• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perpendicular Drought Index and its Application in Hubei Zhanghe Irrigation System

    2010-09-05 12:44:27LIZheTANDebaoQINQiingZHANGSuiSpatialInformationTechnologyApplicationInstituteYangtzeRiverScientificResearchInstituteWuhan43000ChinaSchoolofEarthandSpaceSciencePekingUniversityBeijing0087China
    長江科學(xué)院院報(bào) 2010年1期
    關(guān)鍵詞:漳河旱情土壤水分

    LIZhe,TAN De-bao,QIN Qi-m ing,ZHANG Sui(.Spatial Information Technology Application Institute,Yangtze River Scientific Research Institute,Wuhan 43000,China;.School of Earth and Space Science,Peking University,Beijing 0087,China)

    Perpendicular Drought Index and its Application in Hubei Zhanghe Irrigation System

    LIZhe1,TAN De-bao1,QIN Qi-m ing2,ZHANG Sui1
    (1.Spatial Information Technology Application Institute,Yangtze River Scientific Research Institute,Wuhan 430010,China;2.School of Earth and Space Science,Peking University,Beijing 100871,China)

    Remote sensing droughtmonitoring model is an important research realm in irrigation and water conservation.From a supposition that the spectral characteristic of bare soilmeets linear distribution(Zhan,2005;Abuduwasit,2004)in the NIR(Near Infrared)-Red reflectance spectral in feature space,a simple and effective remote sensing model has been used tomonitor droughtwhich was validated in Ningxia Hui-nation Autonomous region and achieved better results.In order to verify feasibility of PDI(perpendicular drought index)under the dense vegetation cover condition,Hubei Zhanghe Irriga-tion System was selected as the research area.PDIwas calculated with ETM+data,and 2-5 cm soilmoisture observa-tion resultwas used in comparison with PDI.Result shows that2-5 cm in-situ observation and PDIcalculation display ba-sically the same trend and they are consistentwith the fieldmeasured drought indices.To sum up,PDIcan reflect the land cover and water-heat combination.PDI has many advantages such as simplicity,practicality,easy-to-useage,versatility and universality.And it is suitable tomonitor regional drought under complex underlying surface conditions.

    NIR-Red Spectral Space;Perpendicular Drought Index;Hubei Zhanghe Irrigation System

    1 INTRODUCTION

    Regional drought brought by global climate chan-ges ismenacing directly human’s food supply and sur-vival environment,and it becomes a hot issue ofmany scientists and government administrations.Remote sensing hasmany advantages such as large cover,high spatial resolution,short interval,and convenient data acquisition,whichmakes remote sensing droughtmoni-toring become an important research realm.Drought index is a comprehensive descriptor of surface drought and wet condition(Narasimhan&Srinivasan,2005).Owing to different physical and radiant characters of soil,remote sensing droughtmonitoring model can be divided to three categories:Visible-NIR model,ther-malmodel and microwave model.Considering soil re-flectivity depressing with the increase of soilmoisture,Visible-NIRmodel calculates indirectly through vegeta- tion index and water stress index,such as AVI and spectrum space methods.But because of different soil structures,exterior shapes and organic mechanisms,the precision of Visible-NIR model tomonitor drought is strictly restricted.Thermal model calculates soil moisture through soil surface emissivity and land sur-face temperature on the basis of soil water balance e-quation and energy balance equation,such as thermal inertiamodel,vegetation evaporation model and water depression index.Watson et al.(1971)brought out a simple thermal inertia equation with land surface tem-perature.Price(1977;1985),Kahle(1977),England(1990),Zhang(1997),Tian(1991)also developed many application experiments.Thermal inertia model is sensitive to bare soil or rare vegetation condition,but not very effective to dense vegetation condition.Because soil moisture affects vegetation evaporation greatly,it is effective to use the ratio of apparent evap-oration to latent evaporation to describe soil moistureunder dense vegetation condition.Jackson(1981)brought out Crop Water Stress Index(CWSI).Tian(1991)found the relationship between soil moisture and CWSIusing land surface temperature,water evap-oration and meteorology data.CWSIhas clear physical meaning,but it requires ground observation data and meteorology data,which decreases its calculation pre-cision.Microwave model relies on the relationship a-mong soil permittivity,emissivity and soil moisture.Microwave remote sensing can observe earth surface all day and all night,but it cost too much,and not very sensitive to soilmoisture under dense vegetation condi-tion.So there raises a question whether we can carry out a new droughtmonitoringmethod which is success-ful under complex underlying surface condition.

    Land surface temperature(LST),vegetation index(VI)and albedo are key factors to monitor soilmois-ture,and their comprehensive application can exactly reflect surface drought and water condition.Goward and Hope(1989)found out that LST-NDVI spectral space showed a triangle distribution.Price(1990)be-lieved LST-NDVI spectral space displayed a trapezium distribution,then used a mathematical formulation to describe it,and applied it to analyse land surface va-porization.Zhan(2005),Abuduwasit(2004)found out that NIR-Red channel of ETM+images formed a spectral space which was similar to NDVI-LST spectral space,so perpendicular drought index(PDI)was brought out based on NIR-Red spectral space and in-situ soilmoisture observation from Ningxia Hui-nation Autonomous Region which was successfully used to val-idate PDImodel.Ningxia Hui-nation Autonomous re-gion is located in North China,which has lower vegeta-tion coverage.Can PDIalso be successful under com-plex underlying surface condition?Motivated by this question,the authors carry out deep research.

    2 METHODOLOGY

    2.1 6S Atmospheric Correction

    In order to reduce atmosphere interference and improve retrieval precision of biophysical parameter,atmospheric correction to remote sensing image is re-quired.Commonly atmospheric correction models in-clude 6S(second simulation of satellite signal in the so- lar spectrum),MODTARN(moderate resolution trans-mission),LOWTRAN(low resolution transmission),ATCOR(a spatially-adaptive fast atmospheric correc-tion).6S atmospheric correction model is used in this paper.

    The gray number of remote sensing image is con-verted to image brightnesswhich has physicalmeaning(Chander and Markham,2003).Its formulation is

    Where:θs,s,θvandvrepresent incident zenith,in-cident azimuth,observation zenith and observation azi-muth respectively,ρTOA(θs,θv,v)is apparent reflectiv-ity(also called top atmospheric spectral reflectivity)which is obtained after radiation correction;d denotes sun-earth chronometer unit distance;Eλrepresents aver-age top atmospheric radiance in channelλ(unit in W· m-2·μm-1);θsindicates sun zenith.

    Considering atmospheric aerosol multi-scatter effect and vapor absorb influence and neighborhood phenomenon of anisotropic earth surface,the relation-ship between surface reflectivity and apparent reflectiv-ity may be expressed as follows(Vermote,et al.,1997):

    Where:Lλrepresents radiation brightness of each channel(unit in W·m-2·μm-1·sr-1),and offset and gain are regression parameters brought by image header(unit in W·m-2·μm-1·sr-1),DN is cor-rected gray number,DNmaxand DNminare maximum and minimum gray number respectively,Lmaxand Lminare corresponding radiation brightness ofmaximum and minimum gray numbers(unit in W·m-2·μm-1· sr-1).

    Top atmospheric reflectivity may be expressed as follows:

    Where:ρTOA(θs,θv,v)is apparent reflectivity,tg(θs,θv)represents atmospheric aerosol multi-scatter and vapor-absorption factors;ρa(bǔ)(θs,θv,v)shows length radiation which is carried outby Rayleigh scatterand aerosol scatter;θv,vrepresent observation zenith and observation azimuth respectively;T(θs)expresses total transmission of down radiation;<ρt>is environ-ment neighborhood effect to surface pixel reflectivity ρt,e-τ/μvand td(θv)represent emissivity of direct ra-diation and up radiation respectively,S is spherical al-bedo.

    2.2 NIR-Red Spectral Space

    This paper uses the Red channel(band 3:630-690 nm)and NIR channel(band 4:775-900 nm)reflectivities of ETM+images to construct NIR-Red spectral space.After atmospheric correction,Red channel and NIR channel reflectivities of ETM+are used to construct a triangle scattermap,which is simi-lar to NDVI-LST spectral space.This triangle scatter map can not only express vegetation coverage,but also describe surface drought.

    Richardson and Wiegand(1977)built NIR-Red spectral spacewith MSSgray values of red channel and NIR channel,then used vertical distance between each point and soil line to describe vegetation coverage,so perpendicular vegetation index(PVI)was formed.Fig.1 shows the relationship between NIR-Red spectral space and vegetation coverage.Line A-E-D indicates the vegetation coverage changes from all cover(A),to partial cover(E),to bare soil(D).Fig.1 also shows the relationship between NIR-Red spectral space and soilmoisture.Line B-D-C shows that soil wet changes from fullwet(B),to partialwet(D),to dry(C).Line B-D-C is vertical to PVI,and parallel to soil line.To sum up,surface spectral feature has close relationship with land cover and soilmoisture,and it can be used to indicate regional drought.NIR-Red spectral space uses NIR and red channel reflectivity to monitor drought,which is effective and easy to perform.

    2.3 Remote Sensing Drought M odeling Based on NIR-Red Spectral Space

    NIR-Red spectral space constructed by ETM+re-mote sensing images displays a triangle shape.B-C is soil line,and soil moisture decreases from B to C.Mathematical formulation of B-C soil line can be ex-pressed as follows:

    Where:Rnirrepresents NIR channel reflectivity;Rredindicates Red channel reflectivity;M and I represent coefficients respectively.

    In Fig.2,line L which is vertical to B-C soil line passes coordinate origin,and it can be expressed as follows:

    Fig.1 NIR-Red Spectral Space

    In NIR-Red spectral space,the vertical distance from each point to Line L describes surface drought.Soil moisture increases with the vertical distance de-creases,and vice versa.To a blackbody,its vertical distance is zero,which means it is located at coordi-nate origin.Other non-blackbody displays higher wet-ness when approaching coordinate origin.In general,space near line L represents water or wet object,and space far from line L is drought area.So the vertical distance EF from each point to Line L in NIR-Red spectral space can be used to describe regional soil moisture,so a remote sensing droughtmonitoringmod-el based on NIR-Red spectral space can be given by the following formula:

    Fig.2 Princip le of Perpendicular Drought Index

    3 MODEL APPLICATION

    3.1 Research Area

    Zhanghe Irrigation System is located at the center of Hubei Province,China.Its latitude ranges from 30° 00′to 31°42′N,and its longitude ranges from 111°28′to 111°53′E.It tilts from high northwest towards low southeast.From north to south,it is about 115 km,and from east to west,it is about60 km.Its total area is approximately 5 543.93 square kilometers.The re-gion is clay and loam soils,staggered in the framework of the whole area,in which the distribution of clay is about 57%of the total area,loam about 43%.The entire irrigated area is divided into two parts,hills and plains.The hilly area is about 4 658.64 square kilo-meters,accounting for84%of the total area,the plain area is about855.29 square kilometers,accounting for 16%of the total area.The total area of cultivated land is 244.75million acres,ofwhich 219.69million acres are paddy field,25.06million acres are dry land.The main crop is rice,it is an important grain-producing base in Hubei Province.

    Zhanghe Irrigation System is a sub-tropical conti-nental climate zone,climate moderation,abundant rainfall,long frost-free period for agricultural produc-tion.Its annual average temperature is15.6-16.1℃.The annual frost-free period is 246-270 days.It has abundant rainfall,which changes in large,uneven dis-tribution of every year.Multi-year average precipitation is 968.5 mm.Rainfall mainly concentrate from April to October,accounting for 81.7 percent of the whole year,inter-annual difference is up to 2.2 times.The distribution of rainfall in the region is unbalance as South is bigger than North,and West is bigger than East.

    3.2 Field Observation

    From September to October in 2006,the research-ers from Yangtze River Scientific Research Institute(YRSRI),Wuhan University(WHU)and Chinese U-niversity of Hong Kong(CUHK)conducted a integrat-ed satellite-land simultaneous experiment,collected spectral characteristic curves of vegetation,water bodies,bare soil,and ordered many ETM+multi-spectral remote sensing images which were acquired during the same period.In the third channel of Zhang-he Irrigation System four simultaneous observations were deployed,of which four positioning observation points were selected.There are central observation(C1-C4),northwestobservation(NW1-NW4),north-east observation(NE1-NE4)and southeast observa-tion(SE1-SE4).Each observation point deployed 4 samples occupying 400 square meters.Every sample contains soil content from 2 to 5cm depth.Soilmois-ture was calculated using CNC-503DR neutron mois-turemeter.After calibration,the weight of aluminum box was converted to the weight of water content,which means unit soil weight divided by the water it contained.

    This paper uses in-situ observation data of 2-5 cm depth at NW1,NW2,NW3 and NW4 on Septem-ber 29,2006,which is simultaneous with satellite transit.

    3.3 Result and Analysis

    According to bare land spectral reflectivity infor-mation extracted by soil line(Fig.3),and its equa-tion can be expressed as follows:

    We extract M=1.332 4 and I=-0.120 5 from above equation,PDI can be expressed as follows:

    Fig.3 Soil line extraction and determ ining of slope parameters

    ETM+data has a higher resolution,so the coordi-nates of observation points can be found on geometri-cally corrected ETM images.For purposes of compari-son,formula(10)is used to normalize remote sensing drought indices and measured soilmoisture.Where:DATAnrepresents normalized value,DATA is original value,DATAmaxand DATAminare themaximum and minimum values of all sample respectively.

    As it shows in Fig.4,2-5 cm in-situ field ob-servations and PDI calculations displays basically the same trend and have a coefficient of 0.76.In PDI,thismodel is a comprehensive descriptor of both soil and vegetation,not eradicating vegetation interference.Also,CNC-503DR neutron moisturemeter is easily af-fected by surface wind,climate and human activities,so its relationship is not so good.

    Fig.4 Comparison of PDI calculation and in-situ observation

    The rate of crop and soil absorption field capacity,wilting crop coefficient and effective soilmoisture con-tent are closely related to regional drought conditions.In remote sensing droughtmonitoring,a comprehensive drought index combined soil moisture and water bal-ance displays a more comprehensive reflection of drought situation.In-situ measuring drought indicator is picked up to validate PDI.Itsmathematical formula-tion is

    Where:K is drought index,W iswatermoisture(%),Whis the upper limit that soil can maintain,which is also called field capacity(%),Wpis soil wilting coef-ficient(%).

    Fig.5 shows that PDI is consistent with field measured drought indexes.

    Fig.5 Relationship between PDI and in-situ measured drought indicator K

    4 CONCLUSION

    Perpendicular drought index may reflect the land cover,water-heat combination and changeswith amore specific biophysicalmeaning.It hasmany advantages such as simplicity,practicality,easy-to-use,versatility and universality.In practice,only NIR-Red reflec-tance spectra space can be effectively carried out on droughtmonitoring in middle and lower Yangtze River Basin.

    However,there are still two problems to need fur-ther research.Firstly,although 2-5 cm in-situ obser-vation and PDI calculation display basically the same trend and have a coefficientof0.76,the relationship is not so good,maybe the reason lies in that PDI is a comprehensive descriptor of both soil and vegetation,and doesn’t eradicate vegetation interference.Second-ly,PDI is based on the mathematical expression of a fixed soil line,and this is only an ideal assumption.In fact,the shape of soil line has close relationship with soil types and fertilization conditions.Strictly speak-ing,soil line is notnecessarily to be a line,whichmay lead to errors.Future work should focus on effectively separating vegetation and soil information from NIR-Red feature space and improvingmathematical expres-sion equation.

    REFERENCES:

    [1] WASTON K,ROWEN LC,OFFIELD TW.Application of thermalmodeling in geologic interpretation of IR images[J].Remote Sensing Environment,1971,3:2017-2041.

    [2] PRICE JC.On the analysis of thermal infrared imagery:the limited utility of apparent thermal inertia[J].Re-mote Sensing of Environment,1985,18:59-93.

    [3] KAHLE A B.A simple thermalmodel of the earth’s sur-face for geologicmapping by remote sensing[J].Journal of Geophysical Research,1977,82:1673-1680.

    [4] ENGLAND A W.Radiobrightness of diurnally heated freezing soil[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(3):464-476.

    [5] ENGLAND AW,GALANTOWICZ JF,SCHRETTER M S.The radio brightness thermal inertia measure of soil moisture[J].IEEE Transactions on Geoscience and Re-mote Sensing,1992,30(1):132-139.

    [6] ZHANG Ren-hua.Thermal inertiamodel and its applica-tion[J].Chinese Science Bulletin,1991,(12):924-927.

    [7] TIAN Guo-liang.Remote sensing monitoring for soil moisture[J].Remote Sensing of Environment,1991,6(2):89-99.

    [8] JACKSON R D,IDSO SB.Canopy temperature as a crop water stress indicator[J].Water Resources Research,1981,17:133-138.

    [9] WIGNERON JP,CALVET JC,PELLARIN T,et al.Retrieving near-surface soil moisture from microwave ra-diometric observations:Current status and future plans[J].Remote Sensing of Environment,2003,85:489-506.

    [10]HUISMAN JA,HUBBARD SS,REDMAN JD,et al.Measuring soil water content with ground penetrating ra-dar:A review[J].Vadose Zone Journal,2003,2:476-491.

    [11]CASHION J,LAKSHMNIV,BOSCH D,et al.Micro-wave remote sensing of soil moisture:Evaluation of the TRMM microwave imager(TMI)satellite for little river watershed tifton,georgia[J].Journal of Hydrology,2005,37:242-253.

    [12]WANG C,QIJ,MORAN S,etal.Soilmoisture estima-tion in a semiarid rangeland using ERS-2 and TM imagery[J].Remote Sensing of Environment,2004,90:178-189.

    [13]GOWARD SN,HOPE A S.Evaporation from combined reflected solar and emitted terrestrial radiation:Prelimina-ry FIFE results from AVHRR data[J].Advances in Space Research,1989,9:239-249.

    [14]PRICE JC.Using spatial context in satellite data to infer regional scale evapotranspiration[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28:940-948.

    [15]RIDD L.Exploring a V-I-S(vegetation-impervious sur-face-soil)model for urban ecosystem analysis through re-mote sensing:Comparative anatomy for citied[J].Inter-national Journal of Remote Sensing,1995,16:2165-2185.

    [16]GILLESS.A verification of the trianglemethod for obtai-ning surface soil water content and energy fluxes from re-motemeasurements of the normalized difference vegetation index(NDVI)and surface radiant temperature[J].In-ternational Journal of Remote Sensing,1997,18(5):3145-3166.

    [17]HAN Li-juan,WANG Peng-xin,WANG Jin-di,et al.Research on VI-LST spectral space[J].Science in China Series D,2005,35(4):371-377.

    [18]GHULAM A,QIN Q,WANG L,et al.Development of broadband albedo based ecological safetymonitoring index[C]∥2004 IEEE International Geoscience and Remote Sensing Symposium(IGARSS),Anchorage,Alaska,Egan Convention Center,USA,September 20-24,2004:4115-4118.

    [19]ZHAO Wen-jing,Massayuki Tamura,Hidenori Taka-hashi.Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code[J].Re-mote Sensing of Environment,2000,76:202-212.

    [20]RICHARDSON A J,WIEGAND C L.Distinguishing veg-etation from soil background information[J].Photogram-metric Engineering and Remote Sensing,1977,43(12):1541-1552.

    (Edited by LIU Yun-fei,YIXin-hua)

    垂直干旱指數(shù)在湖北漳河灌區(qū)遙感旱情監(jiān)測中的應(yīng)用

    李 ?1,譚德寶1,秦其明2,張 穗1
    (1.長江科學(xué)院空間信息技術(shù)應(yīng)用研究所,武漢 430010;2.北京大學(xué)地球與空間科學(xué)學(xué)院,北京 100871)

    遙感技術(shù)具有覆蓋范圍廣、空間分辨率高、重訪周期短、數(shù)據(jù)獲取快捷方便等優(yōu)點(diǎn),遙感干旱監(jiān)測已經(jīng)成為干旱監(jiān)測的重要研究方向之一。詹志明(2005)、阿布(2004)等假設(shè)裸露土壤的光譜特征滿足線性分布,在NIR-Red光譜特征空間中提出了垂直干旱指數(shù)(PDI),并在我國西北干旱區(qū)-寧夏固原地區(qū)進(jìn)行了模型驗(yàn)證。為了進(jìn)一步驗(yàn)證PDI在茂密植被覆蓋條件下的可行性,選擇長江中下游流域的典型灌區(qū)湖北漳河灌區(qū)作為研究區(qū)域,采用ETM+數(shù)據(jù)計(jì)算PDI,與2~5 cm平均土壤水分相比較,結(jié)果表明:模型觀測值變化曲線和實(shí)測土壤水分變化趨勢保持一致,2~5 cm平均土壤水分相關(guān)系數(shù)為0.76,與實(shí)測干旱指標(biāo)基本吻合。PDI模型能夠有效地反映地表覆蓋和水熱組合,簡單實(shí)用,具有通用性和普適性,適宜于復(fù)雜下墊面條件下的遙感旱情監(jiān)測。

    NIR-Red光譜特征空間;垂直干旱指數(shù);湖北漳河灌區(qū)

    P237;TP79 Document code:A

    1001-5485(2010)01-0067-06

    date:2009-07-02;Revised date:2009-11-10

    Funds of Agriculture Scientific and Technological Achievements Transformation(05EFN2l6800404);Special Funds of Yangtze River Scientific Research Institute(YJJ0910/KJ02)

    LIZhe(1980-),male,engineer,Ph.D.,graduated from Department of Earth and Space Sciences,Peking University,Chi-na,in 2009.Hismain research activities cover regional eco-environmentmonitoring and evaluation,flood and drought disas-termonitoringmodels,digital watershed.(Tel.)027-82926550(E-mail)lizhe@m(xù)ail.crsri.cn

    猜你喜歡
    漳河旱情土壤水分
    人工增雨解旱情
    漳河軼事
    中國三峽(2022年6期)2022-11-30 06:15:08
    漳河三棱鏡
    中國三峽(2022年6期)2022-11-30 06:15:00
    漳河有一水庫群
    中國三峽(2022年6期)2022-11-30 06:14:46
    寂靜的漳河
    中國三峽(2022年6期)2022-11-30 06:14:38
    基于不同旱情指數(shù)的石羊河流域春旱監(jiān)測研究
    西藏高原土壤水分遙感監(jiān)測方法研究
    云南省旱情信息系統(tǒng)升級及完善
    水利信息化(2015年5期)2015-12-21 12:54:40
    不同覆蓋措施對棗園土壤水分和溫度的影響
    植被覆蓋區(qū)土壤水分反演研究——以北京市為例
    这个男人来自地球电影免费观看 | 最近中文字幕2019免费版| 一本大道久久a久久精品| 精品第一国产精品| 亚洲婷婷狠狠爱综合网| 国产免费一区二区三区四区乱码| 我要看黄色一级片免费的| 99久久精品国产国产毛片| 国产成人欧美| 精品亚洲乱码少妇综合久久| 国产日韩欧美在线精品| 在线精品无人区一区二区三| 肉色欧美久久久久久久蜜桃| 欧美日韩成人在线一区二区| 亚洲美女视频黄频| 一级毛片电影观看| 天美传媒精品一区二区| 综合色丁香网| 2021少妇久久久久久久久久久| 国产老妇伦熟女老妇高清| 国产精品国产三级国产专区5o| 欧美日韩亚洲高清精品| 午夜影院在线不卡| 人人妻人人爽人人添夜夜欢视频| 欧美日本中文国产一区发布| 免费观看av网站的网址| 伦理电影大哥的女人| 国产av码专区亚洲av| 日韩一本色道免费dvd| 亚洲熟女精品中文字幕| 少妇被粗大的猛进出69影院| 免费在线观看完整版高清| 国产精品av久久久久免费| 亚洲av国产av综合av卡| 欧美日韩成人在线一区二区| 99久国产av精品国产电影| 国产免费一区二区三区四区乱码| 超碰成人久久| 国产乱来视频区| 亚洲美女搞黄在线观看| 日韩电影二区| 久久女婷五月综合色啪小说| 如日韩欧美国产精品一区二区三区| 国产一区亚洲一区在线观看| av国产久精品久网站免费入址| 97精品久久久久久久久久精品| 老女人水多毛片| 亚洲欧美成人精品一区二区| 伦精品一区二区三区| 久久精品国产亚洲av高清一级| 中文字幕人妻熟女乱码| 黑人猛操日本美女一级片| 美国免费a级毛片| 国产精品蜜桃在线观看| 亚洲人成网站在线观看播放| 久久精品国产亚洲av高清一级| 少妇人妻 视频| 大码成人一级视频| 亚洲色图综合在线观看| 国产精品熟女久久久久浪| 伊人久久大香线蕉亚洲五| 国产伦理片在线播放av一区| 亚洲av电影在线进入| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网| 国产人伦9x9x在线观看 | 丝袜喷水一区| 黄色一级大片看看| 超色免费av| 成人黄色视频免费在线看| 国产精品人妻久久久影院| 少妇猛男粗大的猛烈进出视频| 成人漫画全彩无遮挡| 男女下面插进去视频免费观看| 免费观看无遮挡的男女| 久久97久久精品| 久久影院123| 18+在线观看网站| 国产精品国产av在线观看| 99re6热这里在线精品视频| 日韩,欧美,国产一区二区三区| 日本黄色日本黄色录像| 国产男女超爽视频在线观看| 免费女性裸体啪啪无遮挡网站| 男女下面插进去视频免费观看| 丝袜人妻中文字幕| 成人手机av| 久久精品国产自在天天线| 18禁裸乳无遮挡动漫免费视频| 飞空精品影院首页| 美女视频免费永久观看网站| 久久精品国产a三级三级三级| 天天躁狠狠躁夜夜躁狠狠躁| a级片在线免费高清观看视频| 亚洲精品美女久久av网站| 波野结衣二区三区在线| av.在线天堂| 大话2 男鬼变身卡| 久久久亚洲精品成人影院| 精品午夜福利在线看| 美女xxoo啪啪120秒动态图| 午夜91福利影院| 人妻人人澡人人爽人人| 一区二区三区乱码不卡18| 婷婷色综合www| 婷婷成人精品国产| 国产欧美日韩一区二区三区在线| 久久精品国产鲁丝片午夜精品| 色94色欧美一区二区| 久久精品人人爽人人爽视色| 2022亚洲国产成人精品| 中文天堂在线官网| 亚洲av日韩在线播放| 久久99一区二区三区| 精品一区二区三区四区五区乱码 | 成人黄色视频免费在线看| 久久久精品国产亚洲av高清涩受| 亚洲精品乱久久久久久| 搡老乐熟女国产| 卡戴珊不雅视频在线播放| 日韩免费高清中文字幕av| 欧美日韩精品网址| 女的被弄到高潮叫床怎么办| 精品亚洲成国产av| 久久精品熟女亚洲av麻豆精品| 青春草国产在线视频| 欧美 日韩 精品 国产| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久精品古装| 嫩草影院入口| 在线观看国产h片| av卡一久久| 99久国产av精品国产电影| 春色校园在线视频观看| 最近的中文字幕免费完整| 九九爱精品视频在线观看| 亚洲国产精品国产精品| 一区福利在线观看| 欧美老熟妇乱子伦牲交| 亚洲av电影在线进入| 国产av精品麻豆| 永久网站在线| 亚洲美女黄色视频免费看| 亚洲av福利一区| av又黄又爽大尺度在线免费看| 99九九在线精品视频| 精品卡一卡二卡四卡免费| 九色亚洲精品在线播放| 妹子高潮喷水视频| 精品亚洲成a人片在线观看| 国产成人午夜福利电影在线观看| 国产成人精品福利久久| 男的添女的下面高潮视频| 欧美日韩精品成人综合77777| 七月丁香在线播放| 久久热在线av| 亚洲精品日本国产第一区| 亚洲av欧美aⅴ国产| 久久国产亚洲av麻豆专区| 中文字幕精品免费在线观看视频| 亚洲五月色婷婷综合| 久久精品国产亚洲av天美| 国产又色又爽无遮挡免| 看十八女毛片水多多多| 18在线观看网站| 国产97色在线日韩免费| 国产人伦9x9x在线观看 | 宅男免费午夜| 日韩熟女老妇一区二区性免费视频| 一级片免费观看大全| 国产一区二区三区av在线| 熟女少妇亚洲综合色aaa.| 人人妻人人添人人爽欧美一区卜| www日本在线高清视频| 热re99久久精品国产66热6| 一个人免费看片子| 91精品三级在线观看| 成人亚洲精品一区在线观看| 久久女婷五月综合色啪小说| 欧美日本中文国产一区发布| 精品少妇黑人巨大在线播放| 亚洲精品aⅴ在线观看| 精品国产乱码久久久久久小说| 日韩精品有码人妻一区| 777米奇影视久久| 综合色丁香网| 欧美成人午夜精品| 18+在线观看网站| 亚洲av欧美aⅴ国产| 午夜福利网站1000一区二区三区| 69精品国产乱码久久久| 亚洲一级一片aⅴ在线观看| 亚洲精品av麻豆狂野| 天堂俺去俺来也www色官网| 午夜福利乱码中文字幕| 国产成人精品无人区| 欧美成人午夜精品| 巨乳人妻的诱惑在线观看| a级毛片在线看网站| 日本猛色少妇xxxxx猛交久久| 久久国内精品自在自线图片| 在线观看一区二区三区激情| 亚洲第一区二区三区不卡| 午夜激情久久久久久久| 久久久久精品性色| 日韩精品免费视频一区二区三区| 美女大奶头黄色视频| 欧美中文综合在线视频| 黄色视频在线播放观看不卡| 国产色婷婷99| 91午夜精品亚洲一区二区三区| 男女边吃奶边做爰视频| 美女国产高潮福利片在线看| 国产野战对白在线观看| 夫妻性生交免费视频一级片| 免费在线观看黄色视频的| 午夜福利视频精品| 国产精品蜜桃在线观看| 日本黄色日本黄色录像| 日本午夜av视频| 日本av手机在线免费观看| 97人妻天天添夜夜摸| 久久av网站| 哪个播放器可以免费观看大片| 精品第一国产精品| 日韩三级伦理在线观看| 深夜精品福利| 国产 一区精品| 久久99热这里只频精品6学生| 久热久热在线精品观看| videosex国产| 最近最新中文字幕免费大全7| 欧美人与性动交α欧美软件| 日本欧美视频一区| 国产女主播在线喷水免费视频网站| 国产日韩一区二区三区精品不卡| 晚上一个人看的免费电影| 熟女电影av网| 中国三级夫妇交换| 国产成人a∨麻豆精品| 精品99又大又爽又粗少妇毛片| kizo精华| 国产精品无大码| 一边亲一边摸免费视频| 天天躁日日躁夜夜躁夜夜| 国产亚洲精品第一综合不卡| 亚洲精品一二三| 汤姆久久久久久久影院中文字幕| 一级片'在线观看视频| 亚洲欧美清纯卡通| 在线观看一区二区三区激情| 欧美最新免费一区二区三区| 少妇被粗大猛烈的视频| 啦啦啦视频在线资源免费观看| 日韩一区二区三区影片| 亚洲精华国产精华液的使用体验| 中文天堂在线官网| 搡老乐熟女国产| 成人二区视频| 欧美黄色片欧美黄色片| 久久精品亚洲av国产电影网| 国产片内射在线| 色婷婷久久久亚洲欧美| 亚洲欧美色中文字幕在线| 国产精品av久久久久免费| 99久久中文字幕三级久久日本| 久久青草综合色| 日韩中文字幕欧美一区二区 | 国产精品成人在线| 中国国产av一级| 天堂俺去俺来也www色官网| 两个人免费观看高清视频| av网站免费在线观看视频| 七月丁香在线播放| 午夜老司机福利剧场| 亚洲国产毛片av蜜桃av| 丝袜美腿诱惑在线| 极品人妻少妇av视频| 美女xxoo啪啪120秒动态图| 丰满饥渴人妻一区二区三| 免费在线观看完整版高清| 日本色播在线视频| 99久久综合免费| 激情视频va一区二区三区| 欧美老熟妇乱子伦牲交| 一级片免费观看大全| 日本猛色少妇xxxxx猛交久久| 水蜜桃什么品种好| 亚洲国产看品久久| 一级片免费观看大全| 欧美中文综合在线视频| 亚洲欧美一区二区三区国产| 日韩一区二区视频免费看| av.在线天堂| 免费在线观看黄色视频的| 久久韩国三级中文字幕| 国产精品熟女久久久久浪| 18+在线观看网站| 久久精品国产自在天天线| 免费在线观看视频国产中文字幕亚洲 | 爱豆传媒免费全集在线观看| 国产免费一区二区三区四区乱码| 999久久久国产精品视频| 国产免费现黄频在线看| 看非洲黑人一级黄片| 色吧在线观看| 精品少妇一区二区三区视频日本电影 | 99九九在线精品视频| 少妇的逼水好多| 一区二区av电影网| 婷婷色综合www| 亚洲三级黄色毛片| 男女边摸边吃奶| 啦啦啦中文免费视频观看日本| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 精品国产国语对白av| 秋霞伦理黄片| 婷婷色综合大香蕉| 99九九在线精品视频| 国产午夜精品一二区理论片| 久久这里只有精品19| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 久久影院123| 国产野战对白在线观看| 免费高清在线观看视频在线观看| 精品卡一卡二卡四卡免费| 一区二区日韩欧美中文字幕| 观看av在线不卡| 春色校园在线视频观看| 深夜精品福利| 婷婷色综合www| 亚洲精品av麻豆狂野| 新久久久久国产一级毛片| 肉色欧美久久久久久久蜜桃| 国产精品免费大片| 麻豆乱淫一区二区| 两个人免费观看高清视频| 91国产中文字幕| 91精品伊人久久大香线蕉| 亚洲少妇的诱惑av| 午夜福利网站1000一区二区三区| 久久久精品94久久精品| 亚洲精品中文字幕在线视频| 色94色欧美一区二区| 精品久久久久久电影网| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 成人手机av| 亚洲婷婷狠狠爱综合网| 国产一区有黄有色的免费视频| 日韩一本色道免费dvd| 在线观看美女被高潮喷水网站| 妹子高潮喷水视频| 国产男女超爽视频在线观看| 久久久久视频综合| 国产片特级美女逼逼视频| 国产成人一区二区在线| 国产 一区精品| 丰满少妇做爰视频| 另类亚洲欧美激情| 只有这里有精品99| 国产成人a∨麻豆精品| 国产成人精品一,二区| a级毛片在线看网站| 国产av国产精品国产| 日日啪夜夜爽| 人成视频在线观看免费观看| 久久久久久久精品精品| 久热久热在线精品观看| 香蕉丝袜av| 激情五月婷婷亚洲| 精品99又大又爽又粗少妇毛片| 欧美日韩一区二区视频在线观看视频在线| 欧美少妇被猛烈插入视频| 女人被躁到高潮嗷嗷叫费观| 熟女电影av网| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91 | 日韩人妻精品一区2区三区| 国产xxxxx性猛交| 国产深夜福利视频在线观看| 看十八女毛片水多多多| 国产一区亚洲一区在线观看| 热re99久久精品国产66热6| 大香蕉久久网| 在线观看三级黄色| 麻豆精品久久久久久蜜桃| 国产欧美亚洲国产| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 亚洲国产看品久久| 2022亚洲国产成人精品| 看免费av毛片| 男人舔女人的私密视频| 制服丝袜香蕉在线| 国产av国产精品国产| 在线亚洲精品国产二区图片欧美| 人体艺术视频欧美日本| 免费av中文字幕在线| av线在线观看网站| 成人毛片60女人毛片免费| 成人18禁高潮啪啪吃奶动态图| 久久精品国产鲁丝片午夜精品| 电影成人av| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 91aial.com中文字幕在线观看| 亚洲综合精品二区| 深夜精品福利| 一区二区av电影网| 97精品久久久久久久久久精品| 国产高清不卡午夜福利| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久久久免| 国产精品 国内视频| 亚洲,一卡二卡三卡| 在线观看免费视频网站a站| 国产极品粉嫩免费观看在线| 亚洲国产色片| 美女高潮到喷水免费观看| 国产男女内射视频| 日日啪夜夜爽| 亚洲天堂av无毛| 欧美 亚洲 国产 日韩一| 亚洲,欧美,日韩| 亚洲综合色网址| 欧美亚洲日本最大视频资源| 人人妻人人澡人人爽人人夜夜| 高清av免费在线| 欧美成人精品欧美一级黄| 纵有疾风起免费观看全集完整版| 黄色毛片三级朝国网站| 亚洲国产看品久久| 国产国语露脸激情在线看| 亚洲三区欧美一区| 久久久久国产网址| 免费av中文字幕在线| 日本91视频免费播放| 亚洲av中文av极速乱| 亚洲欧美一区二区三区久久| 9色porny在线观看| 嫩草影院入口| 一区福利在线观看| 亚洲国产av新网站| 一二三四中文在线观看免费高清| 一区福利在线观看| 成人国产av品久久久| 高清视频免费观看一区二区| 成人国语在线视频| 青春草国产在线视频| 午夜激情久久久久久久| 另类精品久久| 日韩一本色道免费dvd| 美国免费a级毛片| 国产成人午夜福利电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 999久久久国产精品视频| 亚洲av国产av综合av卡| 国产亚洲av片在线观看秒播厂| 国产成人aa在线观看| 欧美日韩综合久久久久久| 黄色怎么调成土黄色| 国产精品国产三级国产专区5o| 久久精品国产亚洲av高清一级| 日韩成人av中文字幕在线观看| 国产亚洲av片在线观看秒播厂| 欧美日韩一级在线毛片| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 观看美女的网站| 在线观看免费视频网站a站| 99热国产这里只有精品6| 国产精品久久久久久精品电影小说| 老司机影院毛片| 成人影院久久| 国产精品香港三级国产av潘金莲 | 秋霞在线观看毛片| 国产男女超爽视频在线观看| 国精品久久久久久国模美| a级片在线免费高清观看视频| 黑人猛操日本美女一级片| 亚洲第一av免费看| av片东京热男人的天堂| 亚洲美女搞黄在线观看| 亚洲人成电影观看| 亚洲欧美一区二区三区国产| 制服丝袜香蕉在线| 国语对白做爰xxxⅹ性视频网站| 国产白丝娇喘喷水9色精品| 久久精品久久精品一区二区三区| 熟女av电影| 一级毛片电影观看| 美女午夜性视频免费| 欧美人与性动交α欧美精品济南到 | 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| 欧美日韩亚洲国产一区二区在线观看 | 国产激情久久老熟女| 18禁观看日本| 国产精品无大码| 一区二区三区激情视频| 永久免费av网站大全| 亚洲精品国产av成人精品| 成人亚洲欧美一区二区av| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 天天躁狠狠躁夜夜躁狠狠躁| 又大又黄又爽视频免费| 999精品在线视频| 久久久亚洲精品成人影院| 久久国内精品自在自线图片| 看十八女毛片水多多多| 黄色怎么调成土黄色| 亚洲,欧美,日韩| 久久久国产一区二区| 国产日韩欧美在线精品| 十分钟在线观看高清视频www| 久久久久久人人人人人| 久久99蜜桃精品久久| 三级国产精品片| 亚洲美女黄色视频免费看| 777久久人妻少妇嫩草av网站| 大话2 男鬼变身卡| 日本欧美国产在线视频| 男女免费视频国产| 精品国产国语对白av| 五月开心婷婷网| 午夜日韩欧美国产| 国产欧美亚洲国产| 久久青草综合色| 大香蕉久久网| 久久久久人妻精品一区果冻| 午夜影院在线不卡| 日韩不卡一区二区三区视频在线| 超碰97精品在线观看| 99香蕉大伊视频| 精品99又大又爽又粗少妇毛片| 亚洲美女视频黄频| 精品亚洲乱码少妇综合久久| 性少妇av在线| 精品亚洲成a人片在线观看| 久久久久久伊人网av| 18禁观看日本| 日韩不卡一区二区三区视频在线| 国产爽快片一区二区三区| 丝袜人妻中文字幕| 99热全是精品| av在线观看视频网站免费| 久久久久久免费高清国产稀缺| 1024视频免费在线观看| 最近2019中文字幕mv第一页| 老鸭窝网址在线观看| 美女国产高潮福利片在线看| 黄频高清免费视频| 一级毛片我不卡| 免费观看av网站的网址| 观看美女的网站| 亚洲在久久综合| 国精品久久久久久国模美| 大香蕉久久网| 久久精品久久精品一区二区三区| 中文字幕人妻丝袜一区二区 | 国产人伦9x9x在线观看 | 夫妻午夜视频| 成人午夜精彩视频在线观看| 大片电影免费在线观看免费| 美女午夜性视频免费| 国产男女内射视频| 亚洲第一av免费看| 午夜激情久久久久久久| 精品人妻在线不人妻| 亚洲av电影在线观看一区二区三区| h视频一区二区三区| 国产精品欧美亚洲77777| 国产毛片在线视频| 国精品久久久久久国模美| 国产白丝娇喘喷水9色精品| 久久99热这里只频精品6学生| 久久鲁丝午夜福利片| 亚洲欧美一区二区三区久久| 午夜福利在线观看免费完整高清在| 亚洲欧美清纯卡通| 午夜福利网站1000一区二区三区| 最近2019中文字幕mv第一页| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产专区5o| 久久免费观看电影| 久久精品夜色国产| 制服诱惑二区| 国产乱人偷精品视频| av免费观看日本| 夫妻性生交免费视频一级片| 日日爽夜夜爽网站| 免费观看av网站的网址| 久久久久网色| 边亲边吃奶的免费视频| 天堂俺去俺来也www色官网| 搡女人真爽免费视频火全软件| 久久国产精品男人的天堂亚洲| 成人毛片60女人毛片免费| 少妇熟女欧美另类| 免费播放大片免费观看视频在线观看| 午夜影院在线不卡| 亚洲av电影在线观看一区二区三区| 黑丝袜美女国产一区| 蜜桃国产av成人99| 欧美少妇被猛烈插入视频| 肉色欧美久久久久久久蜜桃| 狠狠精品人妻久久久久久综合| 国产高清国产精品国产三级| 最近最新中文字幕大全免费视频 |