• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tailoring the properties of opticalmetamaterials

    2010-11-06 05:49:30ChristianHelgertThomasPertschCarstenRockstuhlEkaterinaPshenaySeverinChristophMenzelErnstBernhardKleyArkadiChipoulineChristophEtrichUweHuebner
    中國光學 2010年1期

    Christian Helgert,Thomas Pertsch,Carsten Rockstuhl,Ekaterina Pshenay-Severin,ChristophMenzel,Ernst-Bernhard Kley,Arkadi Chipouline,Christoph Etrich,Uwe Huebner,

    Andreas Tuenne rmann4,Falk Lederer2

    (1.ZIK“ultra-optics”,Institute of Applied Physics,Friedrich SchillerUniversity Jena,

    M ax-W ien-Platz1,07743Jena,Ge rm any;

    2.Institute of Condensed M atter Theory and Solid State Optics,Friedrich SchillerUniversity Jena,

    M ax-W ien-Platz1,07743Jena,Ge rm any;

    3.Institute of Photonic Technology,A lbert-Einstein-Str.9,07745Jena,Ge rm any;

    4.Fraunhofer Institute of Applied Optics and Precision Engineering,A lbert-Einstein-Str.7,07745Jena,Ge rm any)

    1 Introduction

    Metamaterials(MMs)are manmade media in which the propagation properties of electromagnetic radiation are significantly governed by their artificially structured geometry rather than by the natural materials they are composed of.When the electromagnetic waves interacting with these media stem from the optical or near-infrared spectral domain,they are called opticalMMs[1,2].They allow in principal for the control of propagation properties of an optical wave field;like refraction,diffraction,dispersion,phase-and group-velocities. Thus,the knowledge and access to these optical control mechanis msviaopticalMMs enable the realization of optical componentswith comprehensive functionalities[3-7].Moreover,bymeans ofMMs the interaction between light and matter can be extended into domains where nature doesn′t provide any equivalent.Accordingly,although still at the stage of fundamental research,MMs are expected to elicit a boost in the field of modern optics[8,9].

    In recent years,a large part of the effort to explore optical MMs was aimed at the derivation of comprehensible design guidelines to realize naturally unattainable optical functionalities.In this paper we consider a class ofMMswhose unit cells have a spatial extent much s maller than the wavelength of the interacting optical radiation.If this condition ismet,the light propagation in theMM will be governed by the normal modes of a homogeneous medium.Such MMs are commonly described as assuming effective properties,which,and this is an important statement,can be deliberately tailored. Usually,an effective electric permittivity and an effective magnetic per meability are introduced that can be utilized to derive formally an effective index of refraction.

    The usage of these effective properties greatly facilitates the description of lightpropagation through MMs because detailsof the correct unit cell geometry for ming theMM can be neglected.Despite their unquestionable usefulness forMM designers,itmust be carefully borne in mind that the effective material properties are an intuitive yet simplified approximation in order to model light propagation throughMMs instead of accurately describing the MM itself.The critical issues in deriving meaningful effective propertieswere recently discussed in[10].However,to have such properties at hand,the common approach relies on a retrieval algorithm of effective properties bymeans of the inversion of the scattering problem of a homogenized finite slab at normal incidence[11].This algorithm was recently generalized for oblique incidence including the influence of a substrate[12]as it is necessary for the practical realization of any MM.

    In thiscontribution we review our latest achievements to tailor the properties of opticalMMs.We show combined experimental and theoretical studies of three exemplary MM designs.All these samples have been realized by means of a Vistec SB350OS electron-beam writer and lift-off techniques.Their optical responses have been investigated spectroscopically. In each case our experiments are complemented by numerical simulations applying either the FourierModalMethod[13]or Finite-Difference T ime-Domain simulations[14].For the rigorous trea tment both the exact geometry of the respective unit cells and the spectral dependence of the material properties as documented in the literature were appropriately taken into account.

    The paper is organized as follows:Section 2 addresses a near-infrared,negative-index MM composed of two distinct unit cell elements. This approach permits an independent tuning of the geometry of the unit cell components. Section 3 deals with a novelMM design that releases the constraint of polarization dependency.The Swiss-crossMM was recently shown to have a polarization independent optical response for nor mal incidence and a negative index of refraction atλ =1.4μm.Moreover,we study the optical properties of the Swiss-crossMM at oblique incidence and reveal its angle-dependent effective properties.

    It is shown that the spectral and angular domains of the negative refractive index as well as its magnitude are closely connected to the propagation direction and the polarization state of the illumination. Generally speaking,the optical response is dominated by spatial dispersion,as it is expected for any thin film MM that has been published to date.The implications for the notion of effective properties of common MMs are discussed. In Section 4 we attempt to evaluate exper imentally the requirement of a periodic arrangement of the unit cells in optical MMs.The ans wer to this question is urgently needed since the serial fabrication methods of today′sMMs are expected to be replaced by faster and less costly self-assembling or chemically randomized fabrication schemes.We investigate a model MM system by gradually increasing the degree of positional disorder with respect to its unit cells.The observable spectral features occurring upon this transition and the impact of the effective properties of the MM are revealed.Most importantly,we confir m that the magnetic properties of commonMMs are hardly affected by an arbitrarily high degree of positional disorder of the unit cells.We elucidate the encouraging conclusions to be drawn with respect to negative index materials and potential devices composed of them.

    2 Double-element negative-index structure

    In the framework of an effective medium approach,the issue of providing an effective magnetic permeability different from unity,i.e. a magneto-optical activity,was commonly employed by the excitation of localized plas mon polariton eigenmodes in metallic nanostructures[15]. In the optical domain,the double cut-wire structure has attracted particular attention[16].A magnetic moment arises from an antisymmetric localized plasmon polariton that can be excited if the illuminating electric field is polarized parallel to the wires.Combining this structure with continuousmetallic wires decreases its effective plasma frequency and provides control of the effective electric permittivity of the medium. In the wellknown fishnetstructure,these two components merge into a single unit[17].Accordingly,the double cut-wire structure is of interest due to the possibility of tailoring the geometry of both structural elements[18].

    Fig.1 (a)Schematic of the double cut-wireMM with structural design parameters,(b)tilted electronmicrograph view of a fabricated double-cutwire sample slicedwith a focused ion beam to visualize the vertical structure,(c)transmission at normal incidence(0,grey lines)and reflection(8°,black lines)spectra for the resonant polarization.Solid and dotted lines represent measured and calculated spectra,respectively,(d)real(grey solid lines)and imaginary(black dotted)parts of the electric permittivityε,magnetic permeabilityμand refractive indexnof the sample derived from the calculated spectra shown in c).

    The geometry of the unit cell is shown in Fig.1(a).The periods of the structure arePx=500 nm andPy=600 nm.The width of the continuouswires isW1=130 nm and of the cut-wiresW2=100 nm,the length of the cut-wires isL=430 nm,and the thicknesses of the metal layerdMe=40 nm and the dielectric spacerds=40 nm. The SEM micrograph in Fig.1(b)shows a fabricated sample revealing the vertical structure by an F IB-slice. In the experiment we consider nor mal light incidence and an electric field polarization parallel to the wires.In this configuration the cut-wire structure supports two plas monic eigenmodes with different eigenfrequencies.The excitation of an anti-symmetric mode corresponds to anti-phase current oscillations in the cut-wires and evokes the appearance of a permeability resonance. In Fig.1(c)the measured transmission and reflection spectra are compared to numerical simulations.Regarding the multiple spectral features,we concentrate on the transmission minimum nearλ =2.1μm.Here the anti-symmetric eigenmode ismost excited.This is confirmed by the calculation ofthe effective permeability[12],where a resonance with a Lorentzian line shape is observed atλ =2.1μm.W ith respect to the effective refractive index,we conclude thatn=-0.5+1.9i atλ =2.1μm can be formally attributed to our structure,as shown in Fig.1(d).The options to further tailor the efficiency of the structure are manyfold due to free design parameters.For instance,increasing the strength of the anti-symmetric resonance goes alongwith a decrease of the period in thex-direction or alternatively with an increase of the width of the cut-wires.Another possibility is to break the vertical symmetry of the cut-wire[19].

    3 Polarization-independent Swisscross structure and its angular response

    The optical MM presented in the former section exhibits its particular optical property,a negative refractive index,for normal incidence and for one polarization state of the electric field component only.This dependency applies to most prototypical unit cells of currently published optical MMs and can be reduced only by a novel design approach.It can be anticipated that for future applications of MMs,a polarization-insensitive response is highly desirable.In addition to that,the angular response of any thin film MM must be known explicitly if it is to be employed in imaging concepts[20].Here we present a first practical approach to address these issues. The Swiss-cross structure[21]was recently shown to have a polarization-independent optical response for normal incidence.The principle design of the unit cell is illustrated in Fig.2(a)and the fabricated sample is shown in Fig.2(b).The structure has a lattice constant of 410 nm in both lateral dimensions.The width and length of the ar ms of the Swiss crosswere designed to bexs=80 nm andxl=310 nm,respectively.The thicknesses of the gold films and the inter mediate dielectric magnesia film were set to bedAu=30 nm anddMgO=37.5 nm,respectively.Remarkably,the metamaterial extends over an area of 9 mm2.

    The functionality of the structure can be understood in ter ms of a generalized isotropic cut-wire plate combined with orthogonally oriented wires.Like the double-element MM,an anti-symmetric plasmonic eigenmode is excited at a given resonance wavelength in the cut-wires that are now merged in the Swiss-cross structure.Because of the structure′s fourfold rotational symmetry,a polarization-independent optical response at normal incidence is anticipated.Based on spectroscopic measurements in transmission and reflection we provide experimental evidence of this property(Fig.2(c)and(d)).The measured exper imental data is confir med by comparison to rigorous calculations(Fig.2(e)).Again,we assign effective permeability,permittivity and consequently a refractive indexnto our Swiss-cross structure. For the fabricated sample a value ofn=-1.9+2.7i at the resonance wavelength around 1.4μm is deduced(Fig.2(f)).The design parameters are chosen primarily because of the experimental constraints imposed by our setup and are not meant to be optimized.The Swiss cross improves a particular aspect of the fishnet design as it el iminates the drawback of a polarization-dependent optical response.The free design parameters are the widthxsand the lengthxlof the cross arms and the thicknessesdAuanddMgOof the thin film layers.By changing these values the negative-index domain could be tuned to otherwavelengths aswell.

    Fig.2 (a)Schematic of the Swiss-crossMM unit cellwith structural parameters,(b)nor mal view electron micrograph of a fabricated sample(inset:magnification of a unit cell),(c)measured trans mission,(d)reflection spectra of the sampl for a complete set of linear polarization states from 0°to 180°in steps of 5°at normal incidence,(e)measured(solid lines)and calculated(dotted lines)trans mission(grey)and reflection(black)for 0°polarization,(f)real(solid line)and imaginary(dotted line)partof the effective refractive indexnderived from the spectra shown in(e).

    Furthermore,we provide insightinto the dependence of the effective MM properties of the Swiss cross on the angle of incident light both experimentally and theoretically[22]. The angular and spectral dependent response was measured using a self-built spectroscopic setup for specular transmission and reflectance.We take the az imuth angleφ,the elevation angleθand the state of polarization to describe the plane wave normal.TE polarization implies that the incidentE-field is tangential to the surface.To exclude the undesired effect of depolarization we consider the four symmetry directions of all possible combinations ofφ =0, φ =45°,TE-and T M-polarization. In these cases no coupling can occur between the TE-like and T M-like polarized eigenstates of the effective MM,hence the polarization states of in-and out-coming waves are maintained.The resulting spectra were measured for their dependence onθandλ and have been compared to the numerically s imulated data. As an excellent agreement is observed,we can rely in future on the simulated data to retrieve the angular-dependent effective properties of the structure[12].

    We note that the effective properties of the Swiss-cross structure suffer from strong spatial dispersion and consequently have to be understood as wave parameters rather than genuine material parameters.Any effective property looses its meaning if it has to be deter mined for every incidence angle and polarization state separately.For instance,it can be shown that the spectral and angular domains of the negative refractive index aswell as itsmagnitude are closely connected to the propagation direction and the polarization state of the illumination.We can conclude for the given example of the Swiss-cross MM that its description as effectively homogenous and anisotropic is physically inappropriate[22].However,we dissuade from abandoning the general description ofMMs by effective properties at the present stage.Provided that the limits of their applicability are carefully borne in mind,angular resolved effective properties give preliminary insight into the underlying physics and can serve to simplify the description of light propagation inside a Swiss-cross MM.

    Fig.3 (a)Schematic of the cut-wireMM unit cellwith structural parameters,(b)SEM micrograph of a sample with disorderD=1.6,(c)measured transmission and(d)reflection spectra as a function of the disorder parameterD.Both spectra are recorded for discrete values ofDand interpolated to guide the eye,(e)Simulated trans mission spectrum for three discrete valuesofD,(f)FDTD s imulation of the absoluteE-field amplitude in reflection forD=3.0 atλ=1 050 nm.

    4 Transition from periodic to amorphousMMs

    Almost all fabricated opticalMMs to date are composed ofmeta-atoms or unit cells arranged in periodic lattices.This has been shown to be convenient for numericaltreatmentsince periodic arrangements greatly facilitate rigorous simulations by considering one single unit cell equipped with periodic boundary conditions.Here we provide an intuitive approach to lift the constraintofperiodicity in opticalMMs by investigating the transition form periodic to truly amorphousMMs[23].Besides unraveling the significance of periodic arrangements,the quantitative investigation of disordered and amorphousMMs is usually regarded to be essential for the realization of isotropic MMs.

    The system we consider is based on the cut-wire pairMM[16].Fig.3(a)shows the principle design of the unit cell.Each cut wire pair consists of two gold layerswith a thickness ofdAu=30 nm separated by a magnesia spacerwithdMgO=45 nm.The length of the wires isxl=yl=180 nm and the lattice constant isPx=Py=512 nm in the reference sample.Positional disorder is introduced by summing a random displacement to the centre position of each unit cell,independently in both lateral directions.Normalizing this displacement to the periodPx=Py,we obtain an average dimensionless parameterDto quantize the degree of disorder in the system. Keeping the average density of cut-wire pairs and hence the average surface filling fraction constant,several MM samples withDincreasing from 0 to 1 000 were fabricated.Fig.3(b)shows one representative SEM micrograph of a sample withD=1.6.The results of the spectral characterization for trans mission and reflection are summarized in Fig.3(c)and(d).As for the periodic reference sample we note two dips situated atλ=800 nm and λ=1 050 nm in the trans mission and a peak atλ=800 nm in the reflection spectrum.These two resonances are identified as the symmetric and antisymmetric plasmonic eigenmodes of the cut-wire pairs.They evolve differently if the degree of disorderDis increased.While the anti-symmetric resonance atλ=1 050 nm is almost independent ofD,the symmetric resonance rapidly decays even for a moderate degree of disorder. This behaviour is confir med by finite-difference t ime-domain simulations for a supercell of cut-wire pair MMs with no(D=0),moderate(D=0.3)and high(D=3.0)positional disorder corresponding to a periodic,disordered and amorphous MM,respectively(Fig.3(e)).

    Our key finding is that the anti-symmetric resonance is nearly invariant to positional disorder.It is important to note that this resonance is the key feature in the majority of today′s negative-indexMMs.Based on a detailed investigation of the eigenmodes supported by near-field calculations for different values ofD(Fig.3(f)),we can explain this result.Basically we argue that the electric quadrupole associated with the anti-symmetric resonance does not have any in-plane component.Thus itmakes the interaction among neighbouring particles negligible.Furthermore,with the claim of evaluating the effective properties of amorphousMMs for the first time,similar conclusions can be drawn.The resonance in the effective magnetic permeability that is related to the anti-symmetric eigenmode does not experience any noteworthy changes upon the transition from a periodic to an amorphous MM. Independent of the degree of disorder the line shape,the strength and the width of this resonance remain unchanged. It can be concluded that the magnetic response of any MM based on this particular eigenmode is solely determined by the response of the individual metaatoms regardlessof their arrangement.This is an important finding when it comes to the fabrication of MMs by self-organized approaches.The implications of our finding facilitate the integration of optical negative-indexMMs in sub-wavelength imaging applications and relax the constraintof the necessity of periodical arrangements in modernMM designs.For instance,the effective properties of large-scale optical MMs fabricated by quick and reliable bottom-up approaches[19]can be evaluated by considering their periodic equivalents.Moreover,the influence of the structural parameters on the tunability of the effective properties of such amorphous MMs can be revealed[23].

    5 Conclusions

    Effective properties constitute an intuitive way to gain insight into light propagation in optical MMs.We have demonstrated how structural parameters can be employed to design and tailor the response of highly dispersive,optical MMs.We addressed this approach on the basis of three opticalMM designs:the double cut-wire pair structure,the Swiss-cross structure and the amorphous cut-wire pair MM.Combining experimental and theoretical studies it was shown how the operational wavelength of an effective index of refraction smaller than zero and its sensitivity to polarization can be modified.Nevertheless,the valuable concept of effective parameters must a lways be used in the limits of its applicability due to the scaling of the characteristic lengths of the constituentmeta-atoms and the wavelength of the interacting electromagnetic radiation.By retrieving angular-dependent effective propertieswe show through the example of the Swiss-crossMM that in the vicinity of the resonance with negative refraction it cannot be described as effectively homogeneous.Another way to look at the homogenization of opticalMMs is to evaluate the necessity of a periodic arrangement of the unit cells.We investigated the transition from periodic to amorphousMMs and confirm that the opto-magnetic properties of common MMs are virtually unaffected by an arbitrarily high degree of positional disorder.This new degree of freedom in the design and fabrication of opticalMMs opens further paths to tailor their effective properties according to the requirements imposed on them.

    [1] SOUKOUL IS C M,L INDEN S,WEGENER M.Negative refractive index at optical wavelengths[J].Science,2007,315(5808):47-49.

    [2] SHALAEV V M.Optical negative-indexmetamaterials[J].Nat.Phot.,2006,1:41-48.

    [3] PENDRY J B.Negative refraction makes a perfect lens[J].Phys.Rev.Lett.,2000,85(18):3966-3969.

    [4] ALùA,ENGHETA N.Theory of linear chains ofmetamaterial/plasmonic particles as subdiffraction optical nanotrans mission lines[J].Phys.Rev.B,2006,74(20):205436-205444.

    [5] KLE IN M W,ENKR ICH C,WEGENER M,et al..Second-har monic generation from magnetic metamaterials[J].Science,2006,313(5876):502-504.

    [6] SHADR IVOV I V,SUKHORUKOV A A,K IVSHAR Y S.Guided modes in negative-refractive-index waveguides[J].Phys.Rev.E,2003,67(5):057602-057606.

    [7] LEE J W,SEO M A,SOHN J Y,et al..Invisible plas monic meta-materials through impedance matching to vacuum[J].Opt.Expr.,2005,13(26):10681-10687.

    [8] LEONHARDTU.Optical conformalmapping[J].Science,2006,312(5871):1777-1780.

    [9] K ILD ISHEV A V,SHALAEV V M.Engineering space for lightviatransformation optics[J].Opt.Lett.,2008,33(1):43-45.

    [10] ROCKSTUHL C,MENZEL C,PAUL T,et al..Light propagation in a fishnetmetamaterial[J].Phys.Rev.B,2008,78(15):155102-155106.

    [11] S M ITH D R,SCHULTZ S,MARKO?P,et al..Determination of effective per mittivity and per meability of metamaterials from reflection and trans mission coefficients[J].Phys.Rev.B,2002,65(19):195104-195108.

    [12] MENZEL C,ROCKSTUHL C,PAUL T,et al..Retrieving effective parameters formetamaterials atoblique incidence[J].Phys.Rev.B,2008,77(19):195328-195335.

    [13] L IL.New for mulation of the Fouriermodalmethod for crossed surface-relief gratings[J].J.Opt.Soc.Am.A,1997,14(10):2758-2767.

    [14] TAFLOVE A,HAGNESS S.Com putational Electrodynam ics:The Finite-D ifference Time-Dom ain M ethod[M].3rd ed,Boston:Artech House,2005.

    [15] ROCKSTUHL C,ZENTGRAF T,PSHENAY-SEVER IN E,et al..The origin ofmagnetic polarizability in metamaterials at optical frequencies-an electrodynamic approach[J].Opt.Expr.,2007,15(14):8871-8883.

    [16] SHALAEV V M,CA IW SH,CHETT IAR U K,et al..Negative index of refraction in optical metamaterials[J].Opt.Lett.,2005,30(24):3356-3358.

    [17] DOLL ING G,ENKR ICH C,WEGENER M,et al..Low-loss negative-index metamaterials at telecommunication wavelengths[J].Opt.Lett.,2006,31(12):1800-1802.

    [18] PSHENAY-SEVER IN E,HUEBNER U,MENZEL C,et al..Double-elementmetamaterialwith negative index at near infrared wavelenghts[J].Opt.Lett.,2009,34(11):1678-1680.

    [19] PAKIZEH T,DM ITR IEV A,ABR ISHAM IAN M S,et al..Structural asymmetry and induced optical magnetis m in plasmonic nanosandwiches[J].J.Opt.Soc.Am.B,2008,25(4):659-667.

    [20] PAUL T,ROCKSTUHL C,MENZEL C,et al..Anomalous refraction,diffraction,and imaging in metamaterials[J].Phys.Rev.B,2009,79(111):115430-115440.

    [21] HELGERT C,MENZEL C,ROCKSTUHL C,et al..Polarization-independent negative-indexmetamaterial in the near infrared[J].Opt.Lett.,2009,34(5):704-706.

    [22] MENZEL C,HELGERT C,üPP ING J,et al..Angular resolved effective optical properties of a Swiss cross metamaterial[J].Appl.Phys.Lett.,2009,95(13):131104-131106.

    [23] HELGERT C,ROCKSTUHL C,ETR I CH C,et al..Effective properties of amorphousmetamaterials[J].Phys.Rev.B,2009,79(23):233107-233110.

    色精品久久人妻99蜜桃| 一区二区三区免费毛片| 很黄的视频免费| 国产高清三级在线| 黄色日韩在线| 日韩欧美精品v在线| 成人特级av手机在线观看| 美女cb高潮喷水在线观看| 91麻豆av在线| 国产精品久久久久久精品电影| 欧美成人性av电影在线观看| 国产精品亚洲av一区麻豆| 一本精品99久久精品77| 伊人久久精品亚洲午夜| 亚洲美女黄片视频| 欧美一区二区国产精品久久精品| 最后的刺客免费高清国语| 欧美日韩亚洲国产一区二区在线观看| 日韩国内少妇激情av| 人人妻人人澡欧美一区二区| 男女床上黄色一级片免费看| 一个人观看的视频www高清免费观看| 老鸭窝网址在线观看| 久久午夜亚洲精品久久| 欧美成狂野欧美在线观看| 一本一本综合久久| xxxwww97欧美| 欧美黄色淫秽网站| 欧美大码av| 韩国av一区二区三区四区| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品sss在线观看| 哪里可以看免费的av片| 日韩高清综合在线| 中出人妻视频一区二区| 一级毛片高清免费大全| 午夜久久久久精精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 村上凉子中文字幕在线| 亚洲成人中文字幕在线播放| 天堂动漫精品| 免费观看人在逋| a在线观看视频网站| 老司机午夜十八禁免费视频| 日韩欧美国产在线观看| 欧美高清成人免费视频www| 在线观看66精品国产| 精品电影一区二区在线| 欧美bdsm另类| 岛国在线免费视频观看| 色av中文字幕| 亚洲色图av天堂| 国内揄拍国产精品人妻在线| 99久久无色码亚洲精品果冻| 在线播放国产精品三级| 女同久久另类99精品国产91| 宅男免费午夜| 中亚洲国语对白在线视频| 欧美日韩亚洲国产一区二区在线观看| 网址你懂的国产日韩在线| 少妇丰满av| 女人十人毛片免费观看3o分钟| 老司机午夜福利在线观看视频| 久久精品亚洲精品国产色婷小说| 亚洲国产精品sss在线观看| 18禁美女被吸乳视频| 欧美中文日本在线观看视频| 欧美绝顶高潮抽搐喷水| 亚洲精品成人久久久久久| 18禁美女被吸乳视频| 欧美极品一区二区三区四区| 免费无遮挡裸体视频| 亚洲美女视频黄频| 亚洲五月婷婷丁香| 久久国产精品人妻蜜桃| 999久久久精品免费观看国产| 深夜精品福利| 成人av在线播放网站| 日日摸夜夜添夜夜添小说| 国产高清视频在线播放一区| 露出奶头的视频| 老司机午夜十八禁免费视频| 国产熟女xx| 亚洲美女黄片视频| 亚洲国产精品成人综合色| 色尼玛亚洲综合影院| 精品不卡国产一区二区三区| 美女高潮喷水抽搐中文字幕| 欧美日韩福利视频一区二区| 欧美高清成人免费视频www| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| 婷婷丁香在线五月| av福利片在线观看| 久久久久久久久久黄片| 日韩有码中文字幕| 亚洲国产日韩欧美精品在线观看 | 亚洲欧美精品综合久久99| 伊人久久精品亚洲午夜| 色综合亚洲欧美另类图片| 国产成人影院久久av| 久久久久久久亚洲中文字幕 | АⅤ资源中文在线天堂| 中文字幕精品亚洲无线码一区| 好看av亚洲va欧美ⅴa在| 日韩欧美精品v在线| 久久久久久久精品吃奶| 国产色爽女视频免费观看| 免费在线观看影片大全网站| 淫秽高清视频在线观看| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 五月玫瑰六月丁香| 三级毛片av免费| 91在线观看av| eeuss影院久久| 最近最新免费中文字幕在线| 亚洲人成网站高清观看| 中文字幕av成人在线电影| 噜噜噜噜噜久久久久久91| 最新在线观看一区二区三区| 老司机在亚洲福利影院| 岛国视频午夜一区免费看| 久久久国产成人免费| 中文字幕高清在线视频| 3wmmmm亚洲av在线观看| 国产亚洲av嫩草精品影院| 国产激情偷乱视频一区二区| 亚洲国产精品999在线| 免费人成视频x8x8入口观看| 久久久精品大字幕| 神马国产精品三级电影在线观看| 亚洲av熟女| 在线播放国产精品三级| 精品电影一区二区在线| av在线蜜桃| 日本 av在线| 嫁个100分男人电影在线观看| 国产色婷婷99| 亚洲av成人不卡在线观看播放网| 日日干狠狠操夜夜爽| 黄色丝袜av网址大全| 欧美日韩黄片免| 亚洲av日韩精品久久久久久密| 夜夜夜夜夜久久久久| 欧美日韩精品网址| 波多野结衣高清作品| 热99re8久久精品国产| 国产伦一二天堂av在线观看| 久久久成人免费电影| 国产成人影院久久av| a级一级毛片免费在线观看| 午夜福利18| 亚洲精品影视一区二区三区av| 久久国产精品人妻蜜桃| 国产男靠女视频免费网站| 欧美成人性av电影在线观看| 精品一区二区三区av网在线观看| 嫩草影视91久久| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 1000部很黄的大片| а√天堂www在线а√下载| 中文在线观看免费www的网站| 99久久久亚洲精品蜜臀av| 免费大片18禁| 高清在线国产一区| 国产乱人视频| 久久久久久久精品吃奶| 可以在线观看毛片的网站| 亚洲国产精品sss在线观看| 日本 欧美在线| 天堂网av新在线| 午夜免费成人在线视频| 久久天躁狠狠躁夜夜2o2o| 国产又黄又爽又无遮挡在线| 一区二区三区高清视频在线| 51午夜福利影视在线观看| 制服人妻中文乱码| 一区二区三区高清视频在线| 国产91精品成人一区二区三区| 色精品久久人妻99蜜桃| 国产精品亚洲av一区麻豆| 精品久久久久久久人妻蜜臀av| 岛国在线观看网站| 无遮挡黄片免费观看| 亚洲av电影在线进入| 麻豆国产av国片精品| 国产成人av激情在线播放| 三级男女做爰猛烈吃奶摸视频| 一a级毛片在线观看| 精品免费久久久久久久清纯| 国内精品久久久久久久电影| av专区在线播放| 久久精品人妻少妇| 男女床上黄色一级片免费看| 禁无遮挡网站| 黄色丝袜av网址大全| 欧美最新免费一区二区三区 | av天堂在线播放| 国产一区二区三区在线臀色熟女| 国产中年淑女户外野战色| 一本综合久久免费| 美女高潮喷水抽搐中文字幕| 99久国产av精品| 又黄又爽又免费观看的视频| 99精品欧美一区二区三区四区| 99热6这里只有精品| 国产毛片a区久久久久| 五月玫瑰六月丁香| 亚洲精品456在线播放app | 亚洲最大成人中文| АⅤ资源中文在线天堂| 久久草成人影院| 色哟哟哟哟哟哟| 观看美女的网站| 特大巨黑吊av在线直播| 一进一出抽搐gif免费好疼| 天美传媒精品一区二区| 啦啦啦观看免费观看视频高清| 国产三级在线视频| 黄片大片在线免费观看| 又黄又粗又硬又大视频| 国产精品一区二区三区四区久久| 少妇的丰满在线观看| 午夜福利在线观看免费完整高清在 | 日韩欧美国产一区二区入口| 亚洲精品久久国产高清桃花| 一本综合久久免费| 国产免费av片在线观看野外av| 一级黄片播放器| h日本视频在线播放| 国产国拍精品亚洲av在线观看 | 午夜福利在线在线| 夜夜爽天天搞| 91在线观看av| 亚洲美女黄片视频| 国产国拍精品亚洲av在线观看 | 久久久色成人| 亚洲欧美激情综合另类| 757午夜福利合集在线观看| 日韩成人在线观看一区二区三区| 日韩欧美免费精品| 黄色丝袜av网址大全| 午夜福利高清视频| 亚洲av一区综合| 欧美极品一区二区三区四区| 欧美最新免费一区二区三区 | 91久久精品电影网| 亚洲国产欧美人成| 在线看三级毛片| 韩国av一区二区三区四区| 大型黄色视频在线免费观看| 中文字幕熟女人妻在线| 日本撒尿小便嘘嘘汇集6| 757午夜福利合集在线观看| 婷婷六月久久综合丁香| 成年人黄色毛片网站| 色综合婷婷激情| 成人三级黄色视频| 91久久精品国产一区二区成人 | 少妇高潮的动态图| 一进一出好大好爽视频| a在线观看视频网站| 天堂影院成人在线观看| 国产精品亚洲一级av第二区| 黄色女人牲交| 在线观看美女被高潮喷水网站 | 国内精品久久久久精免费| 亚洲成人免费电影在线观看| 国产av不卡久久| 在线观看免费午夜福利视频| 99久久精品一区二区三区| 日本免费一区二区三区高清不卡| 亚洲无线在线观看| 亚洲一区高清亚洲精品| 激情在线观看视频在线高清| 男女做爰动态图高潮gif福利片| 精品欧美国产一区二区三| 夜夜躁狠狠躁天天躁| 好男人电影高清在线观看| 国产精品自产拍在线观看55亚洲| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 成人特级黄色片久久久久久久| 宅男免费午夜| 久久九九热精品免费| 怎么达到女性高潮| 99国产极品粉嫩在线观看| 69人妻影院| 色尼玛亚洲综合影院| 亚洲 欧美 日韩 在线 免费| 床上黄色一级片| e午夜精品久久久久久久| 国产精品国产高清国产av| 色吧在线观看| 亚洲成av人片免费观看| 少妇的逼水好多| www日本黄色视频网| 毛片女人毛片| 日韩欧美在线乱码| 丁香欧美五月| 99国产精品一区二区蜜桃av| 欧美国产日韩亚洲一区| 悠悠久久av| 一个人免费在线观看电影| 国产精品永久免费网站| 亚洲精品在线美女| 老鸭窝网址在线观看| 香蕉久久夜色| 欧美一区二区国产精品久久精品| 成人欧美大片| 男女床上黄色一级片免费看| 国产高清三级在线| 欧美午夜高清在线| 熟女少妇亚洲综合色aaa.| 国产三级在线视频| x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 麻豆国产av国片精品| 国产精品1区2区在线观看.| 舔av片在线| 窝窝影院91人妻| 日本精品一区二区三区蜜桃| 校园春色视频在线观看| 一级a爱片免费观看的视频| 欧美日韩福利视频一区二区| 999久久久精品免费观看国产| 成人无遮挡网站| 国产精品99久久久久久久久| 国产黄a三级三级三级人| 国产精品 欧美亚洲| 色在线成人网| 欧美丝袜亚洲另类 | 全区人妻精品视频| 嫩草影院入口| 国产黄片美女视频| 色播亚洲综合网| www日本在线高清视频| 在线观看美女被高潮喷水网站 | 欧美精品啪啪一区二区三区| 免费观看人在逋| 99久久99久久久精品蜜桃| 99在线人妻在线中文字幕| 天堂网av新在线| 国产私拍福利视频在线观看| 亚洲天堂国产精品一区在线| 18禁黄网站禁片免费观看直播| 国产日本99.免费观看| 亚洲 国产 在线| 精品一区二区三区视频在线 | 国产精品亚洲av一区麻豆| 国产三级中文精品| 非洲黑人性xxxx精品又粗又长| 两个人的视频大全免费| 久久午夜亚洲精品久久| 亚洲精品在线美女| 一级作爱视频免费观看| 三级国产精品欧美在线观看| 给我免费播放毛片高清在线观看| 99视频精品全部免费 在线| 国模一区二区三区四区视频| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 日韩国内少妇激情av| 亚洲性夜色夜夜综合| 在线观看舔阴道视频| 亚洲内射少妇av| 成人一区二区视频在线观看| www.999成人在线观看| 精品人妻一区二区三区麻豆 | 成年免费大片在线观看| 国产野战对白在线观看| 成年免费大片在线观看| 五月伊人婷婷丁香| 亚洲第一欧美日韩一区二区三区| 搡老岳熟女国产| 亚洲av不卡在线观看| 亚洲国产精品999在线| 美女高潮的动态| 久久欧美精品欧美久久欧美| 欧美丝袜亚洲另类 | 国内精品美女久久久久久| 黄片大片在线免费观看| 日本黄大片高清| 男插女下体视频免费在线播放| 欧美三级亚洲精品| 久久性视频一级片| 午夜福利高清视频| 很黄的视频免费| 欧美日本亚洲视频在线播放| 免费在线观看亚洲国产| 一级a爱片免费观看的视频| 免费看日本二区| 啦啦啦免费观看视频1| 久久久国产成人精品二区| 男女午夜视频在线观看| 蜜桃亚洲精品一区二区三区| 欧美在线黄色| 亚洲男人的天堂狠狠| 3wmmmm亚洲av在线观看| 尤物成人国产欧美一区二区三区| 色吧在线观看| 人妻丰满熟妇av一区二区三区| 国产av不卡久久| 免费人成在线观看视频色| 国产国拍精品亚洲av在线观看 | 亚洲,欧美精品.| 国产在线精品亚洲第一网站| 国产一区二区在线av高清观看| 国产激情欧美一区二区| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩东京热| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 久久午夜亚洲精品久久| 国产高潮美女av| 久9热在线精品视频| 99久久久亚洲精品蜜臀av| 黄色片一级片一级黄色片| 日韩人妻高清精品专区| 亚洲人成伊人成综合网2020| 在线视频色国产色| 亚洲人成网站在线播| 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| 女人高潮潮喷娇喘18禁视频| 成人无遮挡网站| 成人欧美大片| 精品国产三级普通话版| 午夜激情欧美在线| 精品不卡国产一区二区三区| 免费大片18禁| 啦啦啦韩国在线观看视频| 热99在线观看视频| 男女视频在线观看网站免费| 麻豆一二三区av精品| 久久久久久久久大av| 日本黄色片子视频| av在线蜜桃| 亚洲精品影视一区二区三区av| 久久精品国产综合久久久| 国产成年人精品一区二区| 日本三级黄在线观看| 最好的美女福利视频网| 无人区码免费观看不卡| 亚洲人成网站在线播放欧美日韩| 搡老妇女老女人老熟妇| 国产激情偷乱视频一区二区| 亚洲av成人av| 免费一级毛片在线播放高清视频| 一二三四社区在线视频社区8| 欧美一级a爱片免费观看看| 精品久久久久久,| 熟女人妻精品中文字幕| 又粗又爽又猛毛片免费看| 欧美色欧美亚洲另类二区| 日韩 欧美 亚洲 中文字幕| 久久伊人香网站| 欧美黑人欧美精品刺激| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人| 成人高潮视频无遮挡免费网站| 嫩草影院入口| 91久久精品电影网| 美女高潮的动态| 国产一区在线观看成人免费| 久久国产精品人妻蜜桃| 久久久国产精品麻豆| 在线十欧美十亚洲十日本专区| 亚洲精华国产精华精| 国产免费一级a男人的天堂| 一进一出抽搐动态| eeuss影院久久| 午夜久久久久精精品| 女生性感内裤真人,穿戴方法视频| 看片在线看免费视频| 精品免费久久久久久久清纯| 亚洲人成网站在线播放欧美日韩| 可以在线观看的亚洲视频| 村上凉子中文字幕在线| 亚洲天堂国产精品一区在线| 国产亚洲欧美在线一区二区| 天天一区二区日本电影三级| 久久九九热精品免费| 伊人久久大香线蕉亚洲五| www国产在线视频色| 国产私拍福利视频在线观看| 一级毛片高清免费大全| 成人午夜高清在线视频| 欧美三级亚洲精品| 成年免费大片在线观看| 久久久成人免费电影| 脱女人内裤的视频| 欧美日韩乱码在线| 国产亚洲精品久久久久久毛片| 一进一出抽搐动态| 精品国产三级普通话版| 日日摸夜夜添夜夜添小说| 91在线精品国自产拍蜜月 | 真人一进一出gif抽搐免费| 人人妻,人人澡人人爽秒播| 婷婷丁香在线五月| 亚洲精品色激情综合| 欧美乱码精品一区二区三区| 久久亚洲真实| av在线蜜桃| 国产成人欧美在线观看| 久久中文看片网| 人人妻人人看人人澡| 欧美成人a在线观看| 精品一区二区三区人妻视频| 国产亚洲欧美98| 国产私拍福利视频在线观看| 在线国产一区二区在线| 成人午夜高清在线视频| 亚洲成人久久性| 欧美色欧美亚洲另类二区| www.色视频.com| 波多野结衣巨乳人妻| 男女之事视频高清在线观看| 国内精品美女久久久久久| 狂野欧美激情性xxxx| 黄片小视频在线播放| 久久久久免费精品人妻一区二区| 国产精品 国内视频| 亚洲成人久久性| 人妻久久中文字幕网| 丰满人妻一区二区三区视频av | 国产国拍精品亚洲av在线观看 | 久久久国产精品麻豆| 少妇高潮的动态图| 99精品久久久久人妻精品| 欧美在线黄色| 免费在线观看日本一区| 日日干狠狠操夜夜爽| 国产一区二区三区视频了| 成年女人毛片免费观看观看9| 日韩欧美三级三区| 老司机深夜福利视频在线观看| 国产成人影院久久av| 欧美日本亚洲视频在线播放| 又爽又黄无遮挡网站| 国产野战对白在线观看| 欧美中文日本在线观看视频| 18禁黄网站禁片免费观看直播| 日本三级黄在线观看| 他把我摸到了高潮在线观看| 黄色丝袜av网址大全| 草草在线视频免费看| 欧美大码av| 欧美黑人欧美精品刺激| 国产色婷婷99| 亚洲国产欧美人成| 久久久久免费精品人妻一区二区| av在线天堂中文字幕| 日本熟妇午夜| а√天堂www在线а√下载| 日韩国内少妇激情av| 亚洲欧美一区二区三区黑人| 日本熟妇午夜| 黄色视频,在线免费观看| 国产伦在线观看视频一区| 天天添夜夜摸| 欧美日韩瑟瑟在线播放| 母亲3免费完整高清在线观看| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 中文亚洲av片在线观看爽| 一本久久中文字幕| 麻豆久久精品国产亚洲av| 99热6这里只有精品| 99久久久亚洲精品蜜臀av| 久久久久性生活片| 欧美又色又爽又黄视频| 亚洲成a人片在线一区二区| 午夜福利欧美成人| 成人鲁丝片一二三区免费| 国产主播在线观看一区二区| 精品人妻一区二区三区麻豆 | 国产高清视频在线观看网站| 国产欧美日韩精品一区二区| 日本免费a在线| 身体一侧抽搐| www国产在线视频色| 国产一区二区在线av高清观看| 亚洲欧美日韩东京热| 女警被强在线播放| 国产高清激情床上av| 中文资源天堂在线| 桃红色精品国产亚洲av| 3wmmmm亚洲av在线观看| 国产激情偷乱视频一区二区| 18禁裸乳无遮挡免费网站照片| 午夜福利18| 国产欧美日韩精品一区二区| 国产精品久久视频播放| 日韩成人在线观看一区二区三区| 一级毛片女人18水好多| 一区二区三区免费毛片| 国产野战对白在线观看| 99精品在免费线老司机午夜| 老鸭窝网址在线观看| 色在线成人网| 啦啦啦韩国在线观看视频| 欧美成人一区二区免费高清观看| 国产野战对白在线观看| 成人一区二区视频在线观看| 日本 欧美在线| 少妇人妻一区二区三区视频| 国产成人a区在线观看| 欧美zozozo另类| 伊人久久大香线蕉亚洲五| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美黑人巨大hd|