• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于多壁碳納米管和氧化鋅納米棒復合物的葡萄糖生物傳感器

    2010-11-09 06:37:08李小榮白玉惠徐靜娟陳洪淵
    無機化學學報 2010年11期
    關(guān)鍵詞:生物

    李小榮 白玉惠 徐靜娟 陳洪淵

    (南京大學化學化工學院生命分析化學教育部重點實驗室,南京 210093)

    基于多壁碳納米管和氧化鋅納米棒復合物的葡萄糖生物傳感器

    李小榮 白玉惠 徐靜娟*陳洪淵

    (南京大學化學化工學院生命分析化學教育部重點實驗室,南京 210093)

    利用多壁碳納米管(MWCNTs)和氧化鋅(ZnO)納米棒復合物膜構(gòu)建了一種新的電流型葡萄糖生物傳感器。MWCNTs-ZnO復合物在超聲協(xié)助下通過靜電配位的方式產(chǎn)生。其中,ZnO納米棒的存在加強了該復合物催化氧化H2O2的能力,增加了響應電流。與單一的MWCNTs和ZnO相比,這種納米復合物顯示了更為有效地電催化活性。在此基礎(chǔ)上,我們以MWCNTs-ZnO復合物膜為基底,用戊二醛交聯(lián)法固定葡萄糖氧化酶,電聚合鄰苯二胺(PoPD)膜為抗干擾層,構(gòu)建了抗干擾能力強,穩(wěn)定性好,靈敏度高,響應快的葡萄糖傳感器。 在+0.8 V 的檢測電位下,該傳感器對葡萄糖響應的線性范圍為 5.0×10-6~5.0×10-3mol·L-1(R=0.997),檢測限為3.5×10-6mol·L-1(S/N=3),響應時間小于10 s的葡萄糖生物傳感器,常見干擾物質(zhì)如抗壞血酸和尿酸不影響測定。

    多壁碳納米管;氧化鋅;葡萄糖氧化酶;生物傳感器

    The glucose biosensors are generally based on the detection of the oxidation signal of hydrogen peroxide(H2O2)or the reduction signal of dissolved oxygen,which is produced or consumed in the oxidation process of β-D-glucose to D-glucono-δ-lactone catalyzed by GOx,respectively.Most of glucose biosensors detect glucose by the first method with the excellent oxidation signal[1].Moreover,detection of H2O2by its oxidation has many advantages,as the interference from oxygen can be avoided.But,the higher oxidation overpotential often gives rise to the interference of electrical active species,such as ascorbic acid and uric acid.To overcome this defect,the mediators have been used for the sensing of H2O2and have achieved satisfactory results,as thionine,ferrocene and its derivatives[2-3],and so on.However,the major problem associated with the mediator-modified electrodes is the lack of long-term stability due to the leaching of mediator from the electrode surface,which prevents their application from oxidase-based biosensors and simultaneously results in the development of various modified electrodes to overcome interference.

    In recent years,the use of nanomaterials for the design of biosensors has received much attention because the unique properties of nanomaterials offer excellent prospects for designing novel sensing systems and enhancing the performance of biosensors[4].Among various nanomaterials,carbon nanotubes(CNTs)have attracted considerable attention as one of the most promising carbon materials discovered by Iijima in 1991[5-6].Because of the special tube structure,CNTs possess many unique properties such as excellent electrical conductivity,large surface areas,strong adsorptive ability and surface chemical flexibility,which make CNTs attractive materials for electroanalysis.Recently,many efforts have been devoted to the design and preparation CNTs-based nanocomposites by modification of CNTs with transition metallic nanoparticles such as Cu,Ag,Au,Pd and Pt[7-11];or metal oxides such as MnO2,SnO2,SiO2,CdS and TiO2[12-18].Combination of metals or metal oxides with CNTs will lead to new composite materials possessing the properties of individual components,or even with a synergistic effect[19-20],which would be very useful in the fields of biotechnology and bioanalytical chemistry.The preparation of CNTs nanocomposites materials,which can be used to increase the electrochemical activities,has important implications to the development of high performance electrodes and sensory materials.

    Among the common metal oxide nanoparticles,nanostructured ZnO hasreceived much attention because of its unique advantages including biocompatibility,vast surface-to-bulk ratio,non-toxicity and relative chemical stability in physiological environment,and so on[21-23].Moreover,due to the biomimetic and high-electron communication features,the nanostructures of ZnO exhibit a great potential for the fabrication of efficient chemical sensors and biosensors[24-29].On the other hand,ZnO has a high isoelectric point (IEP)of about 9.5,which should provide a positively charged substrate for immobilization of low IEP proteins or enzymes such as GOx(IEP~4.2)at the physiological pH of 7.4.Recently,a developed topic concerns the preparation of composites based on CNTs and ZnO[19,30-36].The interest of these composites has been generated by possible applications as field emission sources and materials with higher photocatalytic activity[37-38].However,there are still few studies concerning the nanocomposites as a potential electrode material applied to biosensing.

    In this work,we report the synthesis of hybrid hierarchical device architecture of CNTs and ZnO nanorodsviamixingMWCNTswithpuredZnO nanorods under the assistance of the ultrasonic and its electrochemical biosensing application.The hybrid system was obtained by utilizing the oxygen of the carboxylic groups at the ends and the sidewalls of oxidized MWCNTs as electrostatic coordination sites which will have coordinative affinity for ZnO nanorods.The prepared MWCNTs-ZnO nanocomposites modified glassy carbon electrode was employed as an amperometric H2O2sensitive electrode to fabricate a glucose biosensor.Co-immobilization of glucose oxidase enzyme by glutaraldehyde cross-linking method has proved to be a feasible and successful way for enzyme uploading, then a layer of PoPD film was electropolymerized on the enzyme film to avoid interference and fouling.The obtained enzyme electrode showed satisfactory performance,such as high sensitivity,relative stability,and fast amperometric response for glucose determination,which is promising for the development of the enzyme-based biosensor.

    1 Experimental

    1.1 Reagents

    Glucose oxidase(GOx,TypeⅦfrom Aspergillus niger)was purchased from Sigma(St.Louis,MO,USA).β-D-glucose,glutaraldehyde,bovine serum albumin(BSA),o-phenylenediamine (oPD),L-ascorbic acid(AA),and uric acid (UA)were obtained from Sigma-Aldrich.Hydrogen peroxide (H2O2) (30%)was purchased from Shanghai Chemical Reagent Co.All Other chemical materials used in experiments are of analytical grade without further purification.

    Glucose stock solution was allowed to mutarotate for at least 24 h.The supporting electrolyte was 0.1 mol·L-1phosphate buffer solution (PBS),which was prepared with K2HPO4and NaH2PO4.Various pH values were adjusted with H3PO4or NaOH.All solutions were made up with doubly distilled water.

    MWCNTs were provided by Shenzhen Nanoport Company with a diameter of<10 nm.The purity of the MWCNTs was 95%claimed by the producer.The MWCNTs were pretreatment by ultrasonic agitation in a mixture of concentrated sulfuric acid and concentrated nitric acid (3∶1)for about 8 h to introduce carboxyl groups(-COOH)on the inert surface of the MWCNTs and remove metal and impurities.

    1.2 Apparatus

    Cyclic voltammetry(CV)and chronoamperometry(i-t)experiments were performed on a CHI 660C electrochemical workstation (Shanghai Chenhua Apparatus,China)connected to a personal computer.A three-electrode system was employed for electrochemical oxidation of glucose with a glassy carbon electrode as a working electrode,whereas saturated calomel electrode(SCE)and platinum wire as the reference electrode and counter electrode,respectively.Magnetic stirring was used during measurementstoensurethehomogeneityofthe solutions.

    Morphologies of the prepared MWCNTs,ZnO and MWCNTs-ZnO were studied on a JEOL JSM-6700F field emission scanning electron microscope.Ultraviolet and visible (UV-Vis)absorption spectra were recorded with a Lambda 35 UV-Vis spectrometer(Perkin-Elmer Instruments,USA).X-ray diffraction(XRD,VG-108R,Philips)was used for characterizing the structure of ZnO nanorods.

    1.3 Procedures

    1.3.1 Preparation of the MWCNTs-ZnO nanocomposites

    First,ZnO nanorods were prepared as follows:2.195 g Zn(Ac)2·2H2O was dissolved in 200 mL doubly distilled water by magnetic stirring.Then,1 mol·L-1NH3·H2O was added dropwise to the solution until the pH value of solution was 11.5.The obtained solution was heated and refluxed with continuous stirring at 100℃ for 9 h in necked round bottom flask.Milk white precipitates were obtained which were centrifuged and filtered off,washed thoroughly with doubly distilled water and ethanol,and then dried at 60℃under air atmosphere.Furthermore,2.0 mg·mL-1MWCNTs with different concentrations of ZnO (1.0~10.0 mg·mL-1)mixed to form MWCNTs-ZnO composites by ultrasonic vibration for 2 h at ambient temperature.

    1.3.2 Preparation of MWCNTs-ZnO/GOx/PoPD modfied glassy carbon electrode

    The glassy carbon electrode(3 mm in diameter,ca.0.07 cm2)was polished to a mirror-like surface with 1.0 and 0.3 μm alumina slurry,and sonicated for 2 min in doubly distilled water and absolute ethanol,respectively.The electrode was rinsed again and allowed to dry in air.10.0 μL of the MWCNTs-ZnO suspension was dispensed by a micro-syringe and spread onto the electrode surface.The suspension was allowed to dry in air.Furthermore,the GOx was immobilized onto the MWCNTs-ZnO modified electrode surface by cross-linking the enzyme through glutaraldehyde with bovine serum albumin (BSA),in which BSA was used as a dilute agent and protective agent with anti-virus capabilities to maintain the activity of GOx.Enzyme solution was prepared in 0.2 mL PBS (0.1 mol·L-1,pH 7.4)by mixing 2.0 mg GOx with 15.0 mg BSA,then 3.0 μL of 2.5%glutaraldehyde was added to 10.0 μL GOx solution and rapidly mixed uniform.Next,5.0 μL of the composites solution was dropped on the MWCNTs-ZnO electrode surface and allowed to dry at room temperature,after 1 h storage in refrigerator to make complete cross-linking and then the electrode was immersed in 0.1 mol·L-1PBS(pH 7.4)for 0.5 h to wash away the uncross-linked enzyme and excess glutaraldehyde.At last,electrochemical polymerization of oPD was performed in 0.1 mol·L-1PBS(pH 7.4),containing 5.0 mmol·L-1phenylenediamine monomer by CV ranging from 0 to 1.0 V vs SCE at a san rate of 5 mV·s-1for one cycle.The resulting enzyme electrode was then rinsed with PBS(pH 7.4)thoroughly and stored in PBS at 4℃ before use.

    2 Results and discussion

    2.1 Characterization of MWCNTs,ZnO and MWCNTs-ZnO nanocomposites modified electrodes

    Since MWCNTs are chemically inert,activating their surfaces is an essential prerequisite for linking functional groups to them as well as increasing their dispersion in water to remove metal and impurities.The activated MWCNTs were first characterized by SEM as shown in Fig.1A.The purified MWCNTs used here are about 10 nm in diameter with a hollow tube structure.Fig.1B shows the general morphologies of the as-grown ZnO structures.From the SEM,it is confirmed that the grown structures are rod-shaped and synthesized in a high-density.Moreover,it is seen that most of the nanorods with a micron-level length and the diameters are about 30 nm.The ZnO nanorods possessed very clean and smooth surfaces.The crystallinity and crystal phases of the ZnO nanorods were observed by the X-ray diffraction(XRD)patterns and shown in Fig.2A.All the diffraction peaks can be indexed within the experimental error as a wurtzite-structured hexagonal phase single crystalline bulk ZnO(JCPDS Card No.36-1451)confirming the synthesis of pure ZnO nanorods.Fig.1C shows themorphologiesofMWCNTs-ZnO nanocomposites.As shown,MWCNTs wrap around the surfaces of ZnO nanorods to form MWCNTs-coated ZnO,in which all of the ZnO nanorods are covered with a dense layer of MWCNTs,and no free nanorods were found.Fig.2B shows the UV-Vis absorption spectra of MWCNTs,pure ZnO nanorods and MWCNTs-ZnO heterogeneity structures at room temperature.As shown,the MWCNTs aqueous suspensions exhibited no typical absorption band in the wavelength scope (curve a).However,an apparent absorption band was observed in the sprectrum at~375 nmwhich is a characteristic band for the wurtzite hexagonal pure ZnO (curve b)[39].After wrapping with MWCNTs,the absorption peak at~375 nm almost disappeared (curve c).It indicated that ZnO nanorods were covered by MWCNTs which blocked the absorption of ZnO nanorods.It has been reported that MWCNTs can absorb light as a blackbody,and such a nanotube array not only reflects light weakly but also absorbs light strongly[16,40].The photographs of MWCNTs,pure ZnO nanorods and MWCNTs-ZnO composites suspensions are shown in the inset of Fig.2B.The color of the composites suspensions became dark gray by ultrasonic mixing the black MWCNTs and milk white ZnO nanorods in aqueous solution.On the other hand,it is also demonstrate that we have successfully synthesized the heterogeneity structure of the MWCNTs-ZnO nanocomposites,in which MWCNTs wrap around the surfaces of ZnO nanorods.

    2.2 Electrocatalytic behaviors of H2O2 at MWCNTs-ZnOnanocompositesmodified electrodes

    As well known,H2O2is a product of oxidase catalytic reactions between their corresponding substrates and oxygen.Thus highly sensitive detection of H2O2is a base for further sensitive detection of the substrates ofoxidases.To investigate the electrocatalytic behavior toward the electrochemical reaction of H2O2at the MWCNTs-ZnO nanocomposites film,this film modified electrode were characterized by CV ranging from 0.2 to 1.2 V at a scan rate of 100 mV·s-1.For comparison,a bare,pure ZnO nanorods,MWCNTs modified electrodes were also performed.The cyclic voltammograms are shown in Fig.3.As shown,no oxidation peak current were observed at the bare,pure ZnO nanorods,MWCNTs and MWCNTs-ZnO electrodes in the absence of H2O2(curve a,c,e and g).Upon addition of H2O2,a very slightly oxidative response was observed with onset potential of 1.0 V at the bare electrode (curve b),while a larger oxidative response was observed with onset potential of 0.9 V at the pure ZnO nanorods electrode (curve d).On the other hand,the oxidation current increased dramatically with H2O2added at the MWCNTs electrode with onset potential of 0.45 V and the peak potential of 1.0 V (curve f).In addition,the MWCNTs-ZnO electrode displayed higher electrocatalytic activity with a larger response current towards the oxidation of H2O2than that of the MWCNTs electrode,in which the oxidation overpotential of H2O2was reduced to 0.35 V and the peak potential shifted negatively to 0.9 V (curve h).These results indicated that the electrocatalytic activity of MWCNTs-ZnO modified electrode was obviously improved maybe because ZnO nanorods can effectively inhibit the reunion and winding of MWCNTs.

    Asthe presence ofZnO nanorodsin the composites can improve the electrocatalytic properties of MWCNTs,the amount of ZnO is crucial for the performance of the nanocomposites electrodes.Here,we immobilized the amount of MWCNTs(2.0 mg·mL-1),which mixed with the different concentrations of ZnO(1.0~10.0 mg·mL-1)to prepare the different proportion of MWCNTs-ZnO nanocomposites (2 ∶1 ~2 ∶10).The typical amperometric responses of the bare,pure ZnO(4.0 mg·mL-1),MWCNTs and MWCNTs-ZnO composites modified electrodes to the addition of varying concentrations of H2O2in 0.1 mol·L-1PBS(pH 7.4)at a working potential of+0.8 V versus SCE are also investigated,the corresponding calibration curves are shown in Fig.4.As shown,the bare and pure ZnO modified electrodes showed extremely low sensitivities.MWCNTs modified electrode exhibits a relatively lower sensitivity compared with all of the different proportion MWCNTs-ZnO modified electrodes.When the MWCNTs-ZnO modified electrodesareused,the currents respond to the addition of H2O2quickly and sensitively,in which the proportion of 2∶4 showed a maximum current response to H2O2.The synergistic effect of MWCNTs and ZnO films leads to better electrocatalytic ability and higher sensitivity to than MWCNTs or ZnO film alone,indicating the influence of ZnO loading amount on H2O2response may be result from two factors.On one hand,MWCNTs and ZnO composites are synthesized by utilizing an electrostatic coordination approach,in which carboxylic groups at the ends and the sides of the oxidized MWCNTs will have coordinative affinity for ZnO nanorods.Thus,ZnO nanorods with larger surface area can make MWCNTs more uniformly dispersed on the surface of ZnO but not winding with each other thus enhances their electrochemical properties.On the other hand,with the continuing increase the amount of ZnO (>2 ∶4),the sensitivity of electrode was depressed,this was because too much ZnO covering onto the surfaces of electrodes,which decreased the diffusion of substrates to electrode surface thus reduced the electronic transfer properties of MWNTs.There is a balance between the two factors.The inset (B)ofFig.4 displaystypicalcyclic voltammetric curves obtained atZnO nanorods,MWCNTs and MWCNTs-ZnO composites(2∶2,2∶4,2∶10)modified electrodes in 5 mmol·L-1[Fe(CN)6]3-/[Fe(CN)6]4-with 0.1 mol·L-1KCl as electrolyte.One can see that ZnO nanorods modified electrode exhibits very small current response with a larger peak potential difference(curve a).MWCNTs modified electrode shows a large current response with a relative small peak potential difference (curve b),but MWCNTs-ZnO composites modified electrodes are superior to MWCNTs electrode with a larger current response and smaller peak potential difference (curve d,e,c).Moreover,the presence of small amount of ZnO in the composites can accelerate the rate of electron transfer whereas the presence of large amount of ZnO will hinderthe electron transfercapability,which is consistent with the above results.The detection limits for the MWCNTs-ZnO composites(2∶4)and MWCNTs modified electrodes were 0.5 μmol·L-1and 3 μmol·L-1H2O2,respectively.The MWCNTs-ZnO modified electrode provides a more pronounced response compared with MWCNTs modified electrode.The corresponding calibration plots indicated the sensitivities of the MWCNTs-ZnO and MWCNTs modified electrodes were 117.5 mA·L·mol-1·cm-2and 43.4 mA·L·mol-1·cm-2,respectively.A signal about 2.7 times more sensitive was obtained at the MWCNT-ZnO nanocomposites modified electrode.

    2.3 Performance of MWCNTs-ZnO/GOx/PoPD nanocompositesmodified electrode asa glucose biosensor

    The excellent performance of the MWCNTs-ZnO modified electrode toward the oxidation of H2O2makes it attractive to fabricate biosensors based on the determination of H2O2.Here,GOx was selected as a model enzyme.The enzyme was immobilized onto the MWCNTs-ZnO modified electrode surface by crosslinking it through glutaraldehyde.Then,a layer of PoPD film was electropolymerized on the enzyme film to avoid interference and fouling.Amperometric biosensors based on the immobilization of GOx for the determination of glucose are usually based on the detection of liberated H2O2.In the single enzyme system(Eq.(1)),

    In the presence ofoxygen,the enzymatic generation of H2O2is achieved in the reaction layer of the MWCNTs-ZnO-GOx nanocomposites film.Here,the cyclic voltammograms of the proposed biosensor in 0.1 mol·L-1PBS of pH 7.4 without and with 5 mmol·L-1,10 mmol·L-1glucose are shown in Fig.5.With the addition of glucose,the oxidation currents of the biosensor at the potential more than 0.6 V increase.It is deduced that the current increase at positive potential resulted from the oxidation of produced H2O2.

    We investigated the dependence of the biosensor response on the applied potentials.The amperometric responses on the proposed biosensor to the glucose at different potentials are shown in Fig.6A.From 0.3 to 1.1 V,the response is caused by the oxidation of the produced H2O2.The maximum response current can be observed at potential of 1.0 V.Considering the optimal signal-to-noise ratio,+0.8 V was chosen as the operating potential.

    The influence of the buffer solution pH is very essential to the sensitivity of the biosensors,because the bioactivity of GOx and the stability of ZnO nanorods are pH dependent.The pH was changed from 3.0 to 10.0 at the MWCNTs-ZnO/GOx/PoPD modified electrode in the stirring PBS toward 5 mmol·L-1glucose and the corresponding resultsare shown in Fig.6B.The maximum response current can be observed at pH 8.0 and with very good responses for glucose in the pH range of 7.0~10.0.The result is somewhat different from those of previous studies[41-42],where the GOx-based biosensors usually have optimal pH values at about neutral.Here,the effect of the pH of the detection solution on the biosensor response resulted from two factors.On one hand,since the detection of glucose is based on the oxidation of the produced H2O2and there are protons produced,a basic condition facilitates the proceeding of the reaction.Therefore,the response of the proposed biosensor will increase with pH increase.On the other hand,the activity of enzyme depends greatly on the pH of surrounding solution,and extreme pH conditions will result in the denaturation of enzyme[43].Here,enzyme can maintain its best activity in this pH range also indicated that ZnO nanorods are very stable under alkaline conditions which can provide a biocompatible microenvironment for GOx to withstand outside conditions.In our experiments,in order to maintain similarity with the human body microenvironment,we have chosen 0.1 mol·L-1PBS with pH 7.4 as the supporting electrolyte.

    Fig.7 shows the typical current-time plots for the biosensor upon the successive addition of glucose solution into 0.1 mol·L-1PBS with pH 7.4 at the working potential of+0.8 V.A remarkable increase of oxidation current was observed upon addition of glucose,and the response reached 95%steady state value within 10 s.The inset(A)of Fig.7 shows the corresponding calibration curve.The linear calibration range is 5.0×10-6~5.0×10-3mol·L-1(R=0.997,n=37)with a detection limit of 3.5×10-6mol·L-1at a signal-tonoise ratio of 3,and the sensitivity of the biosensor was about 27.2 mA·L·mol-1·cm-2.This biosensor show wider linear range,lower detection limit and higher sensitivity than the previously reported glucose biosensors based on CNTs materials[44-45].According to the Lineweaver-Burke equation,the Michaelis-Menten constant(Km)was evaluated to be 9.8 mmol·L-1,which was much lower than that of 20±2 mmol·L-1reported previously[46-48].The smaller Kmvalue indicates that the immobilized GOx possesses higher enzymatic activity and the MWCNTs-ZnO/GOx/PoPD modified electrode exhibits a higher affinity to glucose.

    Some substances coexisting in biologic samples would interfere in the detection of glucose.The inset(B)of Fig.7 shows the effectofinterfering species,including AA and UA,when a detection potential of+0.8 V was employed.It can be seen that AA(0.05 mmol·L-1)and UA(0.5 mmol·L-1)to glucose solution(5 mmol·L-1)does not significantly affect the observed amperomteric response obtained for the biosensor.This result indicated that the proposed glucose biosensor exhibited the ability to reduce the influence of possible interferences.It may be attributed to the special characteristics of the PoPD film,which allows the small molecule H2O2to penetrate and react at the surface of the electrode but prevent the diffusion of molecules with a bigger volume,such as AA and UA.

    2.4 Reproducibility and stability of the MWCNTs-ZnO/GOx/PoPD composites modified electrode as a glucose biosensor

    The reproducibility and storage stability of the proposed biosensor have been studied.The relative standard deviation(RSD)of the biosensor to 5.0 mmol·L-1glucose was 1.9%for six successive measurements.The fabrication reproducibility of five biosensors,made independently under the same conditions,showed reproducibility with the RSD of 4.1%for the detection of 5.0 mmol·L-1glucose.The storage stability of the prepared glucose biosensor based on the MWCNTs-ZnO/GOx/PoPD nanobiocomposites film is crucial for the practical applications.The biosensor was stored in 0.1 mol·L-1PBS with pH 7.4 in a refrigerator at 4 ℃and periodical measurements of the biosensor response to 5.0 mmol·L-1glucose,it retained about 97%and 80%of its original sensitivity after one week and one month,respectively.

    3 Conclusions

    We havesucces sfully prepared MWCNTs-ZnO nanocomposities by utilizing an electrostatic coordination approach under the assistance of the ultrasonic and constructed a glucose biosensor based on immobilization of GOx on MWCNTs-ZnO nanocomposities modified glassy carbon electrode.The MWCNTs-ZnO nanocomposities film has the synergistic effect of the catalysis towards H2O2with remarkable current and rapid response.Based on the property,the composites film is further modified with GOx and protected by the PoPD film to avoid interference and fouling, that is MWCNTs-ZnO/GOx/PoPD nanobiocomposites film.The biocomposites provided a biocompatible microenvironment for the enzyme to withstand considerable harsh pH.In addition,this prepared biosensor can selectively detect glucose under a positive potential (+0.8 V vs.SCE),completely excluding the interferences from ascorbic acid and uric acid.The excellent characteristics and performance of the proposed biosensor,such as low detection limit,fast response time,and good reproducibility and stability,show that it is attractive for the future development of new CNTs-based nanocomposites for biosensors.

    [1]Liu Y,Wu S,Ju H X,et al.Electroanalysis,2007,19:986-992

    [2]Ruan C M,Yang R,Chen X H,et al.J.Electroanal.Chem.,1998,455:121-125

    [3]Senel M,Cevik E,Abasyank M F.Sens.Actuator B,2010,145:444-450

    [4]Luo X L,Killard A J,Smyth M R.Electroanalysis,2006,18:1131-1134

    [5]Iijima S.Nature,1991,354:56-58

    [6]Gao R F,Zheng J B.Electrochem.Commun.,2009,11:608-611

    [7]Chen P,Wu X,Lin J,et al.J.Phys.Chem.B,1999,103:4559-4561

    [8]Yang P H,Wei W Z,Tao C Y,et al.Microchim.Acta.,2008,162:51-56

    [9]Gingery D,Bühlmann P.Carbon,2008,46:1966-1972

    [10]Satishkumar B C,Govindraj A,Mofokeng J,et al.J.Phys.B At.Mol.Opt.Phys.,1996,29:4925-4934

    [11]Qu L,Dai L,Osawa E.J.Am.Chem.Soc.,2006,128:5523-5532

    [12]Zhang W D,Chen J.Pure Appl.Chem.,2009,81:2317-2325

    [13]Kuang Q,Li S F,Xie Z X,et al.Carbon,2006,44:1166-1172

    [14]Seeger T,K?hler T,Frauenheim T,et al.Chem.Commun.,2002,34-35

    [15]Shi J H,Qin Y J,Wu W,et al.Carbon,2004,42:423-460

    [16]Wang X F,Zhou Y,Xu J J,et al.Adv.Funct.Mater.,2009,19:1444-1450

    [17]Jitianu A,Cacciaguerra T,Benoit R,et al.Carbon,2004,42:1147-1151

    [18]Lee S W,Sigmund W M.Chem.Commun.,2003,780-781

    [19]Khanderi J,Hoffmann R C,Gurlo A,et al.J.Mater.Chem.,2009,19:5039-5046

    [20]Wang X Y,Xia B Y,Zhu X F,et al.J.Solid State Chem.,2008,181:822-827

    [21]Tian Z R R,Voigt J A,Liu J,et al.J.Am.Chem.Soc.,2002,124:12954-12955

    [22]Mo G Q,Ye J S,Zhang W D.Electrochim.Acta,2009,55:511-515

    [23]Yang K,She G W,Wang H,et al.J.Phys.Chem.C,2009,113:20169-20172

    [24]Zhang F F,Wang X L,Ai S Y,et al.Anal.Chim.Acta,2004,519:155-160

    [25]Deng Z F,Tian Y,Yin X,et al.Electrochem.Commun.,2008,10:818-820

    [26]Chen L Y,Gu B X,Zhu G P,et al.J.Electroanal.Chem.,2008,617:7-13

    [27]Lu X B,Zhang H J,Ni Y W,et al.Biosens.Bioelectron.,2008,24:93-98

    [28]Umar A,Rahman M M,Hajry A A,et al.Talanta,2009,78:284-289

    [29]Ahmad M,Pan C F,Gan L,et al.J.Phys.Chem.C,2010,114:243-250

    [30]Park S S,Lee J M,Yoon S,et al.Physica E,2008,40:2526-2530

    [31]Du Y P,Hao C C,Wang G Z.Mater.Lett.,2008,62:30-32

    [32]Kim H,Sigmund W.Appl.Phys.Lett.,2002,81:2085-2087

    [33]Bae S Y,Seo H W,Choi H C,et al.J.Phys.Chem.B,2004,108:12318-12326

    [34]Liu J W,Li X J,Dai L M.Adv.Mater.,2006,18:1740-1744

    [35]Baibarac M,Baltog I,Lefrant S,et al.Physica E,2008,40:2556-2564

    [36]Jiang P,Zhou J J,Fang H F,et al.Adv.Funct.Mater.,2007,17:1303-1310

    [37]Li C,Fang G J,Yuan L Y,et al.Nanotechnology,2007,14:155702-155705

    [38]Jiang L Q,Gao L.Mater.Chem.Phys.,2005,91:313-316

    [39]Ni Y H,Wei X W,Hong J M,et al.Mater.Sci.Eng.B,2005,121:42-47

    [40]Yang Z P,Ci L J,Bur J A,et al.Nano.Lett.,2008,8:446-451

    [41]Qian J M,Suo A L,Yao Y,et al.Clin.Biochem.,2004,37:155-161

    [42]Yang X H,Hua L,Gong H Q,et al.Anal.Chim.Acta,2003,478:67-75

    [43]Luo X L,Xu J J,Chen H Y,et al.Anal.Biochem.,2004,334:284-289

    [44]Luo X L,Killard A J,Smyth M R.Electroanalysis,2006,18:1131-1134

    [45]Dai Y Q,Shiu K K.Electroanalysis,2004,16:1697-1703

    [46]ZHU Yu-Nu(朱玉奴),PENG Tu-Zhi(彭圖治),LI Jian-Ping(李建平).Chin.J.Anal.Chem.(Fenxi Huaxue),2004,32:1299-1303

    [47]Sampath S,Lev O.Anal.Chem.1996,68:2015-2021

    [48]Wang B Q,Li B,Deng Q,et al.Anal.Chem.,1998,70:3170-3174

    Glucose Biosensors Based on Nano-Composites of Multi-walled Carbon Nanotubes and Zinc Oxide Nanorods

    LI Xiao-Rong BAI Yu-HuiXU Jing-Juan*CHEN Hong-Yuan
    (The Key Lab of Analytical Chemistry for Life Science(MOE),School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210093)

    We demonstrate herein a newly developed amperometric glucose biosensor by using multi-walled carbon nanotubes(MWCNTs)and zinc oxide(ZnO)nanorods composites film.The latter is generated by utilizing an electrostatic coordination approach under the assistance of the ultrasonic.The presence of ZnO nanorods in the composites enhances the abilities to electrocatalyze the oxidation of H2O2and substantially raises the response current,which results in the composites exhibiting more efficiently electrocatalytic activity than those of MWCNTs and ZnO alone.As a result of the cross-linking reactions via glutaraldehyde,a layer of glucose oxidase(GOx)was firmly bound to the MWCNTs-ZnO film and an anti-interferent layer of poly(o-phenylenediamine)(PoPD)film was further electropolymerized on the enzyme film.At an applied potential of+0.8 V,the resulting biosensor performs a sensitive and selective electrochemical response to glucose in the presence of common interferences,such as ascorbic acid(AA)and uric acid(UA),with a linear dependence(R=0.997)on the glucose concentration in the range of 5.0×10-6~5.0×10-3mol·L-1and a detection limit of 3.5×10-6mol·L-1at signal/noise=3.The response time was less than 10 s with addition of 5 mmol·L-1glucose.The MWCNTs-ZnO/GOx/PoPD modified glassy carbon electrode presents stable,high sensitivity and also exhibits fast amperometric response to the detection of glucose,which is promising for the development of glucose sensor.

    mulit-walled carbon nanotubes;zinc oxide nanorods;glucose oxidase;biosensor

    O657.1

    A

    1001-4861(2010)11-2047-10

    2010-04-19。收修改稿日期:2010-06-02。

    國家自然科學基金(No.20890021),國家 973 計劃(No.2007CB936404)資助項目。

    *通訊聯(lián)系人。 E-mail:xujj@nju.edu.cn

    李小榮,女,29歲,博士研究生;研究方向:電分析化學。

    猜你喜歡
    生物
    生物多樣性
    天天愛科學(2022年9期)2022-09-15 01:12:54
    生物多樣性
    天天愛科學(2022年4期)2022-05-23 12:41:48
    上上生物
    發(fā)現(xiàn)不明生物
    科學大眾(2021年9期)2021-07-16 07:02:54
    史上“最黑暗”的生物
    軍事文摘(2020年20期)2020-11-28 11:42:50
    第12話 完美生物
    航空世界(2020年10期)2020-01-19 14:36:20
    最初的生物
    自然生物被直銷
    清晨生物初歷直銷
    生物的多樣性
    麻豆av在线久日| 国产91精品成人一区二区三区| 精品不卡国产一区二区三区| 色老头精品视频在线观看| 99久久99久久久精品蜜桃| 啦啦啦观看免费观看视频高清| www.熟女人妻精品国产| 国产成人啪精品午夜网站| 成人18禁在线播放| 成人一区二区视频在线观看| 波多野结衣巨乳人妻| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区精品视频观看| 精品不卡国产一区二区三区| 天天躁夜夜躁狠狠躁躁| www.自偷自拍.com| 日韩欧美免费精品| 国产又爽黄色视频| 国产乱人伦免费视频| 亚洲一区中文字幕在线| 国产伦一二天堂av在线观看| 久久久久免费精品人妻一区二区 | 免费看十八禁软件| 亚洲五月天丁香| a级毛片在线看网站| 国产高清有码在线观看视频 | 欧美亚洲日本最大视频资源| 欧美成人午夜精品| 亚洲欧美日韩高清在线视频| 桃色一区二区三区在线观看| 亚洲人成伊人成综合网2020| 亚洲第一欧美日韩一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲人成伊人成综合网2020| 午夜福利成人在线免费观看| 国产aⅴ精品一区二区三区波| 亚洲欧美精品综合久久99| 欧美人与性动交α欧美精品济南到| 欧美成狂野欧美在线观看| 亚洲成人久久爱视频| av片东京热男人的天堂| 免费在线观看黄色视频的| 中文字幕精品亚洲无线码一区 | 欧美一级a爱片免费观看看 | 精品熟女少妇八av免费久了| 色精品久久人妻99蜜桃| 美女高潮喷水抽搐中文字幕| 国产精品二区激情视频| 国产精品免费一区二区三区在线| 丰满的人妻完整版| 午夜免费观看网址| 99精品欧美一区二区三区四区| 88av欧美| 亚洲中文av在线| 亚洲狠狠婷婷综合久久图片| 国产一区二区三区在线臀色熟女| 国产三级黄色录像| a级毛片a级免费在线| 久久精品国产亚洲av高清一级| 久久精品国产亚洲av高清一级| 成人午夜高清在线视频 | 国产1区2区3区精品| 一级毛片高清免费大全| 757午夜福利合集在线观看| 激情在线观看视频在线高清| 不卡一级毛片| www.自偷自拍.com| 99国产极品粉嫩在线观看| 国产野战对白在线观看| 国产成人系列免费观看| 亚洲国产看品久久| 午夜影院日韩av| 91成人精品电影| 午夜福利欧美成人| 亚洲第一青青草原| 久久精品影院6| 亚洲欧美一区二区三区黑人| 大香蕉久久成人网| 日本免费a在线| 国产成人精品无人区| 亚洲一码二码三码区别大吗| 亚洲av熟女| 禁无遮挡网站| 成人手机av| 在线av久久热| 午夜久久久久精精品| 国产成+人综合+亚洲专区| 不卡一级毛片| 国产精品久久久av美女十八| 午夜a级毛片| 亚洲精品美女久久av网站| or卡值多少钱| tocl精华| 成人亚洲精品av一区二区| 观看免费一级毛片| 亚洲午夜理论影院| 曰老女人黄片| 久久久久久免费高清国产稀缺| 大型黄色视频在线免费观看| 最好的美女福利视频网| 欧美在线黄色| 午夜福利欧美成人| 国产精品一区二区三区四区久久 | 麻豆成人午夜福利视频| 亚洲免费av在线视频| 国产高清videossex| 亚洲精品av麻豆狂野| 国产1区2区3区精品| 好看av亚洲va欧美ⅴa在| 变态另类成人亚洲欧美熟女| 免费在线观看影片大全网站| 神马国产精品三级电影在线观看 | 亚洲国产毛片av蜜桃av| 黄片小视频在线播放| 亚洲熟女毛片儿| 亚洲男人天堂网一区| 亚洲人成77777在线视频| 三级毛片av免费| 欧美久久黑人一区二区| 亚洲成人久久爱视频| 国产真实乱freesex| 免费看日本二区| 99精品在免费线老司机午夜| 又黄又爽又免费观看的视频| 欧美一区二区精品小视频在线| 亚洲成国产人片在线观看| 美女扒开内裤让男人捅视频| 麻豆一二三区av精品| 午夜激情av网站| 欧美一区二区精品小视频在线| 自线自在国产av| 国产三级在线视频| 国产蜜桃级精品一区二区三区| 哪里可以看免费的av片| 制服丝袜大香蕉在线| 久久久久九九精品影院| e午夜精品久久久久久久| 色av中文字幕| 久久 成人 亚洲| 国产精品一区二区精品视频观看| 黄网站色视频无遮挡免费观看| ponron亚洲| 婷婷六月久久综合丁香| or卡值多少钱| 香蕉国产在线看| 十分钟在线观看高清视频www| 美女扒开内裤让男人捅视频| 精品国内亚洲2022精品成人| 欧美绝顶高潮抽搐喷水| 在线观看www视频免费| 大型黄色视频在线免费观看| 日韩欧美一区视频在线观看| 国产亚洲欧美在线一区二区| 视频在线观看一区二区三区| 国产区一区二久久| 午夜免费鲁丝| 老熟妇乱子伦视频在线观看| 国产精品综合久久久久久久免费| 一级a爱片免费观看的视频| 国产欧美日韩精品亚洲av| 两个人视频免费观看高清| 欧美色视频一区免费| 成人三级做爰电影| 国产精品野战在线观看| 欧美成人午夜精品| 女人高潮潮喷娇喘18禁视频| 香蕉av资源在线| 午夜亚洲福利在线播放| 麻豆成人午夜福利视频| www.精华液| 丁香六月欧美| 国产亚洲精品久久久久久毛片| 国产精品久久久久久亚洲av鲁大| 在线永久观看黄色视频| 亚洲性夜色夜夜综合| 99在线视频只有这里精品首页| 精品日产1卡2卡| 精品卡一卡二卡四卡免费| 黄色成人免费大全| 久久久国产欧美日韩av| 欧美又色又爽又黄视频| 99热只有精品国产| a级毛片在线看网站| 国产熟女午夜一区二区三区| 亚洲欧美激情综合另类| 久久青草综合色| 麻豆久久精品国产亚洲av| 天堂动漫精品| 亚洲五月婷婷丁香| 日本三级黄在线观看| 欧美精品啪啪一区二区三区| 国内少妇人妻偷人精品xxx网站 | 亚洲欧美日韩高清在线视频| 国产精品99久久99久久久不卡| 久久人人精品亚洲av| 久久久久久国产a免费观看| 精品欧美国产一区二区三| 国产又黄又爽又无遮挡在线| 国产乱人伦免费视频| 国产成人系列免费观看| 日韩视频一区二区在线观看| 三级毛片av免费| 日日夜夜操网爽| 午夜福利高清视频| 亚洲国产欧洲综合997久久, | 精品福利观看| 中文字幕人成人乱码亚洲影| 成在线人永久免费视频| 午夜精品久久久久久毛片777| 美女扒开内裤让男人捅视频| 无限看片的www在线观看| 成人三级黄色视频| 国产伦人伦偷精品视频| 亚洲人成伊人成综合网2020| 看免费av毛片| 黄网站色视频无遮挡免费观看| 欧美黑人精品巨大| 成在线人永久免费视频| 一个人免费在线观看的高清视频| 亚洲五月天丁香| 久久久久九九精品影院| 欧美另类亚洲清纯唯美| 激情在线观看视频在线高清| 美女大奶头视频| 亚洲性夜色夜夜综合| 久久久国产成人精品二区| 久久久久免费精品人妻一区二区 | 亚洲精品美女久久av网站| 欧美日韩一级在线毛片| 中文字幕久久专区| 欧美成人午夜精品| 国产高清激情床上av| 麻豆av在线久日| 久久草成人影院| 岛国在线观看网站| 国产一区在线观看成人免费| 51午夜福利影视在线观看| 国产精品亚洲av一区麻豆| 欧美绝顶高潮抽搐喷水| 一级a爱片免费观看的视频| 久久精品国产亚洲av高清一级| 欧美绝顶高潮抽搐喷水| 精品国产亚洲在线| 亚洲熟妇熟女久久| 久9热在线精品视频| 午夜日韩欧美国产| 国产精品久久久久久亚洲av鲁大| 亚洲熟妇熟女久久| 免费在线观看亚洲国产| 高潮久久久久久久久久久不卡| 国产亚洲av高清不卡| 在线免费观看的www视频| 成人手机av| 国产aⅴ精品一区二区三区波| 亚洲欧美精品综合一区二区三区| 亚洲国产精品sss在线观看| 亚洲一码二码三码区别大吗| 国产97色在线日韩免费| 在线观看舔阴道视频| 久久欧美精品欧美久久欧美| videosex国产| 国产成人av教育| 色综合婷婷激情| 欧美日本亚洲视频在线播放| 免费观看人在逋| 成熟少妇高潮喷水视频| 国产精品98久久久久久宅男小说| 一级a爱片免费观看的视频| 啪啪无遮挡十八禁网站| 天堂影院成人在线观看| 丝袜在线中文字幕| 国产精品九九99| 免费在线观看亚洲国产| 国产亚洲精品av在线| 亚洲真实伦在线观看| 国产高清有码在线观看视频 | 国产在线观看jvid| 视频在线观看一区二区三区| 国产极品粉嫩免费观看在线| 美女 人体艺术 gogo| 一本大道久久a久久精品| 亚洲va日本ⅴa欧美va伊人久久| 大型黄色视频在线免费观看| 成在线人永久免费视频| 午夜精品在线福利| 国产精品野战在线观看| 在线视频色国产色| 国产高清有码在线观看视频 | 最近最新免费中文字幕在线| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 国产蜜桃级精品一区二区三区| 18禁裸乳无遮挡免费网站照片 | 不卡一级毛片| 琪琪午夜伦伦电影理论片6080| 免费在线观看黄色视频的| 50天的宝宝边吃奶边哭怎么回事| 日本黄色视频三级网站网址| 天堂√8在线中文| xxxwww97欧美| 天天一区二区日本电影三级| 日韩欧美一区视频在线观看| 夜夜爽天天搞| 成人18禁高潮啪啪吃奶动态图| 亚洲中文字幕日韩| 一a级毛片在线观看| 日本 欧美在线| 久久人妻av系列| 好男人电影高清在线观看| 欧美日韩亚洲综合一区二区三区_| 免费在线观看黄色视频的| 色播在线永久视频| 亚洲精品一区av在线观看| 免费人成视频x8x8入口观看| 久久午夜综合久久蜜桃| 在线观看www视频免费| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| 免费在线观看视频国产中文字幕亚洲| 欧美在线黄色| 亚洲精华国产精华精| 欧美久久黑人一区二区| av中文乱码字幕在线| 夜夜爽天天搞| 脱女人内裤的视频| 人人妻人人澡欧美一区二区| 日日干狠狠操夜夜爽| 成人18禁在线播放| 12—13女人毛片做爰片一| 国产精品av久久久久免费| 91麻豆av在线| 欧美三级亚洲精品| 亚洲精品粉嫩美女一区| 97超级碰碰碰精品色视频在线观看| 久久精品亚洲精品国产色婷小说| 久久国产精品男人的天堂亚洲| 日韩av在线大香蕉| 人妻丰满熟妇av一区二区三区| 少妇 在线观看| 黄色视频不卡| 成年女人毛片免费观看观看9| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区| 国产熟女午夜一区二区三区| 黄色毛片三级朝国网站| 91成人精品电影| 啪啪无遮挡十八禁网站| 啦啦啦韩国在线观看视频| 国产精品久久久久久亚洲av鲁大| 69av精品久久久久久| 啦啦啦韩国在线观看视频| 无遮挡黄片免费观看| 日本 欧美在线| 一区二区三区国产精品乱码| 亚洲国产精品sss在线观看| 成年人黄色毛片网站| 亚洲午夜理论影院| 男女下面进入的视频免费午夜 | 欧洲精品卡2卡3卡4卡5卡区| 精品国产亚洲在线| 欧美激情高清一区二区三区| 日本三级黄在线观看| 悠悠久久av| 免费观看人在逋| 日韩欧美在线二视频| 久久久久久免费高清国产稀缺| 黄色视频不卡| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 哪里可以看免费的av片| 精品一区二区三区四区五区乱码| 看黄色毛片网站| 美女午夜性视频免费| 国产精品 国内视频| 91大片在线观看| 国产人伦9x9x在线观看| 亚洲国产高清在线一区二区三 | 一级作爱视频免费观看| 免费在线观看日本一区| 男人舔女人下体高潮全视频| 午夜精品在线福利| 757午夜福利合集在线观看| 成人免费观看视频高清| 亚洲第一电影网av| 日韩欧美国产一区二区入口| 国产精品久久视频播放| 亚洲 欧美一区二区三区| 亚洲国产毛片av蜜桃av| 欧美乱妇无乱码| 一本综合久久免费| 日韩欧美三级三区| 亚洲第一欧美日韩一区二区三区| 亚洲三区欧美一区| 亚洲性夜色夜夜综合| 亚洲欧洲精品一区二区精品久久久| 在线观看免费视频日本深夜| 天天添夜夜摸| 日本三级黄在线观看| 国产精品影院久久| 久久亚洲真实| 中文字幕高清在线视频| 美女大奶头视频| 国产精华一区二区三区| 亚洲av片天天在线观看| 男人舔女人下体高潮全视频| 99riav亚洲国产免费| 久久人妻av系列| 国产亚洲精品第一综合不卡| а√天堂www在线а√下载| 麻豆一二三区av精品| 亚洲激情在线av| 97超级碰碰碰精品色视频在线观看| 手机成人av网站| 欧美性猛交黑人性爽| 久久热在线av| 自线自在国产av| 人成视频在线观看免费观看| 脱女人内裤的视频| 国内揄拍国产精品人妻在线 | 国产精品野战在线观看| 久久婷婷人人爽人人干人人爱| 一进一出抽搐动态| 亚洲中文字幕日韩| 黄频高清免费视频| 黑人欧美特级aaaaaa片| 97碰自拍视频| 后天国语完整版免费观看| 欧美激情久久久久久爽电影| 琪琪午夜伦伦电影理论片6080| √禁漫天堂资源中文www| 一区二区三区高清视频在线| 国产精品 国内视频| 日日爽夜夜爽网站| 美女午夜性视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品一区二区www| 欧美午夜高清在线| 午夜精品久久久久久毛片777| 啦啦啦 在线观看视频| 精品久久久久久久毛片微露脸| 亚洲一区高清亚洲精品| 麻豆久久精品国产亚洲av| 母亲3免费完整高清在线观看| 人人妻人人看人人澡| 99在线人妻在线中文字幕| 日本在线视频免费播放| 久久国产精品男人的天堂亚洲| 一级作爱视频免费观看| 国产亚洲av高清不卡| 亚洲精品中文字幕一二三四区| 看免费av毛片| 久久精品国产亚洲av香蕉五月| 可以在线观看的亚洲视频| 国产亚洲av高清不卡| 69av精品久久久久久| 9191精品国产免费久久| 国产又色又爽无遮挡免费看| 日本撒尿小便嘘嘘汇集6| 99久久久亚洲精品蜜臀av| 黄片大片在线免费观看| 国产黄片美女视频| 一夜夜www| 在线观看舔阴道视频| 巨乳人妻的诱惑在线观看| 久久精品91无色码中文字幕| 久久精品国产综合久久久| 精品乱码久久久久久99久播| 成熟少妇高潮喷水视频| 久久久国产欧美日韩av| 男人操女人黄网站| 少妇 在线观看| 亚洲精华国产精华精| 成年版毛片免费区| 精品久久久久久久毛片微露脸| 精品第一国产精品| 18禁黄网站禁片免费观看直播| 国产极品粉嫩免费观看在线| 久久国产精品影院| а√天堂www在线а√下载| 91九色精品人成在线观看| 99在线人妻在线中文字幕| 国产av一区在线观看免费| 巨乳人妻的诱惑在线观看| 久久这里只有精品19| 国产亚洲精品久久久久久毛片| 少妇裸体淫交视频免费看高清 | 热99re8久久精品国产| 午夜视频精品福利| 国产av又大| 亚洲中文字幕日韩| 这个男人来自地球电影免费观看| 国产精品乱码一区二三区的特点| 哪里可以看免费的av片| 黄色a级毛片大全视频| 国产91精品成人一区二区三区| 亚洲欧美精品综合久久99| 日韩成人在线观看一区二区三区| 精品一区二区三区四区五区乱码| 悠悠久久av| 国产熟女午夜一区二区三区| 侵犯人妻中文字幕一二三四区| 午夜亚洲福利在线播放| 国产成+人综合+亚洲专区| 成人免费观看视频高清| 国产精品电影一区二区三区| 亚洲熟妇中文字幕五十中出| 淫妇啪啪啪对白视频| 男女床上黄色一级片免费看| 91老司机精品| 黄片小视频在线播放| 精品久久久久久成人av| 99国产极品粉嫩在线观看| bbb黄色大片| 性色av乱码一区二区三区2| 波多野结衣巨乳人妻| АⅤ资源中文在线天堂| 免费观看精品视频网站| 久久精品影院6| 脱女人内裤的视频| 啦啦啦 在线观看视频| 99精品在免费线老司机午夜| 天堂√8在线中文| 国产99久久九九免费精品| 88av欧美| 黄色a级毛片大全视频| 国产精品一区二区三区四区久久 | 超碰成人久久| 嫩草影院精品99| 9191精品国产免费久久| av有码第一页| 正在播放国产对白刺激| 午夜免费观看网址| 久久人妻av系列| 午夜福利欧美成人| 精品久久久久久成人av| 国产主播在线观看一区二区| 在线播放国产精品三级| 国产一卡二卡三卡精品| 九色国产91popny在线| 黄色女人牲交| 亚洲天堂国产精品一区在线| 欧美激情 高清一区二区三区| 正在播放国产对白刺激| 99热只有精品国产| 淫妇啪啪啪对白视频| 亚洲中文av在线| 黑人操中国人逼视频| 男女之事视频高清在线观看| 美女国产高潮福利片在线看| 成人午夜高清在线视频 | 欧美性猛交╳xxx乱大交人| 好看av亚洲va欧美ⅴa在| 久久中文字幕一级| 欧美精品啪啪一区二区三区| 精品免费久久久久久久清纯| 欧美精品啪啪一区二区三区| 色播亚洲综合网| 一级黄色大片毛片| 两性夫妻黄色片| 婷婷亚洲欧美| 久久久久国内视频| 国产午夜福利久久久久久| 真人一进一出gif抽搐免费| 精品电影一区二区在线| 最新在线观看一区二区三区| 国产一区在线观看成人免费| 亚洲欧洲精品一区二区精品久久久| 免费av毛片视频| 国产精品一区二区免费欧美| 天堂√8在线中文| 精品高清国产在线一区| 日韩欧美免费精品| 曰老女人黄片| 欧美在线一区亚洲| 国产精品一区二区精品视频观看| a级毛片在线看网站| 亚洲五月色婷婷综合| 在线观看免费日韩欧美大片| 一边摸一边做爽爽视频免费| 国产成人影院久久av| 老熟妇仑乱视频hdxx| 成人国语在线视频| 国产成人系列免费观看| 国产精品永久免费网站| 精品乱码久久久久久99久播| 日韩大尺度精品在线看网址| 淫秽高清视频在线观看| 99国产精品一区二区三区| 夜夜爽天天搞| 动漫黄色视频在线观看| 女警被强在线播放| 午夜福利18| 99热这里只有精品一区 | 男人操女人黄网站| ponron亚洲| 日韩一卡2卡3卡4卡2021年| 波多野结衣高清无吗| 日本撒尿小便嘘嘘汇集6| 欧美在线黄色| 最新在线观看一区二区三区| 日本 av在线| 日韩欧美国产在线观看| 亚洲av成人av| 韩国av一区二区三区四区| 欧美在线一区亚洲| 日本黄色视频三级网站网址| 日本一区二区免费在线视频| 在线视频色国产色| 午夜久久久在线观看| 国产一卡二卡三卡精品| 成人精品一区二区免费| av视频在线观看入口| 国产午夜福利久久久久久| aaaaa片日本免费| 国产蜜桃级精品一区二区三区|