仇婷,李海星,曹郁生
(食品科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室南昌大學(xué)中德聯(lián)合研究院,江西南昌,330047)
稀釋率對(duì)短乳桿菌NCL912連續(xù)培養(yǎng)產(chǎn)γ-氨基丁酸的影響
仇婷,李海星,曹郁生
(食品科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室南昌大學(xué)中德聯(lián)合研究院,江西南昌,330047)
建立了短乳桿菌(Lactobacillus brevis)NCL912連續(xù)培養(yǎng)生產(chǎn)γ-氨基丁酸的方法。在32℃、pH 5.0、150 r/min 條件下,通過(guò)考察不同稀釋率(0.06 h-1、0.08 h-1、0.10 h-1、0.12 h-1和 0.14 h-1)時(shí),連續(xù)培養(yǎng)體系中菌體濃度、葡萄糖利用和GABA產(chǎn)量3項(xiàng)指標(biāo)的變化,研究了稀釋率對(duì)連續(xù)培養(yǎng)的影響。結(jié)果表明,當(dāng)稀釋率為0.06 h-1和 0.14 h-1時(shí),培養(yǎng)不能達(dá)到穩(wěn)態(tài);當(dāng)稀釋率為 0.08 h-1、0.01 h-1及 0.12 h-1時(shí),反應(yīng)體系均能進(jìn)入穩(wěn)態(tài)。在考察的幾個(gè)稀釋率中,0.10 h-1最好。
短乳桿菌NCL912,連續(xù)培養(yǎng),稀釋率,γ-氨基丁酸
γ-氨基丁酸(γ-aminobutyric acid,GABA)是一種天然存在的非蛋白氨基酸,廣泛分布于動(dòng)植物體內(nèi)[1]。GABA是哺乳動(dòng)物中樞神經(jīng)系統(tǒng)的一種重要抑制性神經(jīng)遞質(zhì),具有重要的生理功能[2-7]。
GABA的制備有化學(xué)合成法和微生物合成法。相比而言,化學(xué)合成法成本高、安全性差;而微生物發(fā)酵生產(chǎn)GABA是一種安全、高效、低成本的方法。細(xì)菌、酵母以及真菌[8~11]均能發(fā)酵生產(chǎn)GABA。其中乳酸菌生產(chǎn)的GABA及其菌體均能直接應(yīng)用于食品、醫(yī)藥等領(lǐng)域,這就大大增加了其研究開(kāi)發(fā)的意義。利用乳酸菌發(fā)酵生產(chǎn)GABA在國(guó)內(nèi)外均有報(bào)道[12-17]。但所采用的均是分批發(fā)酵技術(shù),目前尚未見(jiàn)有關(guān)乳酸菌連續(xù)發(fā)酵生產(chǎn)GABA的報(bào)道。微生物的連續(xù)培養(yǎng)(continuous culture)是相對(duì)于分批培養(yǎng)而言的。與分批發(fā)酵相比,連續(xù)培養(yǎng)有其特有的優(yōu)點(diǎn),如不需要分批發(fā)酵的間隔準(zhǔn)備工作,可連續(xù)生產(chǎn),微生物能夠維持一個(gè)動(dòng)態(tài)的平衡等。因而在動(dòng)植物細(xì)胞和微生物的培養(yǎng),微生物的生理生化研究,細(xì)胞和代謝產(chǎn)物的生產(chǎn)等方面有著廣泛應(yīng)用。
本實(shí)驗(yàn)室在前期工作中,篩選出1株高產(chǎn)GABA的短乳桿菌(Lactobacillus brevis)NCL912[18],并對(duì)其分批發(fā)酵合成GABA的工藝進(jìn)行了研究,確定了分批培養(yǎng)的發(fā)酵條件[19]。進(jìn)一步對(duì)短乳桿菌 NCL912連續(xù)培養(yǎng)產(chǎn)GABA進(jìn)行了初步的研究,成功組建了連續(xù)培養(yǎng)系統(tǒng);研究了不同稀釋率(dilution rate,D)對(duì)乳酸菌連續(xù)培養(yǎng)體系的影響,探討了連續(xù)培養(yǎng)技術(shù)在GABA生產(chǎn)中的應(yīng)用。
紫外分光光度計(jì),北京普析通用儀器有限責(zé)任公司;高速冷凍離心機(jī),Sigma公司;pH電極,蘇州市漢星電化學(xué)有限公司;pH控制儀,日本東京B.E.Marubishi有限公司;79-1型磁力攪拌器,上海儀表(集團(tuán))供銷公司;蠕動(dòng)泵,蘭格恒流泵有限公司;溫度控制系統(tǒng)為自己組裝,水缸、可控溫加熱棒等購(gòu)自市場(chǎng)。
實(shí)驗(yàn)所用試劑均為國(guó)產(chǎn)分析純。
菌種:短乳桿菌(Lactobacillus brevis)NCL912,高產(chǎn)GABA,由本實(shí)驗(yàn)室從泡菜中分離并保存[18]。
種子培養(yǎng)基:葡萄糖,25g/L;酵母浸粉,6.25g/L;大豆蛋白胨,6.25g/L;MnSO4·4H2O,0.05g/L;MSG,0.15mol/L;吐溫80,2mL/L,用2mol/L H2SO4調(diào)pH值為5.0,高壓滅菌。
連續(xù)培養(yǎng)培養(yǎng)基:葡萄糖,30g/L;酵母浸粉,12.5g/L;大豆蛋白胨,12.5g/L;MnSO4·4H2O,0.05g/L;MSG,0.5mol/L;吐溫 80,2mL/L。培養(yǎng)基的氮源,MSG,以及其他成分分別高壓滅菌,121℃,20min,然后混合備用。
取保藏菌種接種于5mL種子培養(yǎng)基中,32℃靜置培養(yǎng)24 h。按此方法活化2次后,以5%的接種量轉(zhuǎn)接于100mL種子培養(yǎng)基,32℃、150 r/min振蕩培養(yǎng)10 h,即為種子培養(yǎng)物。
連續(xù)培養(yǎng)實(shí)驗(yàn)裝置如圖1所示。
圖1 連續(xù)培養(yǎng)裝置簡(jiǎn)圖
反應(yīng)器為800mL玻璃罐,工作體積設(shè)定為400mL。組裝系統(tǒng)并配制培養(yǎng)基,滅菌后,打開(kāi)蠕動(dòng)泵往反應(yīng)器內(nèi)流加360mL已混合的發(fā)酵培養(yǎng)基,用注射器接種40mL種子培養(yǎng)物,pH用pH控制儀自動(dòng)控制。經(jīng)過(guò)10 h培養(yǎng),打開(kāi)蠕動(dòng)泵以一定稀釋率向反應(yīng)器內(nèi)流加培養(yǎng)基,開(kāi)始連續(xù)培養(yǎng)。連續(xù)培養(yǎng)條件如下:培養(yǎng)溫度32℃;攪拌速度150 r/min;pH 5.0,用2mol/L H2SO4溶液自動(dòng)調(diào)控。實(shí)驗(yàn)選取5種不同的稀釋率,分別為 0.06 h-1、0.08 h-1、0.10 h-1、0.12 h-1及0.14 h-1。每12 h取樣,測(cè)定培養(yǎng)液中的菌體濃度、GABA濃度及殘?zhí)菨舛取?/p>
菌體濃度:樣品稀釋5倍后,使用紫外分光光度計(jì)測(cè)定樣品在600 nm波長(zhǎng)下的吸光值(A600)。GABA濃度:采用預(yù)染紙色譜法測(cè)定[20]。殘?zhí)菨舛?采用3,5-二硝基水楊酸法(DNS)測(cè)定。
連續(xù)培養(yǎng)進(jìn)行60 h后,連續(xù)3次取樣分析,如測(cè)定的3種參數(shù)指標(biāo)的波動(dòng)范圍在5%以內(nèi),可認(rèn)為連續(xù)培養(yǎng)已經(jīng)進(jìn)入穩(wěn)態(tài)。本實(shí)驗(yàn)主要依據(jù)菌體濃度、GABA濃度及葡萄糖濃度的檢測(cè)結(jié)果,確定連續(xù)培養(yǎng)系統(tǒng)是否達(dá)到穩(wěn)態(tài)。
本實(shí)驗(yàn)數(shù)據(jù)均采用軟件Sigma Plot 10.0分析。
本實(shí)驗(yàn)研究了在不同稀釋率情況下,乳酸菌連續(xù)培養(yǎng)系統(tǒng)運(yùn)行狀況,實(shí)驗(yàn)結(jié)果如圖2~圖6所示。由圖2可知,為當(dāng)稀釋率為0.06 h-1時(shí),在前36 h反應(yīng)體系中葡萄糖含量急劇下降,導(dǎo)致隨后培養(yǎng)過(guò)程中菌體濃度下降,且GABA濃度不能保持穩(wěn)定。說(shuō)明當(dāng)D=0.06 h-1時(shí),培養(yǎng)基補(bǔ)給速度小于消耗速度,營(yíng)養(yǎng)不足以維持菌體的生長(zhǎng),致使菌體大量死亡,培養(yǎng)不能進(jìn)入穩(wěn)態(tài)。圖3、圖4及圖5表明,當(dāng)稀釋率為分別 0.08 h-1、0.10 h-1和 0.12 h-1時(shí),在培養(yǎng)進(jìn)行到60 h后,反應(yīng)體系中菌體、GABA濃度及葡萄糖濃度均能在一定水平維持穩(wěn)定,整個(gè)系統(tǒng)達(dá)到穩(wěn)定狀態(tài)。由圖6可知,當(dāng)稀釋率為0.14 h-1時(shí),隨著發(fā)酵的進(jìn)行,反應(yīng)體系中的菌體濃度逐步下降,GABA濃度及葡萄糖濃度有比較大的波動(dòng)。說(shuō)明當(dāng)D=0.14 h-1時(shí),發(fā)酵液稀釋速率大于菌體增殖速率,菌體不斷被洗出,0.14 h-1已接近臨界稀釋率DC(相當(dāng)于最大比生長(zhǎng)速率μmax時(shí)的D值)。
圖2 稀釋率0.06 h-1時(shí)菌體、GABA和葡萄糖的變化
圖3 稀釋率0.08 h-1時(shí)菌體、GABA和葡萄糖的變化
圖4 稀釋率0.10 h-1時(shí)菌體、GABA和葡萄糖的變化
圖5 稀釋率0.12 h-1時(shí)菌體、GABA和葡萄糖的變化
圖6 稀釋率0.14 h-1時(shí)菌體、GABA和葡萄糖的變化
當(dāng)系統(tǒng)達(dá)到穩(wěn)態(tài)時(shí),不同稀釋率情況下連續(xù)培養(yǎng)體系中GABA濃度、葡萄糖濃度及GABA產(chǎn)率如表1所示。
由圖7(A)可知,隨著稀釋率的增大,GABA濃度逐漸降低。GABA濃度在D=0.01 h-1時(shí)比D=0.08 h-1時(shí)低 9.97%,在 D=0.12 h-1時(shí)比 D=0.10 h-1時(shí)低14.65%。由圖7(B)可知,當(dāng)稀釋率分別為0.08 h-1和0.10 h-1時(shí),反應(yīng)體系中殘余葡萄糖濃度均比較低,分別為0.756 5±0.102 3g/L、1.039 7±0.071 3g/L;當(dāng)稀釋率為0.12 h-1時(shí),殘?zhí)菨舛却蠓黾訛?6.283 1±0.414 5g/L。說(shuō)明低稀釋率(0.08、0.10 h-1)利于菌體對(duì)葡萄糖的充分利用,而高稀釋率(0.12 h-1)則會(huì)造成大量浪費(fèi)。由圖7(C)可知,GABA產(chǎn)率隨稀釋率的增大而增加,在D=0.10 h-1時(shí)比 D=0.08 h-1時(shí)高12.53%,D=0.12 h-1時(shí)比 D=0.10 h-1時(shí)高2.41%,GABA產(chǎn)率的增加幅度隨稀釋率的增大而減小,說(shuō)明高稀釋率(D=0.12 h-1)不利于菌體充分發(fā)酵生產(chǎn)GABA。綜合GABA產(chǎn)率和葡萄糖剩余2個(gè)因素,短乳桿菌NCL912連續(xù)培養(yǎng)生產(chǎn)GABA選取0.10 h-1的稀釋率較為合適。
表1 短乳桿菌NCL912連續(xù)培養(yǎng)結(jié)果
圖7 稀釋率對(duì)GABA濃度(A)、葡萄糖濃度(B)及GABA產(chǎn)率(C)的影響
本研究成功建立了短乳桿菌NCL912連續(xù)培養(yǎng)生產(chǎn)GABA的方法,并以連續(xù)培養(yǎng)中菌體濃度、葡萄糖利用和GABA產(chǎn)量為指標(biāo),考察了不同稀釋率對(duì)連續(xù)培養(yǎng)的影響。當(dāng)稀釋率為0.06 h-1和0.12 h-1時(shí),培養(yǎng)不能達(dá)到穩(wěn)態(tài),而當(dāng)稀釋率為 0.08 h-1、0.01 h-1及0.12 h-1時(shí),反應(yīng)體系均能進(jìn)入穩(wěn)態(tài)。隨著稀釋率的增大,穩(wěn)態(tài)時(shí)GABA的產(chǎn)量下降,而產(chǎn)率升高。稀釋率為0.08 h-1和0.10 h-1時(shí),發(fā)酵液中殘?zhí)菨舛缺容^低,菌體對(duì)營(yíng)養(yǎng)的利用比較充分;當(dāng)稀釋率增大為0.12 h-1時(shí),發(fā)酵液中則有(16.283 1±0.414 5)g/L葡萄糖殘余。實(shí)驗(yàn)結(jié)果表明,對(duì)短乳桿菌NCL912進(jìn)行連續(xù)培養(yǎng),能夠?qū)崿F(xiàn)GABA的高效連續(xù)生產(chǎn)。
[1]Manyam B V.Isoniazid-induced elevation of CSF GABA levels and effects on chorea in Huntington's disease [J].Annals of Neurology,2004,10(1):35-37.
[2]Schwarz E L,Roberts W L,and Pasquali M.Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection[J].Clinica Chimica Acta,2005,354(1-2):83-90.
[3]DeFeudis F V.γ-aminobutyric acid cardiovascular function[J].Cellular and Molecular Life Sciences,1983,39(8):845-849.
[4]Okada T.Effect of the defatted rice germ enriched with GABA for sleeplessness,depression,autonomic disorder by oral administration[J].Journal of the Japanese Society for Food Science and Technology(Japan),2000,47(8):596-603.
[5]Adeghate E,Ponery A S.GABA in the endocrine pancreas:cellular localization and function in normal and diabetic rats[J].Tissue and Cell,2002,34(1):1-6.
[6]Hagiwara H,Seki T,and Ariga T.The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats[J].Bioscience,Biotechnology,and Biochemistry,2004,68(2):444-447.
[7]Oh C H,Oh S H.Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis[J].Journal of medicinal food,2004,7:19-23.
[8]Smith D K.Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci[J].Journal of Bacteriology,1992,174(18):5 820-5 826.
[9]Maras B.The amino acid sequence of glutamate decarboxylase from Escherichia coli.Evolutionary relationship between mammalian and bacterial enzymes[J].FEBS Journal,1992,204(1):93.
[10]Hao R,Schmit J C.Cloning of the gene for glutamate decarboxylase and its expression during conidiation in Neurospora crassa[J].Biochemical Journal,1993,293(Pt 3):735.
[11]Kono I and Himeno K.Changes in γ-aminobutyric acid content during beni-koji making[J].Bioscience,Biotechnology,and Biochemistry,2000,64(3):617-619.
[12]Ueno Y.Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005[J].Bioscience,Biotechnology,and Biochemistry,1997,11:68-71.
[13]Park K B,Oh S H.Cloning and Expression of a Full-Length Glutamate Decarboxylase Gene from Lactobacillus plantarum [J].Journal of Food Science and Nutrition,2004,9(4):324-329.
[14]Komatsuzaki N.Production of γ-aminobutyric acid(GABA)by Lactobacillus paracasei isolated from traditional fermented foods[J].Food microbiology,2005,22(6):497-504.
[15]Siragusa S.Synthesis of gama-aminobutyric acid by lactic acid bacteria isolated from a variety of italian cheeses[J].Applied and Environmental Microbiology,2007,73(22):7 283-7 290.
[16]Kook M C.Enhanced production of gamma-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16 [J].Journal of Microbiology and Biotechnology,2010,20(4):763-766.
[17]Nomura M.Lactococcus lactis contains only one glutamate decarboxylase gene[J].Microbiology,1999,145(6):1 375-1 380.
[18]Li H.A high γ-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai[J].Annals of Microbiology,2008,58(4):649-653.
[19]Li H.Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912[J].Amino Acids,2009:1-7.
[20]Li H.Pre-staining paper chromatography method for quantification of γ-aminobutyric acid [J].Journal of Chromatography A,2009,1216(25):5 057-5 060.
Effect of Dilution Rate on γ-Aminobutyric Acid Production by Continuous Culture of Lactobacillus brevis NCL912
Qiu Ting,Li Hai-xing,Cao Yu-sheng
(State Key Laboratory of Food Science and Technology,Sino-Geman Joint Research Institute,Nanchang University,Nanchang 330047,China)
A continuous culture method of Lactobacillus brevis NCL912 was developed for production of γ-aminobutyric acid.The effects of the dilution rate on the biomass,residual glucose and GABA yielding of the continuous culture were investigated.The results indicated that dilution rate had a significant effect on the cell proliferation and GABA production.Steady state could not be obtained when dilution rates were 0.06 h-1or 0.14 h-1.When dilution rates were 0.08 h-1,0.10 h-1or 0.12 h-1,the culture system could reach the steady states.Among the dilution rates tested,0.10 h-1was the best one for the GABA continuous production.
Lactobacillus brevis NCL912,continuous culture,dilution rate,γ-aminobutyric acid
碩士研究生(曹郁生教授為通訊作者)。
2010-07-15,改回日期:2010-10-12