三区黑人 | 亚洲性久久影院| 亚洲国产欧美在线一区| 亚洲天堂国产精品一区在线| 免费播放大片免费观看视频在线观看| 久久精品久久久久久久性| 成年女人看的毛片在线观看| 亚州av有码| 久久久色成人| 蜜桃亚洲精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美中文字幕日韩二区| 韩国高清视频一区二区三区| 国产伦一二天堂av在线观看| 男人舔女人下体高潮全视频| 在线免费十八禁| 亚洲精华国产精华液的使用体验| 国产真实伦视频高清在线观看| 两个人视频免费观看高清| 九九爱精品视频在线观看| 在线天堂最新版资源| 国产av不卡久久| 天堂俺去俺来也www色官网 | 久久久久久久久久人人人人人人| 免费不卡的大黄色大毛片视频在线观看 | 人妻制服诱惑在线中文字幕| 乱人视频在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲天堂国产精品一区在线| 国产有黄有色有爽视频| 午夜激情久久久久久久| 在线 av 中文字幕| 亚洲无线观看免费| 美女国产视频在线观看| 国产精品美女特级片免费视频播放器| 伊人久久精品亚洲午夜| 国产 一区精品| 18禁裸乳无遮挡免费网站照片| 中文字幕av在线有码专区| 男人舔奶头视频| 性插视频无遮挡在线免费观看| 人妻系列 视频| 久久久久久久久久久免费av| 有码 亚洲区| 高清毛片免费看| 日韩一本色道免费dvd| 性插视频无遮挡在线免费观看| a级一级毛片免费在线观看| 欧美bdsm另类| 国产黄色视频一区二区在线观看| h日本视频在线播放| 国产男人的电影天堂91| 久久久久网色| av专区在线播放| 99热网站在线观看| av黄色大香蕉| 亚洲综合色惰| 国产在线一区二区三区精| 亚洲成人中文字幕在线播放| 蜜桃亚洲精品一区二区三区| 久久99精品国语久久久| 天堂俺去俺来也www色官网 | 高清欧美精品videossex| 网址你懂的国产日韩在线| 偷拍熟女少妇极品色| 亚洲人成网站在线观看播放| 男女边吃奶边做爰视频| 欧美变态另类bdsm刘玥| 国国产精品蜜臀av免费| 成人一区二区视频在线观看| 精品久久国产蜜桃| 国产一区有黄有色的免费视频 | av一本久久久久| 肉色欧美久久久久久久蜜桃 | 日本wwww免费看| 精品人妻视频免费看| av在线播放精品| 天堂av国产一区二区熟女人妻| 久久久午夜欧美精品| 最近视频中文字幕2019在线8| 麻豆乱淫一区二区| 欧美一级a爱片免费观看看| 看十八女毛片水多多多| 深夜a级毛片| 18禁裸乳无遮挡免费网站照片| 国产在线男女| av免费观看日本| 男人和女人高潮做爰伦理| 网址你懂的国产日韩在线| 一个人免费在线观看电影| 97超碰精品成人国产| 久久久精品94久久精品| 91精品一卡2卡3卡4卡| 成人特级av手机在线观看| 欧美潮喷喷水| 久久久久久国产a免费观看| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 午夜精品一区二区三区免费看| 亚洲av男天堂| 国产一区有黄有色的免费视频 | 成年免费大片在线观看| 国产真实伦视频高清在线观看| 成年免费大片在线观看| 91av网一区二区| 日本黄色片子视频| 五月伊人婷婷丁香| 丝瓜视频免费看黄片| 欧美bdsm另类| 日日啪夜夜爽| 亚洲av.av天堂| 又爽又黄a免费视频| 久久99热这里只有精品18| 欧美极品一区二区三区四区| 日本wwww免费看| 亚洲av在线观看美女高潮| 日韩制服骚丝袜av| 真实男女啪啪啪动态图| 国产欧美另类精品又又久久亚洲欧美| 精品一区二区三卡| 男女国产视频网站| 国产精品99久久久久久久久| av在线播放精品| 九草在线视频观看| 天天躁日日操中文字幕| 熟女电影av网| 99久国产av精品国产电影| 亚洲国产高清在线一区二区三| 日本一二三区视频观看| 纵有疾风起免费观看全集完整版 | 白带黄色成豆腐渣| 搡老乐熟女国产| 欧美一级a爱片免费观看看| 天堂中文最新版在线下载 | 插阴视频在线观看视频| 免费大片黄手机在线观看| 18禁在线播放成人免费| 可以在线观看毛片的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久午夜福利片| 熟妇人妻久久中文字幕3abv| 精品一区在线观看国产| 国产亚洲av片在线观看秒播厂 | 国产片特级美女逼逼视频| 欧美三级亚洲精品| 18禁裸乳无遮挡免费网站照片| 欧美激情久久久久久爽电影| 欧美性感艳星| 欧美变态另类bdsm刘玥| 国产成人福利小说| 国产免费又黄又爽又色| 精品人妻视频免费看| 国产视频内射| 欧美日韩一区二区视频在线观看视频在线 | 哪个播放器可以免费观看大片| 国产成人aa在线观看| 寂寞人妻少妇视频99o| 日韩欧美精品免费久久| 看十八女毛片水多多多| 日本爱情动作片www.在线观看| 亚洲性久久影院| 国产精品爽爽va在线观看网站| 欧美97在线视频| 99久久中文字幕三级久久日本| 狠狠精品人妻久久久久久综合| 亚洲av中文av极速乱| 国语对白做爰xxxⅹ性视频网站| 大香蕉久久网| 日日干狠狠操夜夜爽| av在线亚洲专区| 噜噜噜噜噜久久久久久91| 国产成人精品一,二区| 日韩大片免费观看网站| 狠狠精品人妻久久久久久综合| 国产av在哪里看| 老司机影院成人| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 亚洲三级黄色毛片| 精品一区二区免费观看| 亚洲一区高清亚洲精品| 亚洲精品亚洲一区二区| 国产精品熟女久久久久浪| 亚洲成色77777| 视频中文字幕在线观看| 久久久欧美国产精品| 国产精品国产三级国产av玫瑰| 国产91av在线免费观看| 日本与韩国留学比较| 人妻少妇偷人精品九色| 欧美日韩一区二区视频在线观看视频在线 | 精品熟女少妇av免费看| 欧美成人a在线观看| 伦精品一区二区三区| 国产伦精品一区二区三区四那| 国产黄a三级三级三级人| 午夜免费男女啪啪视频观看| 久久97久久精品| 夫妻性生交免费视频一级片| 成年人午夜在线观看视频 | 大香蕉97超碰在线| 久久久亚洲精品成人影院| 三级国产精品片| 看非洲黑人一级黄片| 国产亚洲av片在线观看秒播厂 | 国产 一区 欧美 日韩| 国产男人的电影天堂91| 人妻一区二区av| 毛片一级片免费看久久久久| av在线蜜桃| 国产乱来视频区| 少妇丰满av| 国产一区有黄有色的免费视频 | 一级爰片在线观看| 淫秽高清视频在线观看| 国产成人精品福利久久| 国产精品熟女久久久久浪| 午夜福利在线在线| 国产久久久一区二区三区| 黑人高潮一二区| 中文字幕av在线有码专区| 久久精品久久精品一区二区三区| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区国产| 黄片wwwwww| 国产亚洲av片在线观看秒播厂 | 国产高清三级在线| 国产高清国产精品国产三级 | 日韩在线高清观看一区二区三区| 卡戴珊不雅视频在线播放| 国产免费福利视频在线观看| 久久久久性生活片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线观看片| 久久精品久久久久久久性| 免费播放大片免费观看视频在线观看| 成人综合一区亚洲| 天美传媒精品一区二区| 你懂的网址亚洲精品在线观看| 久久精品夜色国产| 亚洲欧美成人综合另类久久久| 中文字幕久久专区| 日本爱情动作片www.在线观看| 国产精品久久久久久久电影| 国产中年淑女户外野战色| 精品久久久久久久久亚洲| 老师上课跳d突然被开到最大视频| 国产精品日韩av在线免费观看| 十八禁网站网址无遮挡 | 一区二区三区高清视频在线| 国产一级毛片在线| 五月玫瑰六月丁香| 精品少妇黑人巨大在线播放| 久久久久九九精品影院| 亚洲真实伦在线观看| 男人狂女人下面高潮的视频| 国产一区二区三区av在线| 国产亚洲精品久久久com| 晚上一个人看的免费电影| 国产午夜精品久久久久久一区二区三区| 午夜激情福利司机影院| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| 久久热精品热| 简卡轻食公司| 日韩av不卡免费在线播放| 国产成人aa在线观看| 男人舔奶头视频| 99热6这里只有精品| 久久久午夜欧美精品| 少妇熟女欧美另类| 亚洲伊人久久精品综合| 午夜免费男女啪啪视频观看| 久久午夜福利片| 亚洲精品自拍成人| 国产乱人偷精品视频| 国产亚洲最大av| 亚洲色图av天堂| 成人av在线播放网站| 少妇被粗大猛烈的视频| av专区在线播放| 午夜福利视频精品| 亚洲精品乱码久久久久久按摩| 丝瓜视频免费看黄片| 欧美另类一区| 国产高清不卡午夜福利| 青春草国产在线视频| 国产 亚洲一区二区三区 | 久久精品国产亚洲av天美| 久久久久久久午夜电影| 老司机影院毛片| 一级黄片播放器| 七月丁香在线播放| 国产伦在线观看视频一区| 午夜福利视频1000在线观看| 日韩欧美精品v在线| 久久久a久久爽久久v久久| 青青草视频在线视频观看| 日本-黄色视频高清免费观看| 啦啦啦啦在线视频资源| 亚洲av福利一区| 国内精品一区二区在线观看| 精品人妻熟女av久视频| 九九久久精品国产亚洲av麻豆| 国产成人午夜福利电影在线观看| 精品久久久精品久久久| 亚洲自拍偷在线| 欧美97在线视频| 亚洲国产精品成人综合色| 久久精品人妻少妇| 亚洲国产精品国产精品| av在线天堂中文字幕| 欧美xxⅹ黑人| 欧美极品一区二区三区四区| 色综合站精品国产| 九九在线视频观看精品| 婷婷色av中文字幕| 精品久久久久久久久av| .国产精品久久| 建设人人有责人人尽责人人享有的 | 国产综合懂色| 日本av手机在线免费观看| 91久久精品电影网| 蜜桃久久精品国产亚洲av| 日韩强制内射视频| 国产熟女欧美一区二区| 91精品国产九色| 男女边吃奶边做爰视频| 国产老妇女一区| 国产单亲对白刺激| 有码 亚洲区| 亚洲成人av在线免费| 免费看av在线观看网站| 床上黄色一级片| 亚洲av二区三区四区| 国产精品一二三区在线看| 777米奇影视久久| 国产白丝娇喘喷水9色精品| 人妻系列 视频| 亚洲18禁久久av| 亚洲色图av天堂| 久久99热6这里只有精品| 亚洲国产欧美在线一区| 国产黄片美女视频| 成年免费大片在线观看| 国产av不卡久久| av福利片在线观看| 又爽又黄无遮挡网站| 一级a做视频免费观看| 美女脱内裤让男人舔精品视频| 蜜桃亚洲精品一区二区三区| 欧美另类一区| 日本-黄色视频高清免费观看| 久久久久久久国产电影| 青春草亚洲视频在线观看| 精品熟女少妇av免费看| 成年av动漫网址| 美女xxoo啪啪120秒动态图| 亚洲精品aⅴ在线观看| 国产乱人偷精品视频| 舔av片在线| 国产白丝娇喘喷水9色精品| 午夜精品在线福利| 日日摸夜夜添夜夜添av毛片| 日韩欧美精品v在线| 亚洲图色成人|