• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于多壁碳納米管和氧化鋅納米棒復(fù)合物的葡萄糖生物傳感器

    2010-11-09 06:37:08李小榮白玉惠徐靜娟陳洪淵
    關(guān)鍵詞:生物

    李小榮 白玉惠 徐靜娟 陳洪淵

    (南京大學(xué)化學(xué)化工學(xué)院生命分析化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,南京 210093)

    基于多壁碳納米管和氧化鋅納米棒復(fù)合物的葡萄糖生物傳感器

    李小榮 白玉惠 徐靜娟*陳洪淵

    (南京大學(xué)化學(xué)化工學(xué)院生命分析化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,南京 210093)

    利用多壁碳納米管(MWCNTs)和氧化鋅(ZnO)納米棒復(fù)合物膜構(gòu)建了一種新的電流型葡萄糖生物傳感器。MWCNTs-ZnO復(fù)合物在超聲協(xié)助下通過靜電配位的方式產(chǎn)生。其中,ZnO納米棒的存在加強(qiáng)了該復(fù)合物催化氧化H2O2的能力,增加了響應(yīng)電流。與單一的MWCNTs和ZnO相比,這種納米復(fù)合物顯示了更為有效地電催化活性。在此基礎(chǔ)上,我們以MWCNTs-ZnO復(fù)合物膜為基底,用戊二醛交聯(lián)法固定葡萄糖氧化酶,電聚合鄰苯二胺(PoPD)膜為抗干擾層,構(gòu)建了抗干擾能力強(qiáng),穩(wěn)定性好,靈敏度高,響應(yīng)快的葡萄糖傳感器。 在+0.8 V 的檢測電位下,該傳感器對葡萄糖響應(yīng)的線性范圍為 5.0×10-6~5.0×10-3mol·L-1(R=0.997),檢測限為3.5×10-6mol·L-1(S/N=3),響應(yīng)時(shí)間小于10 s的葡萄糖生物傳感器,常見干擾物質(zhì)如抗壞血酸和尿酸不影響測定。

    多壁碳納米管;氧化鋅;葡萄糖氧化酶;生物傳感器

    The glucose biosensors are generally based on the detection of the oxidation signal of hydrogen peroxide(H2O2)or the reduction signal of dissolved oxygen,which is produced or consumed in the oxidation process of β-D-glucose to D-glucono-δ-lactone catalyzed by GOx,respectively.Most of glucose biosensors detect glucose by the first method with the excellent oxidation signal[1].Moreover,detection of H2O2by its oxidation has many advantages,as the interference from oxygen can be avoided.But,the higher oxidation overpotential often gives rise to the interference of electrical active species,such as ascorbic acid and uric acid.To overcome this defect,the mediators have been used for the sensing of H2O2and have achieved satisfactory results,as thionine,ferrocene and its derivatives[2-3],and so on.However,the major problem associated with the mediator-modified electrodes is the lack of long-term stability due to the leaching of mediator from the electrode surface,which prevents their application from oxidase-based biosensors and simultaneously results in the development of various modified electrodes to overcome interference.

    In recent years,the use of nanomaterials for the design of biosensors has received much attention because the unique properties of nanomaterials offer excellent prospects for designing novel sensing systems and enhancing the performance of biosensors[4].Among various nanomaterials,carbon nanotubes(CNTs)have attracted considerable attention as one of the most promising carbon materials discovered by Iijima in 1991[5-6].Because of the special tube structure,CNTs possess many unique properties such as excellent electrical conductivity,large surface areas,strong adsorptive ability and surface chemical flexibility,which make CNTs attractive materials for electroanalysis.Recently,many efforts have been devoted to the design and preparation CNTs-based nanocomposites by modification of CNTs with transition metallic nanoparticles such as Cu,Ag,Au,Pd and Pt[7-11];or metal oxides such as MnO2,SnO2,SiO2,CdS and TiO2[12-18].Combination of metals or metal oxides with CNTs will lead to new composite materials possessing the properties of individual components,or even with a synergistic effect[19-20],which would be very useful in the fields of biotechnology and bioanalytical chemistry.The preparation of CNTs nanocomposites materials,which can be used to increase the electrochemical activities,has important implications to the development of high performance electrodes and sensory materials.

    Among the common metal oxide nanoparticles,nanostructured ZnO hasreceived much attention because of its unique advantages including biocompatibility,vast surface-to-bulk ratio,non-toxicity and relative chemical stability in physiological environment,and so on[21-23].Moreover,due to the biomimetic and high-electron communication features,the nanostructures of ZnO exhibit a great potential for the fabrication of efficient chemical sensors and biosensors[24-29].On the other hand,ZnO has a high isoelectric point (IEP)of about 9.5,which should provide a positively charged substrate for immobilization of low IEP proteins or enzymes such as GOx(IEP~4.2)at the physiological pH of 7.4.Recently,a developed topic concerns the preparation of composites based on CNTs and ZnO[19,30-36].The interest of these composites has been generated by possible applications as field emission sources and materials with higher photocatalytic activity[37-38].However,there are still few studies concerning the nanocomposites as a potential electrode material applied to biosensing.

    In this work,we report the synthesis of hybrid hierarchical device architecture of CNTs and ZnO nanorodsviamixingMWCNTswithpuredZnO nanorods under the assistance of the ultrasonic and its electrochemical biosensing application.The hybrid system was obtained by utilizing the oxygen of the carboxylic groups at the ends and the sidewalls of oxidized MWCNTs as electrostatic coordination sites which will have coordinative affinity for ZnO nanorods.The prepared MWCNTs-ZnO nanocomposites modified glassy carbon electrode was employed as an amperometric H2O2sensitive electrode to fabricate a glucose biosensor.Co-immobilization of glucose oxidase enzyme by glutaraldehyde cross-linking method has proved to be a feasible and successful way for enzyme uploading, then a layer of PoPD film was electropolymerized on the enzyme film to avoid interference and fouling.The obtained enzyme electrode showed satisfactory performance,such as high sensitivity,relative stability,and fast amperometric response for glucose determination,which is promising for the development of the enzyme-based biosensor.

    1 Experimental

    1.1 Reagents

    Glucose oxidase(GOx,TypeⅦfrom Aspergillus niger)was purchased from Sigma(St.Louis,MO,USA).β-D-glucose,glutaraldehyde,bovine serum albumin(BSA),o-phenylenediamine (oPD),L-ascorbic acid(AA),and uric acid (UA)were obtained from Sigma-Aldrich.Hydrogen peroxide (H2O2) (30%)was purchased from Shanghai Chemical Reagent Co.All Other chemical materials used in experiments are of analytical grade without further purification.

    Glucose stock solution was allowed to mutarotate for at least 24 h.The supporting electrolyte was 0.1 mol·L-1phosphate buffer solution (PBS),which was prepared with K2HPO4and NaH2PO4.Various pH values were adjusted with H3PO4or NaOH.All solutions were made up with doubly distilled water.

    MWCNTs were provided by Shenzhen Nanoport Company with a diameter of<10 nm.The purity of the MWCNTs was 95%claimed by the producer.The MWCNTs were pretreatment by ultrasonic agitation in a mixture of concentrated sulfuric acid and concentrated nitric acid (3∶1)for about 8 h to introduce carboxyl groups(-COOH)on the inert surface of the MWCNTs and remove metal and impurities.

    1.2 Apparatus

    Cyclic voltammetry(CV)and chronoamperometry(i-t)experiments were performed on a CHI 660C electrochemical workstation (Shanghai Chenhua Apparatus,China)connected to a personal computer.A three-electrode system was employed for electrochemical oxidation of glucose with a glassy carbon electrode as a working electrode,whereas saturated calomel electrode(SCE)and platinum wire as the reference electrode and counter electrode,respectively.Magnetic stirring was used during measurementstoensurethehomogeneityofthe solutions.

    Morphologies of the prepared MWCNTs,ZnO and MWCNTs-ZnO were studied on a JEOL JSM-6700F field emission scanning electron microscope.Ultraviolet and visible (UV-Vis)absorption spectra were recorded with a Lambda 35 UV-Vis spectrometer(Perkin-Elmer Instruments,USA).X-ray diffraction(XRD,VG-108R,Philips)was used for characterizing the structure of ZnO nanorods.

    1.3 Procedures

    1.3.1 Preparation of the MWCNTs-ZnO nanocomposites

    First,ZnO nanorods were prepared as follows:2.195 g Zn(Ac)2·2H2O was dissolved in 200 mL doubly distilled water by magnetic stirring.Then,1 mol·L-1NH3·H2O was added dropwise to the solution until the pH value of solution was 11.5.The obtained solution was heated and refluxed with continuous stirring at 100℃ for 9 h in necked round bottom flask.Milk white precipitates were obtained which were centrifuged and filtered off,washed thoroughly with doubly distilled water and ethanol,and then dried at 60℃under air atmosphere.Furthermore,2.0 mg·mL-1MWCNTs with different concentrations of ZnO (1.0~10.0 mg·mL-1)mixed to form MWCNTs-ZnO composites by ultrasonic vibration for 2 h at ambient temperature.

    1.3.2 Preparation of MWCNTs-ZnO/GOx/PoPD modfied glassy carbon electrode

    The glassy carbon electrode(3 mm in diameter,ca.0.07 cm2)was polished to a mirror-like surface with 1.0 and 0.3 μm alumina slurry,and sonicated for 2 min in doubly distilled water and absolute ethanol,respectively.The electrode was rinsed again and allowed to dry in air.10.0 μL of the MWCNTs-ZnO suspension was dispensed by a micro-syringe and spread onto the electrode surface.The suspension was allowed to dry in air.Furthermore,the GOx was immobilized onto the MWCNTs-ZnO modified electrode surface by cross-linking the enzyme through glutaraldehyde with bovine serum albumin (BSA),in which BSA was used as a dilute agent and protective agent with anti-virus capabilities to maintain the activity of GOx.Enzyme solution was prepared in 0.2 mL PBS (0.1 mol·L-1,pH 7.4)by mixing 2.0 mg GOx with 15.0 mg BSA,then 3.0 μL of 2.5%glutaraldehyde was added to 10.0 μL GOx solution and rapidly mixed uniform.Next,5.0 μL of the composites solution was dropped on the MWCNTs-ZnO electrode surface and allowed to dry at room temperature,after 1 h storage in refrigerator to make complete cross-linking and then the electrode was immersed in 0.1 mol·L-1PBS(pH 7.4)for 0.5 h to wash away the uncross-linked enzyme and excess glutaraldehyde.At last,electrochemical polymerization of oPD was performed in 0.1 mol·L-1PBS(pH 7.4),containing 5.0 mmol·L-1phenylenediamine monomer by CV ranging from 0 to 1.0 V vs SCE at a san rate of 5 mV·s-1for one cycle.The resulting enzyme electrode was then rinsed with PBS(pH 7.4)thoroughly and stored in PBS at 4℃ before use.

    2 Results and discussion

    2.1 Characterization of MWCNTs,ZnO and MWCNTs-ZnO nanocomposites modified electrodes

    Since MWCNTs are chemically inert,activating their surfaces is an essential prerequisite for linking functional groups to them as well as increasing their dispersion in water to remove metal and impurities.The activated MWCNTs were first characterized by SEM as shown in Fig.1A.The purified MWCNTs used here are about 10 nm in diameter with a hollow tube structure.Fig.1B shows the general morphologies of the as-grown ZnO structures.From the SEM,it is confirmed that the grown structures are rod-shaped and synthesized in a high-density.Moreover,it is seen that most of the nanorods with a micron-level length and the diameters are about 30 nm.The ZnO nanorods possessed very clean and smooth surfaces.The crystallinity and crystal phases of the ZnO nanorods were observed by the X-ray diffraction(XRD)patterns and shown in Fig.2A.All the diffraction peaks can be indexed within the experimental error as a wurtzite-structured hexagonal phase single crystalline bulk ZnO(JCPDS Card No.36-1451)confirming the synthesis of pure ZnO nanorods.Fig.1C shows themorphologiesofMWCNTs-ZnO nanocomposites.As shown,MWCNTs wrap around the surfaces of ZnO nanorods to form MWCNTs-coated ZnO,in which all of the ZnO nanorods are covered with a dense layer of MWCNTs,and no free nanorods were found.Fig.2B shows the UV-Vis absorption spectra of MWCNTs,pure ZnO nanorods and MWCNTs-ZnO heterogeneity structures at room temperature.As shown,the MWCNTs aqueous suspensions exhibited no typical absorption band in the wavelength scope (curve a).However,an apparent absorption band was observed in the sprectrum at~375 nmwhich is a characteristic band for the wurtzite hexagonal pure ZnO (curve b)[39].After wrapping with MWCNTs,the absorption peak at~375 nm almost disappeared (curve c).It indicated that ZnO nanorods were covered by MWCNTs which blocked the absorption of ZnO nanorods.It has been reported that MWCNTs can absorb light as a blackbody,and such a nanotube array not only reflects light weakly but also absorbs light strongly[16,40].The photographs of MWCNTs,pure ZnO nanorods and MWCNTs-ZnO composites suspensions are shown in the inset of Fig.2B.The color of the composites suspensions became dark gray by ultrasonic mixing the black MWCNTs and milk white ZnO nanorods in aqueous solution.On the other hand,it is also demonstrate that we have successfully synthesized the heterogeneity structure of the MWCNTs-ZnO nanocomposites,in which MWCNTs wrap around the surfaces of ZnO nanorods.

    2.2 Electrocatalytic behaviors of H2O2 at MWCNTs-ZnOnanocompositesmodified electrodes

    As well known,H2O2is a product of oxidase catalytic reactions between their corresponding substrates and oxygen.Thus highly sensitive detection of H2O2is a base for further sensitive detection of the substrates ofoxidases.To investigate the electrocatalytic behavior toward the electrochemical reaction of H2O2at the MWCNTs-ZnO nanocomposites film,this film modified electrode were characterized by CV ranging from 0.2 to 1.2 V at a scan rate of 100 mV·s-1.For comparison,a bare,pure ZnO nanorods,MWCNTs modified electrodes were also performed.The cyclic voltammograms are shown in Fig.3.As shown,no oxidation peak current were observed at the bare,pure ZnO nanorods,MWCNTs and MWCNTs-ZnO electrodes in the absence of H2O2(curve a,c,e and g).Upon addition of H2O2,a very slightly oxidative response was observed with onset potential of 1.0 V at the bare electrode (curve b),while a larger oxidative response was observed with onset potential of 0.9 V at the pure ZnO nanorods electrode (curve d).On the other hand,the oxidation current increased dramatically with H2O2added at the MWCNTs electrode with onset potential of 0.45 V and the peak potential of 1.0 V (curve f).In addition,the MWCNTs-ZnO electrode displayed higher electrocatalytic activity with a larger response current towards the oxidation of H2O2than that of the MWCNTs electrode,in which the oxidation overpotential of H2O2was reduced to 0.35 V and the peak potential shifted negatively to 0.9 V (curve h).These results indicated that the electrocatalytic activity of MWCNTs-ZnO modified electrode was obviously improved maybe because ZnO nanorods can effectively inhibit the reunion and winding of MWCNTs.

    Asthe presence ofZnO nanorodsin the composites can improve the electrocatalytic properties of MWCNTs,the amount of ZnO is crucial for the performance of the nanocomposites electrodes.Here,we immobilized the amount of MWCNTs(2.0 mg·mL-1),which mixed with the different concentrations of ZnO(1.0~10.0 mg·mL-1)to prepare the different proportion of MWCNTs-ZnO nanocomposites (2 ∶1 ~2 ∶10).The typical amperometric responses of the bare,pure ZnO(4.0 mg·mL-1),MWCNTs and MWCNTs-ZnO composites modified electrodes to the addition of varying concentrations of H2O2in 0.1 mol·L-1PBS(pH 7.4)at a working potential of+0.8 V versus SCE are also investigated,the corresponding calibration curves are shown in Fig.4.As shown,the bare and pure ZnO modified electrodes showed extremely low sensitivities.MWCNTs modified electrode exhibits a relatively lower sensitivity compared with all of the different proportion MWCNTs-ZnO modified electrodes.When the MWCNTs-ZnO modified electrodesareused,the currents respond to the addition of H2O2quickly and sensitively,in which the proportion of 2∶4 showed a maximum current response to H2O2.The synergistic effect of MWCNTs and ZnO films leads to better electrocatalytic ability and higher sensitivity to than MWCNTs or ZnO film alone,indicating the influence of ZnO loading amount on H2O2response may be result from two factors.On one hand,MWCNTs and ZnO composites are synthesized by utilizing an electrostatic coordination approach,in which carboxylic groups at the ends and the sides of the oxidized MWCNTs will have coordinative affinity for ZnO nanorods.Thus,ZnO nanorods with larger surface area can make MWCNTs more uniformly dispersed on the surface of ZnO but not winding with each other thus enhances their electrochemical properties.On the other hand,with the continuing increase the amount of ZnO (>2 ∶4),the sensitivity of electrode was depressed,this was because too much ZnO covering onto the surfaces of electrodes,which decreased the diffusion of substrates to electrode surface thus reduced the electronic transfer properties of MWNTs.There is a balance between the two factors.The inset (B)ofFig.4 displaystypicalcyclic voltammetric curves obtained atZnO nanorods,MWCNTs and MWCNTs-ZnO composites(2∶2,2∶4,2∶10)modified electrodes in 5 mmol·L-1[Fe(CN)6]3-/[Fe(CN)6]4-with 0.1 mol·L-1KCl as electrolyte.One can see that ZnO nanorods modified electrode exhibits very small current response with a larger peak potential difference(curve a).MWCNTs modified electrode shows a large current response with a relative small peak potential difference (curve b),but MWCNTs-ZnO composites modified electrodes are superior to MWCNTs electrode with a larger current response and smaller peak potential difference (curve d,e,c).Moreover,the presence of small amount of ZnO in the composites can accelerate the rate of electron transfer whereas the presence of large amount of ZnO will hinderthe electron transfercapability,which is consistent with the above results.The detection limits for the MWCNTs-ZnO composites(2∶4)and MWCNTs modified electrodes were 0.5 μmol·L-1and 3 μmol·L-1H2O2,respectively.The MWCNTs-ZnO modified electrode provides a more pronounced response compared with MWCNTs modified electrode.The corresponding calibration plots indicated the sensitivities of the MWCNTs-ZnO and MWCNTs modified electrodes were 117.5 mA·L·mol-1·cm-2and 43.4 mA·L·mol-1·cm-2,respectively.A signal about 2.7 times more sensitive was obtained at the MWCNT-ZnO nanocomposites modified electrode.

    2.3 Performance of MWCNTs-ZnO/GOx/PoPD nanocompositesmodified electrode asa glucose biosensor

    The excellent performance of the MWCNTs-ZnO modified electrode toward the oxidation of H2O2makes it attractive to fabricate biosensors based on the determination of H2O2.Here,GOx was selected as a model enzyme.The enzyme was immobilized onto the MWCNTs-ZnO modified electrode surface by crosslinking it through glutaraldehyde.Then,a layer of PoPD film was electropolymerized on the enzyme film to avoid interference and fouling.Amperometric biosensors based on the immobilization of GOx for the determination of glucose are usually based on the detection of liberated H2O2.In the single enzyme system(Eq.(1)),

    In the presence ofoxygen,the enzymatic generation of H2O2is achieved in the reaction layer of the MWCNTs-ZnO-GOx nanocomposites film.Here,the cyclic voltammograms of the proposed biosensor in 0.1 mol·L-1PBS of pH 7.4 without and with 5 mmol·L-1,10 mmol·L-1glucose are shown in Fig.5.With the addition of glucose,the oxidation currents of the biosensor at the potential more than 0.6 V increase.It is deduced that the current increase at positive potential resulted from the oxidation of produced H2O2.

    We investigated the dependence of the biosensor response on the applied potentials.The amperometric responses on the proposed biosensor to the glucose at different potentials are shown in Fig.6A.From 0.3 to 1.1 V,the response is caused by the oxidation of the produced H2O2.The maximum response current can be observed at potential of 1.0 V.Considering the optimal signal-to-noise ratio,+0.8 V was chosen as the operating potential.

    The influence of the buffer solution pH is very essential to the sensitivity of the biosensors,because the bioactivity of GOx and the stability of ZnO nanorods are pH dependent.The pH was changed from 3.0 to 10.0 at the MWCNTs-ZnO/GOx/PoPD modified electrode in the stirring PBS toward 5 mmol·L-1glucose and the corresponding resultsare shown in Fig.6B.The maximum response current can be observed at pH 8.0 and with very good responses for glucose in the pH range of 7.0~10.0.The result is somewhat different from those of previous studies[41-42],where the GOx-based biosensors usually have optimal pH values at about neutral.Here,the effect of the pH of the detection solution on the biosensor response resulted from two factors.On one hand,since the detection of glucose is based on the oxidation of the produced H2O2and there are protons produced,a basic condition facilitates the proceeding of the reaction.Therefore,the response of the proposed biosensor will increase with pH increase.On the other hand,the activity of enzyme depends greatly on the pH of surrounding solution,and extreme pH conditions will result in the denaturation of enzyme[43].Here,enzyme can maintain its best activity in this pH range also indicated that ZnO nanorods are very stable under alkaline conditions which can provide a biocompatible microenvironment for GOx to withstand outside conditions.In our experiments,in order to maintain similarity with the human body microenvironment,we have chosen 0.1 mol·L-1PBS with pH 7.4 as the supporting electrolyte.

    Fig.7 shows the typical current-time plots for the biosensor upon the successive addition of glucose solution into 0.1 mol·L-1PBS with pH 7.4 at the working potential of+0.8 V.A remarkable increase of oxidation current was observed upon addition of glucose,and the response reached 95%steady state value within 10 s.The inset(A)of Fig.7 shows the corresponding calibration curve.The linear calibration range is 5.0×10-6~5.0×10-3mol·L-1(R=0.997,n=37)with a detection limit of 3.5×10-6mol·L-1at a signal-tonoise ratio of 3,and the sensitivity of the biosensor was about 27.2 mA·L·mol-1·cm-2.This biosensor show wider linear range,lower detection limit and higher sensitivity than the previously reported glucose biosensors based on CNTs materials[44-45].According to the Lineweaver-Burke equation,the Michaelis-Menten constant(Km)was evaluated to be 9.8 mmol·L-1,which was much lower than that of 20±2 mmol·L-1reported previously[46-48].The smaller Kmvalue indicates that the immobilized GOx possesses higher enzymatic activity and the MWCNTs-ZnO/GOx/PoPD modified electrode exhibits a higher affinity to glucose.

    Some substances coexisting in biologic samples would interfere in the detection of glucose.The inset(B)of Fig.7 shows the effectofinterfering species,including AA and UA,when a detection potential of+0.8 V was employed.It can be seen that AA(0.05 mmol·L-1)and UA(0.5 mmol·L-1)to glucose solution(5 mmol·L-1)does not significantly affect the observed amperomteric response obtained for the biosensor.This result indicated that the proposed glucose biosensor exhibited the ability to reduce the influence of possible interferences.It may be attributed to the special characteristics of the PoPD film,which allows the small molecule H2O2to penetrate and react at the surface of the electrode but prevent the diffusion of molecules with a bigger volume,such as AA and UA.

    2.4 Reproducibility and stability of the MWCNTs-ZnO/GOx/PoPD composites modified electrode as a glucose biosensor

    The reproducibility and storage stability of the proposed biosensor have been studied.The relative standard deviation(RSD)of the biosensor to 5.0 mmol·L-1glucose was 1.9%for six successive measurements.The fabrication reproducibility of five biosensors,made independently under the same conditions,showed reproducibility with the RSD of 4.1%for the detection of 5.0 mmol·L-1glucose.The storage stability of the prepared glucose biosensor based on the MWCNTs-ZnO/GOx/PoPD nanobiocomposites film is crucial for the practical applications.The biosensor was stored in 0.1 mol·L-1PBS with pH 7.4 in a refrigerator at 4 ℃and periodical measurements of the biosensor response to 5.0 mmol·L-1glucose,it retained about 97%and 80%of its original sensitivity after one week and one month,respectively.

    3 Conclusions

    We havesucces sfully prepared MWCNTs-ZnO nanocomposities by utilizing an electrostatic coordination approach under the assistance of the ultrasonic and constructed a glucose biosensor based on immobilization of GOx on MWCNTs-ZnO nanocomposities modified glassy carbon electrode.The MWCNTs-ZnO nanocomposities film has the synergistic effect of the catalysis towards H2O2with remarkable current and rapid response.Based on the property,the composites film is further modified with GOx and protected by the PoPD film to avoid interference and fouling, that is MWCNTs-ZnO/GOx/PoPD nanobiocomposites film.The biocomposites provided a biocompatible microenvironment for the enzyme to withstand considerable harsh pH.In addition,this prepared biosensor can selectively detect glucose under a positive potential (+0.8 V vs.SCE),completely excluding the interferences from ascorbic acid and uric acid.The excellent characteristics and performance of the proposed biosensor,such as low detection limit,fast response time,and good reproducibility and stability,show that it is attractive for the future development of new CNTs-based nanocomposites for biosensors.

    [1]Liu Y,Wu S,Ju H X,et al.Electroanalysis,2007,19:986-992

    [2]Ruan C M,Yang R,Chen X H,et al.J.Electroanal.Chem.,1998,455:121-125

    [3]Senel M,Cevik E,Abasyank M F.Sens.Actuator B,2010,145:444-450

    [4]Luo X L,Killard A J,Smyth M R.Electroanalysis,2006,18:1131-1134

    [5]Iijima S.Nature,1991,354:56-58

    [6]Gao R F,Zheng J B.Electrochem.Commun.,2009,11:608-611

    [7]Chen P,Wu X,Lin J,et al.J.Phys.Chem.B,1999,103:4559-4561

    [8]Yang P H,Wei W Z,Tao C Y,et al.Microchim.Acta.,2008,162:51-56

    [9]Gingery D,Bühlmann P.Carbon,2008,46:1966-1972

    [10]Satishkumar B C,Govindraj A,Mofokeng J,et al.J.Phys.B At.Mol.Opt.Phys.,1996,29:4925-4934

    [11]Qu L,Dai L,Osawa E.J.Am.Chem.Soc.,2006,128:5523-5532

    [12]Zhang W D,Chen J.Pure Appl.Chem.,2009,81:2317-2325

    [13]Kuang Q,Li S F,Xie Z X,et al.Carbon,2006,44:1166-1172

    [14]Seeger T,K?hler T,Frauenheim T,et al.Chem.Commun.,2002,34-35

    [15]Shi J H,Qin Y J,Wu W,et al.Carbon,2004,42:423-460

    [16]Wang X F,Zhou Y,Xu J J,et al.Adv.Funct.Mater.,2009,19:1444-1450

    [17]Jitianu A,Cacciaguerra T,Benoit R,et al.Carbon,2004,42:1147-1151

    [18]Lee S W,Sigmund W M.Chem.Commun.,2003,780-781

    [19]Khanderi J,Hoffmann R C,Gurlo A,et al.J.Mater.Chem.,2009,19:5039-5046

    [20]Wang X Y,Xia B Y,Zhu X F,et al.J.Solid State Chem.,2008,181:822-827

    [21]Tian Z R R,Voigt J A,Liu J,et al.J.Am.Chem.Soc.,2002,124:12954-12955

    [22]Mo G Q,Ye J S,Zhang W D.Electrochim.Acta,2009,55:511-515

    [23]Yang K,She G W,Wang H,et al.J.Phys.Chem.C,2009,113:20169-20172

    [24]Zhang F F,Wang X L,Ai S Y,et al.Anal.Chim.Acta,2004,519:155-160

    [25]Deng Z F,Tian Y,Yin X,et al.Electrochem.Commun.,2008,10:818-820

    [26]Chen L Y,Gu B X,Zhu G P,et al.J.Electroanal.Chem.,2008,617:7-13

    [27]Lu X B,Zhang H J,Ni Y W,et al.Biosens.Bioelectron.,2008,24:93-98

    [28]Umar A,Rahman M M,Hajry A A,et al.Talanta,2009,78:284-289

    [29]Ahmad M,Pan C F,Gan L,et al.J.Phys.Chem.C,2010,114:243-250

    [30]Park S S,Lee J M,Yoon S,et al.Physica E,2008,40:2526-2530

    [31]Du Y P,Hao C C,Wang G Z.Mater.Lett.,2008,62:30-32

    [32]Kim H,Sigmund W.Appl.Phys.Lett.,2002,81:2085-2087

    [33]Bae S Y,Seo H W,Choi H C,et al.J.Phys.Chem.B,2004,108:12318-12326

    [34]Liu J W,Li X J,Dai L M.Adv.Mater.,2006,18:1740-1744

    [35]Baibarac M,Baltog I,Lefrant S,et al.Physica E,2008,40:2556-2564

    [36]Jiang P,Zhou J J,Fang H F,et al.Adv.Funct.Mater.,2007,17:1303-1310

    [37]Li C,Fang G J,Yuan L Y,et al.Nanotechnology,2007,14:155702-155705

    [38]Jiang L Q,Gao L.Mater.Chem.Phys.,2005,91:313-316

    [39]Ni Y H,Wei X W,Hong J M,et al.Mater.Sci.Eng.B,2005,121:42-47

    [40]Yang Z P,Ci L J,Bur J A,et al.Nano.Lett.,2008,8:446-451

    [41]Qian J M,Suo A L,Yao Y,et al.Clin.Biochem.,2004,37:155-161

    [42]Yang X H,Hua L,Gong H Q,et al.Anal.Chim.Acta,2003,478:67-75

    [43]Luo X L,Xu J J,Chen H Y,et al.Anal.Biochem.,2004,334:284-289

    [44]Luo X L,Killard A J,Smyth M R.Electroanalysis,2006,18:1131-1134

    [45]Dai Y Q,Shiu K K.Electroanalysis,2004,16:1697-1703

    [46]ZHU Yu-Nu(朱玉奴),PENG Tu-Zhi(彭圖治),LI Jian-Ping(李建平).Chin.J.Anal.Chem.(Fenxi Huaxue),2004,32:1299-1303

    [47]Sampath S,Lev O.Anal.Chem.1996,68:2015-2021

    [48]Wang B Q,Li B,Deng Q,et al.Anal.Chem.,1998,70:3170-3174

    Glucose Biosensors Based on Nano-Composites of Multi-walled Carbon Nanotubes and Zinc Oxide Nanorods

    LI Xiao-Rong BAI Yu-HuiXU Jing-Juan*CHEN Hong-Yuan
    (The Key Lab of Analytical Chemistry for Life Science(MOE),School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210093)

    We demonstrate herein a newly developed amperometric glucose biosensor by using multi-walled carbon nanotubes(MWCNTs)and zinc oxide(ZnO)nanorods composites film.The latter is generated by utilizing an electrostatic coordination approach under the assistance of the ultrasonic.The presence of ZnO nanorods in the composites enhances the abilities to electrocatalyze the oxidation of H2O2and substantially raises the response current,which results in the composites exhibiting more efficiently electrocatalytic activity than those of MWCNTs and ZnO alone.As a result of the cross-linking reactions via glutaraldehyde,a layer of glucose oxidase(GOx)was firmly bound to the MWCNTs-ZnO film and an anti-interferent layer of poly(o-phenylenediamine)(PoPD)film was further electropolymerized on the enzyme film.At an applied potential of+0.8 V,the resulting biosensor performs a sensitive and selective electrochemical response to glucose in the presence of common interferences,such as ascorbic acid(AA)and uric acid(UA),with a linear dependence(R=0.997)on the glucose concentration in the range of 5.0×10-6~5.0×10-3mol·L-1and a detection limit of 3.5×10-6mol·L-1at signal/noise=3.The response time was less than 10 s with addition of 5 mmol·L-1glucose.The MWCNTs-ZnO/GOx/PoPD modified glassy carbon electrode presents stable,high sensitivity and also exhibits fast amperometric response to the detection of glucose,which is promising for the development of glucose sensor.

    mulit-walled carbon nanotubes;zinc oxide nanorods;glucose oxidase;biosensor

    O657.1

    A

    1001-4861(2010)11-2047-10

    2010-04-19。收修改稿日期:2010-06-02。

    國家自然科學(xué)基金(No.20890021),國家 973 計(jì)劃(No.2007CB936404)資助項(xiàng)目。

    *通訊聯(lián)系人。 E-mail:xujj@nju.edu.cn

    李小榮,女,29歲,博士研究生;研究方向:電分析化學(xué)。

    猜你喜歡
    生物
    生物多樣性
    生物多樣性
    上上生物
    發(fā)現(xiàn)不明生物
    史上“最黑暗”的生物
    軍事文摘(2020年20期)2020-11-28 11:42:50
    第12話 完美生物
    航空世界(2020年10期)2020-01-19 14:36:20
    最初的生物
    自然生物被直銷
    清晨生物初歷直銷
    生物的多樣性
    青草久久国产| 成人三级黄色视频| 91九色精品人成在线观看| 国产欧美日韩一区二区精品| av有码第一页| 999久久久精品免费观看国产| 午夜成年电影在线免费观看| 69av精品久久久久久| 日韩欧美精品v在线| 国产伦在线观看视频一区| 国产97色在线日韩免费| 亚洲av日韩精品久久久久久密| 欧美+亚洲+日韩+国产| 国产激情欧美一区二区| 在线看三级毛片| 一进一出好大好爽视频| 欧美激情久久久久久爽电影| www.精华液| 久久午夜亚洲精品久久| 午夜亚洲福利在线播放| 1024香蕉在线观看| 亚洲欧美日韩东京热| 午夜久久久久精精品| 久久这里只有精品19| or卡值多少钱| 男女下面进入的视频免费午夜| 色老头精品视频在线观看| 天堂影院成人在线观看| 欧美黑人巨大hd| 久久久久久国产a免费观看| 搡老岳熟女国产| 成人特级黄色片久久久久久久| 中文字幕高清在线视频| 欧美高清成人免费视频www| 看片在线看免费视频| 人妻丰满熟妇av一区二区三区| 国产成人aa在线观看| 亚洲熟妇熟女久久| 国产av在哪里看| 亚洲电影在线观看av| 国产亚洲精品一区二区www| 热99re8久久精品国产| 91av网站免费观看| 91麻豆精品激情在线观看国产| 美女大奶头视频| 老司机靠b影院| av福利片在线观看| 欧美性长视频在线观看| 精品高清国产在线一区| 亚洲第一电影网av| 亚洲色图 男人天堂 中文字幕| 国产精品爽爽va在线观看网站| 久久久国产欧美日韩av| 特级一级黄色大片| xxx96com| 国产精品亚洲av一区麻豆| 午夜亚洲福利在线播放| 国产精品久久久人人做人人爽| 亚洲 国产 在线| 久久精品亚洲精品国产色婷小说| 久久久国产成人精品二区| 欧美成人一区二区免费高清观看 | 国产精品一区二区三区四区免费观看 | 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 黄色毛片三级朝国网站| 狂野欧美白嫩少妇大欣赏| а√天堂www在线а√下载| 黄色视频,在线免费观看| 听说在线观看完整版免费高清| 亚洲男人天堂网一区| 两个人免费观看高清视频| 久久人人精品亚洲av| 日韩免费av在线播放| 精品不卡国产一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产综合久久久| 两个人看的免费小视频| 国产人伦9x9x在线观看| 国产激情久久老熟女| 中出人妻视频一区二区| 在线观看免费午夜福利视频| 欧美成人一区二区免费高清观看 | 九九热线精品视视频播放| 欧美黑人精品巨大| 国产爱豆传媒在线观看 | 男女之事视频高清在线观看| 中文字幕熟女人妻在线| 国产精品免费一区二区三区在线| 男人舔女人下体高潮全视频| 亚洲国产精品999在线| 日韩精品青青久久久久久| 夜夜看夜夜爽夜夜摸| 曰老女人黄片| 9191精品国产免费久久| 国产高清videossex| 在线看三级毛片| 一级作爱视频免费观看| 高清毛片免费观看视频网站| 久久久久久久精品吃奶| 俄罗斯特黄特色一大片| 久久久水蜜桃国产精品网| 美女黄网站色视频| 黄色女人牲交| 亚洲成人中文字幕在线播放| 午夜免费成人在线视频| 亚洲电影在线观看av| 亚洲av五月六月丁香网| 久久久久久久久中文| 日本一本二区三区精品| 色综合欧美亚洲国产小说| 女警被强在线播放| 亚洲五月婷婷丁香| 狠狠狠狠99中文字幕| 久久久久久久久久黄片| 亚洲激情在线av| 人人妻人人澡欧美一区二区| 久久99热这里只有精品18| 一a级毛片在线观看| 变态另类成人亚洲欧美熟女| 香蕉久久夜色| 久久久久久久久免费视频了| 国产精品永久免费网站| x7x7x7水蜜桃| 国产成人aa在线观看| 亚洲精品av麻豆狂野| 少妇的丰满在线观看| 国产精品亚洲av一区麻豆| av片东京热男人的天堂| 日韩有码中文字幕| 非洲黑人性xxxx精品又粗又长| 别揉我奶头~嗯~啊~动态视频| 真人一进一出gif抽搐免费| 亚洲成av人片免费观看| 香蕉国产在线看| 亚洲色图 男人天堂 中文字幕| 成人av在线播放网站| 成年人黄色毛片网站| 俺也久久电影网| 又大又爽又粗| 久久九九热精品免费| 亚洲黑人精品在线| 欧美日韩亚洲综合一区二区三区_| 亚洲无线在线观看| 欧美一区二区国产精品久久精品 | 叶爱在线成人免费视频播放| 欧美日韩中文字幕国产精品一区二区三区| 99在线人妻在线中文字幕| 美女高潮喷水抽搐中文字幕| 日韩三级视频一区二区三区| 亚洲男人天堂网一区| 亚洲av成人av| 中文字幕熟女人妻在线| 丝袜美腿诱惑在线| 人成视频在线观看免费观看| 这个男人来自地球电影免费观看| 一本久久中文字幕| 真人一进一出gif抽搐免费| 最近在线观看免费完整版| 久久久国产成人免费| 很黄的视频免费| 久久久久精品国产欧美久久久| 黑人欧美特级aaaaaa片| 中文字幕高清在线视频| 亚洲专区字幕在线| 老司机在亚洲福利影院| 亚洲精品中文字幕在线视频| 好男人电影高清在线观看| 欧美av亚洲av综合av国产av| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品香港三级国产av潘金莲| 18禁黄网站禁片免费观看直播| 丰满人妻一区二区三区视频av | 亚洲aⅴ乱码一区二区在线播放 | 99国产精品99久久久久| 精品久久久久久久人妻蜜臀av| 黑人操中国人逼视频| 国产伦一二天堂av在线观看| 757午夜福利合集在线观看| 亚洲色图av天堂| 国产精品久久久久久久电影 | 欧美日韩乱码在线| 黄频高清免费视频| 中国美女看黄片| 18禁黄网站禁片午夜丰满| 亚洲一区高清亚洲精品| 成熟少妇高潮喷水视频| xxx96com| 欧美高清成人免费视频www| 婷婷亚洲欧美| 日本黄大片高清| 男人舔女人的私密视频| 啦啦啦免费观看视频1| 国产91精品成人一区二区三区| 男女床上黄色一级片免费看| 久久香蕉国产精品| 两个人视频免费观看高清| 久久天躁狠狠躁夜夜2o2o| 一本一本综合久久| 国产视频内射| 日韩欧美在线二视频| 久久久久久久久免费视频了| 韩国av一区二区三区四区| 国产免费男女视频| 国产精品日韩av在线免费观看| 免费观看人在逋| 亚洲 欧美一区二区三区| 国产私拍福利视频在线观看| 村上凉子中文字幕在线| 亚洲成人中文字幕在线播放| 国产主播在线观看一区二区| 国产精品爽爽va在线观看网站| 精品熟女少妇八av免费久了| 国产片内射在线| 中文字幕久久专区| 久久久久久久久中文| 婷婷亚洲欧美| 婷婷精品国产亚洲av| 精品电影一区二区在线| 99re在线观看精品视频| 亚洲精品色激情综合| 18禁美女被吸乳视频| 国产成人一区二区三区免费视频网站| x7x7x7水蜜桃| 欧美中文综合在线视频| 成人欧美大片| 国产视频一区二区在线看| 精品人妻1区二区| 免费av毛片视频| www.999成人在线观看| 丝袜美腿诱惑在线| 日韩高清综合在线| 狂野欧美白嫩少妇大欣赏| 亚洲欧洲精品一区二区精品久久久| 成人一区二区视频在线观看| 白带黄色成豆腐渣| 嫩草影视91久久| 午夜a级毛片| 淫秽高清视频在线观看| 18美女黄网站色大片免费观看| 久久久久久亚洲精品国产蜜桃av| 日本一本二区三区精品| 少妇熟女aⅴ在线视频| 18禁观看日本| 亚洲熟妇中文字幕五十中出| 欧美成人性av电影在线观看| 十八禁人妻一区二区| 夜夜爽天天搞| 一进一出抽搐动态| 高清在线国产一区| 日日夜夜操网爽| www日本在线高清视频| 999久久久精品免费观看国产| 悠悠久久av| 国产一区二区三区视频了| 亚洲精品中文字幕在线视频| 精品一区二区三区视频在线观看免费| 午夜影院日韩av| 亚洲片人在线观看| 一个人免费在线观看的高清视频| 一个人观看的视频www高清免费观看 | 欧美丝袜亚洲另类 | 91字幕亚洲| 丁香欧美五月| 亚洲熟妇中文字幕五十中出| 99国产精品一区二区蜜桃av| 一级作爱视频免费观看| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看日本一区| 国内精品一区二区在线观看| 好男人电影高清在线观看| 国产成年人精品一区二区| 最近视频中文字幕2019在线8| 一级作爱视频免费观看| 日韩欧美在线二视频| 欧美日韩国产亚洲二区| 又粗又爽又猛毛片免费看| 国产精品,欧美在线| 啪啪无遮挡十八禁网站| 亚洲免费av在线视频| 可以在线观看毛片的网站| 欧美成人午夜精品| av在线播放免费不卡| 精品久久久久久久毛片微露脸| 欧美成人一区二区免费高清观看 | 午夜激情福利司机影院| 成人一区二区视频在线观看| 国语自产精品视频在线第100页| 村上凉子中文字幕在线| 国产黄a三级三级三级人| 一本久久中文字幕| 级片在线观看| 手机成人av网站| 搡老岳熟女国产| 国产一区二区三区在线臀色熟女| tocl精华| 午夜久久久久精精品| 亚洲最大成人中文| 亚洲欧美日韩无卡精品| 九九热线精品视视频播放| a在线观看视频网站| 狂野欧美激情性xxxx| 亚洲午夜理论影院| 悠悠久久av| 欧美黄色片欧美黄色片| 色精品久久人妻99蜜桃| 久久精品国产99精品国产亚洲性色| 99久久99久久久精品蜜桃| 久久欧美精品欧美久久欧美| 国产精品一及| 久久久久久久午夜电影| 欧美zozozo另类| 欧美色欧美亚洲另类二区| 50天的宝宝边吃奶边哭怎么回事| 国内精品一区二区在线观看| 黄色 视频免费看| 日韩精品免费视频一区二区三区| 久久精品综合一区二区三区| 国模一区二区三区四区视频 | 成人午夜高清在线视频| 欧美色欧美亚洲另类二区| 久久 成人 亚洲| 999久久久精品免费观看国产| av在线播放免费不卡| av视频在线观看入口| 一本久久中文字幕| 老司机午夜福利在线观看视频| 黄色毛片三级朝国网站| 色哟哟哟哟哟哟| 日本 av在线| 狠狠狠狠99中文字幕| 国产日本99.免费观看| 麻豆一二三区av精品| 精品一区二区三区四区五区乱码| 黄色丝袜av网址大全| 欧美 亚洲 国产 日韩一| 村上凉子中文字幕在线| 国内毛片毛片毛片毛片毛片| 免费在线观看亚洲国产| 国产激情偷乱视频一区二区| 精品一区二区三区视频在线观看免费| 99久久精品热视频| 久久久久九九精品影院| www.精华液| 三级男女做爰猛烈吃奶摸视频| 丰满的人妻完整版| 在线观看免费日韩欧美大片| 99热这里只有是精品50| 亚洲中文字幕日韩| 欧美黄色片欧美黄色片| 午夜精品久久久久久毛片777| 日日夜夜操网爽| 999久久久国产精品视频| 久久久久久国产a免费观看| 国内精品久久久久久久电影| 亚洲成av人片在线播放无| 人人妻人人澡欧美一区二区| 亚洲中文av在线| 免费在线观看亚洲国产| 国产午夜精品论理片| 欧美av亚洲av综合av国产av| 一个人免费在线观看电影 | 1024手机看黄色片| 精品国产乱子伦一区二区三区| 日韩欧美 国产精品| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成人久久爱视频| 中文字幕av在线有码专区| 国产野战对白在线观看| 搡老妇女老女人老熟妇| 日韩欧美在线二视频| 精品一区二区三区视频在线观看免费| 老汉色av国产亚洲站长工具| 美女 人体艺术 gogo| 又黄又粗又硬又大视频| 国产精品久久久人人做人人爽| 99riav亚洲国产免费| 日日夜夜操网爽| 久久久久亚洲av毛片大全| 免费看美女性在线毛片视频| 美女扒开内裤让男人捅视频| 亚洲色图av天堂| 草草在线视频免费看| 日韩av在线大香蕉| 中文在线观看免费www的网站 | 日本a在线网址| 国产精品久久电影中文字幕| 国内精品一区二区在线观看| 国产精品香港三级国产av潘金莲| 精品久久久久久久末码| 色尼玛亚洲综合影院| 在线观看免费视频日本深夜| 亚洲片人在线观看| a在线观看视频网站| 看免费av毛片| 国产三级中文精品| 亚洲av第一区精品v没综合| www.精华液| 国产一区二区三区视频了| 国产黄a三级三级三级人| 亚洲人成伊人成综合网2020| 亚洲成av人片在线播放无| 亚洲成人精品中文字幕电影| 日本 欧美在线| 男女那种视频在线观看| 亚洲一区二区三区色噜噜| 欧美日韩中文字幕国产精品一区二区三区| 国产97色在线日韩免费| 欧美性长视频在线观看| 久久精品国产亚洲av香蕉五月| 1024视频免费在线观看| 欧美大码av| 老司机靠b影院| 精品国产乱码久久久久久男人| 国产精品久久电影中文字幕| 一级黄色大片毛片| 岛国视频午夜一区免费看| 日本一区二区免费在线视频| 一本大道久久a久久精品| 色综合亚洲欧美另类图片| 免费在线观看黄色视频的| 成人国产综合亚洲| www.999成人在线观看| 久久这里只有精品19| 熟妇人妻久久中文字幕3abv| 国产高清激情床上av| 日韩有码中文字幕| 国内精品一区二区在线观看| 在线永久观看黄色视频| 91国产中文字幕| 国产伦在线观看视频一区| 日韩欧美一区二区三区在线观看| 成人手机av| 欧美乱码精品一区二区三区| 亚洲片人在线观看| 亚洲成人久久爱视频| 老熟妇乱子伦视频在线观看| 老汉色av国产亚洲站长工具| 久久久久国产一级毛片高清牌| 国语自产精品视频在线第100页| 18禁国产床啪视频网站| 国产欧美日韩一区二区精品| 欧美高清成人免费视频www| 少妇被粗大的猛进出69影院| 一本一本综合久久| 久久精品国产综合久久久| 两个人免费观看高清视频| 欧美3d第一页| 国产麻豆成人av免费视频| 一本大道久久a久久精品| 精品乱码久久久久久99久播| 免费在线观看成人毛片| 又紧又爽又黄一区二区| 禁无遮挡网站| 麻豆一二三区av精品| 亚洲精品久久成人aⅴ小说| 99久久国产精品久久久| 又紧又爽又黄一区二区| 欧美日韩亚洲综合一区二区三区_| 日韩欧美国产在线观看| 亚洲成人精品中文字幕电影| 午夜精品在线福利| 亚洲欧美日韩东京热| 免费高清视频大片| 欧美极品一区二区三区四区| 国产高清视频在线播放一区| 母亲3免费完整高清在线观看| 中文字幕av在线有码专区| av国产免费在线观看| 欧美日韩一级在线毛片| 免费无遮挡裸体视频| 一个人免费在线观看的高清视频| 国产又黄又爽又无遮挡在线| 亚洲乱码一区二区免费版| 成年人黄色毛片网站| 欧美精品啪啪一区二区三区| 久久香蕉国产精品| 国产精品永久免费网站| www.自偷自拍.com| 午夜免费激情av| 欧美精品啪啪一区二区三区| 亚洲精品美女久久av网站| 日本在线视频免费播放| 91字幕亚洲| 国产亚洲av嫩草精品影院| 天天一区二区日本电影三级| 亚洲中文av在线| 久久国产精品人妻蜜桃| 亚洲国产精品sss在线观看| 麻豆国产av国片精品| av免费在线观看网站| 在线观看美女被高潮喷水网站 | 亚洲欧美日韩高清专用| 手机成人av网站| 久久中文字幕人妻熟女| 黄色a级毛片大全视频| 日韩 欧美 亚洲 中文字幕| 99精品久久久久人妻精品| 国产亚洲精品一区二区www| 亚洲片人在线观看| 精品国产乱码久久久久久男人| 亚洲五月婷婷丁香| 伦理电影免费视频| 亚洲欧美日韩东京热| 国产三级中文精品| 国产精品免费一区二区三区在线| x7x7x7水蜜桃| 成人特级黄色片久久久久久久| 欧美性猛交╳xxx乱大交人| 最新美女视频免费是黄的| 搡老岳熟女国产| 三级毛片av免费| 国产一级毛片七仙女欲春2| 精品久久久久久久末码| 一本综合久久免费| 久久久久久国产a免费观看| 高清在线国产一区| 五月伊人婷婷丁香| 精品无人区乱码1区二区| 动漫黄色视频在线观看| 淫秽高清视频在线观看| 日本一本二区三区精品| 久久婷婷人人爽人人干人人爱| 国产精品亚洲av一区麻豆| 色哟哟哟哟哟哟| 亚洲精华国产精华精| 国产伦在线观看视频一区| 91成年电影在线观看| 黄色a级毛片大全视频| 亚洲精品久久成人aⅴ小说| 亚洲一区高清亚洲精品| 大型黄色视频在线免费观看| 午夜福利视频1000在线观看| 久久国产精品影院| av视频在线观看入口| 99久久99久久久精品蜜桃| 草草在线视频免费看| 国产69精品久久久久777片 | 久久精品91蜜桃| 久久久久久久精品吃奶| 亚洲欧美日韩东京热| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 久久人人精品亚洲av| 免费在线观看黄色视频的| 日韩中文字幕欧美一区二区| 国产成人精品久久二区二区91| 好看av亚洲va欧美ⅴa在| 中文字幕人妻丝袜一区二区| 天堂影院成人在线观看| 欧美黑人精品巨大| 精品欧美一区二区三区在线| 亚洲美女黄片视频| 成年免费大片在线观看| 男人舔女人的私密视频| 久99久视频精品免费| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久人人人人人| 国产熟女午夜一区二区三区| 国产一区二区三区视频了| 久久性视频一级片| av福利片在线观看| 久久亚洲真实| 欧美激情久久久久久爽电影| 制服丝袜大香蕉在线| 国产亚洲精品综合一区在线观看 | 国产在线精品亚洲第一网站| 免费电影在线观看免费观看| 亚洲欧洲精品一区二区精品久久久| 亚洲片人在线观看| 欧美中文综合在线视频| 午夜a级毛片| 国产久久久一区二区三区| 两个人免费观看高清视频| √禁漫天堂资源中文www| 久久婷婷人人爽人人干人人爱| 成人18禁在线播放| 色综合亚洲欧美另类图片| 国产高清videossex| 免费电影在线观看免费观看| 亚洲在线自拍视频| 老汉色av国产亚洲站长工具| 国产99久久九九免费精品| 99在线人妻在线中文字幕| 国产探花在线观看一区二区| av有码第一页| 男男h啪啪无遮挡| 久久久精品欧美日韩精品| 香蕉久久夜色| 91av网站免费观看| 亚洲欧美日韩东京热| 国产精品久久久久久人妻精品电影| 免费无遮挡裸体视频| 国产成人精品无人区| 婷婷精品国产亚洲av| www.www免费av| 久久婷婷成人综合色麻豆| 欧美日韩一级在线毛片| 国产精品影院久久| 国产亚洲欧美98| 亚洲国产看品久久| 丰满人妻熟妇乱又伦精品不卡| 在线永久观看黄色视频| 久久人妻av系列| 天堂√8在线中文| 午夜日韩欧美国产| 丝袜美腿诱惑在线| 久久久久国产精品人妻aⅴ院| 亚洲国产欧美一区二区综合| 亚洲熟女毛片儿| 精品欧美国产一区二区三| 999久久久国产精品视频| 在线看三级毛片|