• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical investigation of the flow between rotating conical cylinders of two different configurations*

    2014-06-01 12:30:01LIXue李雪ZHANGJingjing張晶晶XULanxi許蘭喜
    關(guān)鍵詞:李雪晶晶

    LI Xue (李雪), ZHANG Jing-jing (張晶晶), XU Lan-xi (許蘭喜)

    Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China,

    E-mail: janemath@126.com

    A numerical investigation of the flow between rotating conical cylinders of two different configurations*

    LI Xue (李雪), ZHANG Jing-jing (張晶晶), XU Lan-xi (許蘭喜)

    Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China,

    E-mail: janemath@126.com

    (Received December 11, 2012, Revised March 3, 2014)

    The flow between two coaxial conical cylinders is numerically studied for two different configurations, with the inner cone rotating and the outer one at rest. It is found that, in one configuration,at least at a small Reynolds number (Re), the pressure is a decreasing function ofzwhile in the other configuration, it is an increasing function ofz. In the first configuration, the pressure curves for differentRehave intersections, while in the second configuration they do not. The gap between two conical cylinders is filled with six pairs of Taylor vortices at about the same Reynolds number and in each pair of vortices in the first configuration, the upper vortex is larger than the bottom one while in the second configuration, the bottom vortex is larger than the upper one.

    rotating conical cylinder, Taylor vortex, Reynolds number, pressure distribution

    Introduction

    The flow between two concentric cylinders commonly referred to as the Taylor Couette flow is one of the most studied problem in fluid mechanics. It is a classical system used to investigate properties of flow driven by rotation. The results were numerous (see Refs.[1-7] and the references therein). The major interests were focussed on the occurrence of toroidal cells known as Taylor vortices.

    The Taylor vortices may also occur in geometries other than between right circular cylinders, e.g., between rotating conical cylinders. In the last two decades, the Taylor vortices in the flow between two coaxial conical cylinders with inner cone rotating and outer one at rest were studied both experimentally and numerically. Wimmer[8]experimentally investigated the occurrence of the Taylor vortices and the influence of the governing parameters on the Taylor vortices. He showed that the laminar basic flow is three-dimen-sional. In Ref.[9], the transition to the turbulence was considered for the flow in a concentric annulus formed by conical cylinders of the same apex angle. The stability of the helical flow in the configuration of Fig.1(b) was experimentally investigated in Ref.[10], and it was found that the helical flow was resulted from a Hopf bifurcation. Noui-Mehidi et al.[11]studied the effect of the cylinder’s wall alignment on the flow. He also considered the bifurcations of the steady vortical structures in the case when the cylindrical walls are not perfectly parallel. Xu et al.[12]showed that the behavior of the flow is dominated by a competition between the meridional flow and the radial flow. It was found that the vortices occur in the direction toward smaller radius. The local minimum values of the velocity and the local maximum values of the pressure are attained at the same point whereas the velocity of the flow takes the local maximum at the point of the inflection for the pressure. Altmeyer et al.[13]studied the effects of the end wall on the transition between the Taylor vortices and the spiral vortices. Zhang et al.[14]analyzed the effects of the end plates on the flow in the configuration of Fig.1(b) and noted that the Taylor vortices filled the gap are in an odd number when the inner cone rotates together with the top end plate, whereas they are always in an even number inour case. However, all previous studies were mainly related to the configuration of Fig.1(b). At the same time, the flows in the configuration of Fig.1(a) were not given a due attention.

    Fig.1 The sketch of two different configurations of coaxial rotating conical cylinders

    Recently, the configuration of Fig.1(a) has caught our interest. A few chemists used the configuretion of Fig.1(a) as a precipitation reactor called the rotating liquid film reactor (RLFR), as the reactor to prepare new functional nano-particles. The gap between two cones is filled with reactants, which are usually considered as a viscous incompressible fluid. It is found that the particles produced in the RLFR are smaller in size and more concentrated in the size distribution, compared with the conventional precipitation reactors[15]. In order to understand the effect of the RLFR on the precipitation, it is necessary to investigate the flow properties in the gap. In order to do that, the configuration of Fig.1(a) should be considered and the flow property should be compared with that in Fig.1(b), which has motivated the study of this paper.

    1. Mathematical formulation

    The two different configurations are shown in Fig.1, in which the configuration in Fig.1(b) is just that in Fig.1(a) but upside down. The gap between two cones is filled with a viscous incompressible fluid. The inner cone rotates at the angular velocityΩand the outer one is at rest. For both configurations, we assume that the top and bottom end plates are rigid and the cone’s wall is a no-slip boundary. Then the governing equations (the Navier-Stokes equations) and the boundary conditions are as follows:

    whereu,ρ,pandνare the velocity, the density, the pressure and the kinematic viscosity of the fluid, respectively. ∑top, ∑bottom, ∑innerand ∑outerrepresentR1(R2) andαare the hight of device, the radius of the inner (outer) cone at the thickest end and the cone’s inclination, respectively.

    Parameter definitions: All our numerical results are described in term of following non-dimensional parameters.

    Reynolds number:Re=dR1Ω/ν, aspect ratio the top end plate, the bottom end plate, the inner and outer cone’s walls, respectively,ωis the angular velocity of the cones. We adopt a Cartesian coordinate systemOxyzwithz-axis along the axis of rotation and the gravity in the negativez-direction.H,Γ=H/d, radius ratioη=R1/R2and cone’s inclination angleα.

    2. Outline of the numerical method

    2.1Outlines

    The nonlinear and time dependent Eqs.(1) together with the boundary conditions (2) and the initial conditionsu|t=0=p|t=0=0 are integrated numerically using the finite volumes method. For the convection terms in the equations, a second-order upwind scheme is used to calculate the face values of the various quantities by interpolation from the cell centre values. The central difference quotient is used for the diffusion terms which are always accurate to the second order. The temporal discretization involves integrations of all terms in the differential equations with a time step Δt. The integration of the transient terms is implicit by using a second-order formulation. The SIMPLE algorithm is used to link the pressure and the velocity. The discretized equations are then solved sequentially using a segregated solver. The convergence is achieved when the residual falls below 10-4for the pressure and the three velocity components.

    2.2Convergence and validation

    The grids used for the numerical simulations consist of tetrahedral elements. Extensive grid-refining tests are conducted by varying the element order andthe time step. In order to improve the accuracy and the convergence rate, a hybrid correction technique is used, where four grid levels are adopted to refine sequentially in spatial dimensions. The solution obtained by a coarser grid is interpolated to initialize the solution on a finer grid. Figure 2 shows the convergence of the simulated results by comparing the profiles (normalized by the maximum value in the profiles) of the pressure and the velocity from four grids atRe= 192.5. The profiles with different resolutions essentially merge into one curve, suggesting the independence of the grids on the results. It is worth mentioning that the fourth grid level refinement (Case 4) leads to insignificant changes in the obtained solution, which means the convergence of the present simulated results.

    Fig.2 Convergence studies of the profiles atΓ=12.5,η= 0.8,α=82oandRe=192.5 for the configuration of Fig.1(a). The number of grid points in Cases 1-4 are 224 932, 395 605, 532 698 and 736 806, respectively. The pressure and the velocity are normalized by the maximum value in the profiles.z/dmeans the value ofzin the axial direction is normalized by the width of the gap

    3. Results and discussions

    Numerical simulations of the flows in configuretions of Fig.1(a) and Fig.1(b) are carried out. Figure 3 displays the pressure distribution along the middle line atRe=12.5, 20, 25, 75 and 192.5, where the curves forRe=12.5, 20 and 25 are straight lines, corresponding to the laminar basic flow. The pressure curve fluctuates firstly at aboutRe=75, representing that the basic flow becomes unstable and the first Taylor vortex appears. The curve forRe=192.5 is full of fluctuations, representing that the gap is filled with six pairs of Taylor vortices (see Fig.4). For the configuration of Fig.1(a), it is shown that the pressure curves atRe=12.5, 20 and 25 decline with the increase ofzand the curves intersect while for the configuration of Fig.1(b) the pressure curves rise with the increase ofzand the curves do not intersect. After the basic flow becomes unstable, the declining trends of the pressure for the configuration of Fig.1(a) and the growth trends for the configuration of Fig.1(b) inz-direction remain, but no longer monotonically.

    Fig.3 Pressure distributions along the middle line whenΓ= 12.5,η=0.8,α=82o

    Fig.4 Streamlines of the flows whenΓ=12.5,η=0.8,α=82o. (a) and (c) represent the appearance of the first Taylor vortex, (b) and (d) show that the gap is filled with Taylor vortices

    Fig.5 Sketch of occurrence and size of Taylor vortices in the configuration of Fig.1(a)

    The phenomena in Fig.3 can be explained as follows: The laminar basic flow is driven by the imbalance of centrifugal forces in the gap. On the inner cone the circumferential velocity depends on thez-coordinate while on the outer cone it is always zero. Therefore, for the configuration of Fig.1(a), the circumferential velocity of the fluid in the gap decreases with the increase of radial and axial coordinates. This leads to a negative change rate of the centrifugal forces in bothr-direction andz-direction. Despite the negative change rate of the centrifugal forces in ther-direction, the change rate of the pressure inr-direction is always positive, because the fluid in the gap is thrown to the outside. Hence, for the configuration of Fig.1(a) the pressure along the middle line is a decreasing function ofz, at least for small Reynolds numbers. For large Reynolds numbers, the falling trend of the pressure remains, but no longer monotonic. However, for the configuration of Fig.1(b), a negative change rate of the centrifugal forces in ther-direction and a positive change rate of the centrifugal forces inz-direction are found, and as the results, the pressure along the middle line is an increasing function ofz, at least for smallRe. For large Reynolds numbers the growth trend of the pressure remains, but no longer monotonic. Upon increasing the Reynolds numbers, the centrifugal forces progressively dominate the viscous forces. Therefore, with increasing thez-coordinate, the centrifugal forces for the configuration of Fig.1(a) decrease more and more rapidly. As the result, the pressure inz-direction for a larger Reynolds number falls more rapidly than for a smaller Reynolds number, and the intersection of pressure curves occurs, as demonstrated in Fig.3(a). Similarly, for the configuration of Fig.1(b), the growth rate of the centrifugal forces inz-direction for a larger Reynolds number is greater than that for a smaller Reynolds number. As a result, for a larger Reynolds number the pressure increases more rapidly than for a smaller Reynolds number. Therefore, the pressure curves in Fig.3(b) have no intersection. The centrifugal force attains its maximum at the bottom. Therefore, the fluid at the bottom of the configuration of Fig.1(a) is deflected outwards and moves up in a spiral to the top in the vicinity of the outer cone then returns to the bottom near the inner cone, also in a spiral form, as shown in Fig.5(a). The basic flow is a large loop between the cone's surfaces. Our numerical calculations also show that the first Taylor vortex appears at the bottom of the configuration of Fig.1(a) and at the top of the configuration of Fig.1(b), at about the same Reynolds numberRe= 75. With a further increase of the Reynolds number another pair of vortices is generated, in the direction towards the smaller radius. At aboutRe=192.5 the gap is finally filled with six pairs of vortices, as displayed in Fig.4. If the vortex rotates in the direction of the basic flow it is stretched. If it rotates in the opposite direction it is compressed. As a consequence, in each pair of vortices, the top vortex is larger than the bottom one, as shown in Fig.5. However, for the configuration of Fig.1(b), in each pair of vortices, the top vortex is smaller than the bottom one, as is confirmed by Wimmer's experiment. For the configuration of Fig.1(a), there is no experiment result in this regard.

    4. Conclusion

    This work studies the flows in two different configurations of Fig.1(a) and Fig.1(b), focussing on the pressure distribution and the instability of the basic flow as well as the transition to Taylor vortices. A comparison of the pressure distribution and the behavior of the Taylor vortices is made. The results are summarized as follows: For the configuration of Fig.1(a) and at smallRethe pressure is a decreasing function ofz, for largeRethe declining trend inz-direction remains, but no longer monotonic. For the configuration of Fig.1(b), the pressure is an increasing function ofzat smallRe, for largeRethe growth trend inz-direction remains, but no longer monotonic. For the configuration of Fig.1(a), the pressure curves at differentRehave intersections while for the configuration of Fig.1(b) they do not. This shows that the declining rate of the pressure for the configuration of Fig.1(a) and the growth rate of the pressure for the configuration of Fig.1(b) is higher for a largerRethan for a smallerRe. At aboutRe=192.5 the gap of both configurations of Fig.1(a) and Fig.1(b) is filled with six pairs of Taylor vortices and in each pair of vortices in the configuration of Fig.1(a), the upper vortex is larger than the bottom one while in the configuration of Fig.1(b), the bottom vortex is larger than the upper one.

    [1] DONG S. Direct numerical simulation of turbulent Taylor-Couette flow[J].Journal of Fluid Mechanics,2007, 587: 373-393.

    [2] DONG S. Turbulent flow between counter-rotating concentric cylinders: a direct numerical simulation study[J].Journal of Fluid Mechanics,2008, 615: 371-399.

    [3] DUBRULLE B., DAUCHOT O. and DAVIAUD F. et al. Stability and turbulent transport in Taylor-Couette flow from analysis of experimental data[J].Physics of Fluids,2005, 17(9): 095103.

    [4] BURIN M. J., SCHARTMAN E. and JI H. Local measurements of turbulent angular momentum transport in circular Couette flow[J].Experiments in Fluids,2010, 48(5): 763-769.

    [5] BILSON M., BREMHORST K. Direct numerical simulation of turbulent Taylor-Couette flow[J].Journal of Fluid Mechanics,2007, 579: 227-270.

    [6] WANG Jia-song. Flow around a circular cylinder using a finite-volume TVD scheme based on a vector transformation approch[J].Journal of Hydrodynamics,2010, 22(2): 221-228.

    [7] RAPLEY S., EASTWICK C. and SIMMONS K. Computational investigation of torque on coaxial rotating cones[J].Journal of Fluids Engineering,2008, 130(6): 061102.

    [8] WIMMER M. Taylor vortices at different geometries[J].Physics of Rotating Fluids,2000, 549: 194-212.

    [9] NOUI-MEHIDI M. N. Transition in the flow between conical cylinders[J].Experiments in Fluids,2001, 30(1): 84-87.

    [10] NOUI-MEHIDI M. N., OHMURA N. and KATAOKA K. Dynamics of the helical flow between rotating conical cylinders[J].Journal of Fluids and Structures,2005, 20(3): 331-344.

    [11] NOUI-MEHIDI M. N., OHMURA N. and NISHIYAMAET K. et al. Effect of wall alignment in a very short rotating annulus[J].Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2): 613-621.

    [12] XU X., WEN P. and XU L. et al. Occurrence of Taylor vortices in the flow between two rotating conical cylinders[J].Communications in Nonlinear Science and Numerical Simulation, 2010, 15(5): 1228-1239.

    [13] ALTMEYER S., HOFFMANN C. H. and HEISE M. et al. End wall effects on the transitions between Taylor vortices and spiral vortices[J].Physical Review E,2010, 81(6): 066313.

    [14] ZHANG Y., XU L. and LI D. Numerical computation of end plate effect on Taylor vortices between rotating conical cylinders[J].Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 235-241.

    [15] GUO S., EVANS D. G. and LI D. et al. Experimental and numerical investigation of the precipitation of barium salfate in a rotating liquid film reactor[J].AIChE Journal,2009, 55(8): 2024-2034.

    10.1016/S1001-6058(14)60049-4

    * Biography: LI Xue (1979-), Female, Ph. D. Candidate

    XU Lan-xi,

    E-mail: xulx@mail.buct.edu.cn

    猜你喜歡
    李雪晶晶
    巧算最小表面積
    紅霉素眼膏 用途知多少
    保健與生活(2022年7期)2022-04-08 21:33:36
    Digging for the past
    炎熱的夏天
    Manipulation parameter optimization in Liu’s back tuina therapy for kids’ cough variant asthma in remission stage
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    藝術(shù)百家:李雪
    李雪、曹葉青、馮彩、崔一文作品
    銀億股份:于無聲處聽驚雷
    眾癥時代(二)
    中文在线观看免费www的网站| 久久久久亚洲av毛片大全| 欧美日韩瑟瑟在线播放| 亚洲精品一卡2卡三卡4卡5卡| 欧美乱色亚洲激情| 国产精品乱码一区二三区的特点| 熟妇人妻久久中文字幕3abv| 国产精品亚洲一级av第二区| 日本免费一区二区三区高清不卡| 亚洲 国产 在线| 国内揄拍国产精品人妻在线| avwww免费| 五月伊人婷婷丁香| 丰满的人妻完整版| 日本五十路高清| av中文乱码字幕在线| 九九久久精品国产亚洲av麻豆| 亚洲18禁久久av| 美女高潮喷水抽搐中文字幕| 美女高潮喷水抽搐中文字幕| 亚洲无线在线观看| 欧美一区二区亚洲| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利欧美成人| 亚洲av二区三区四区| 在线播放无遮挡| 尤物成人国产欧美一区二区三区| 尤物成人国产欧美一区二区三区| 国产麻豆成人av免费视频| 国产69精品久久久久777片| 欧洲精品卡2卡3卡4卡5卡区| 久久天躁狠狠躁夜夜2o2o| 有码 亚洲区| 91字幕亚洲| 在线观看一区二区三区| 精品午夜福利在线看| 天堂√8在线中文| 极品教师在线免费播放| 国产黄色小视频在线观看| 欧美性感艳星| 欧美性感艳星| 国产一区二区三区在线臀色熟女| 国产成人福利小说| 欧美性感艳星| 欧美xxxx黑人xx丫x性爽| 亚洲五月婷婷丁香| 亚洲人与动物交配视频| 国产亚洲欧美98| 午夜福利成人在线免费观看| 蜜桃久久精品国产亚洲av| 特大巨黑吊av在线直播| 色播亚洲综合网| 不卡一级毛片| 亚洲av不卡在线观看| 免费在线观看亚洲国产| 久久久国产成人精品二区| 免费黄网站久久成人精品 | 亚洲国产高清在线一区二区三| 91字幕亚洲| 日本 欧美在线| 舔av片在线| 制服丝袜大香蕉在线| 69av精品久久久久久| 国产欧美日韩一区二区精品| 亚洲avbb在线观看| 人人妻人人看人人澡| netflix在线观看网站| 少妇高潮的动态图| 国产白丝娇喘喷水9色精品| 啦啦啦韩国在线观看视频| 在线播放无遮挡| 波野结衣二区三区在线| 午夜福利在线观看免费完整高清在 | 中文字幕熟女人妻在线| 毛片女人毛片| 成人一区二区视频在线观看| 日韩欧美国产一区二区入口| 中文字幕熟女人妻在线| 精品熟女少妇八av免费久了| 中文字幕av在线有码专区| 国产高清视频在线播放一区| 天堂动漫精品| 好男人在线观看高清免费视频| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 亚洲av免费在线观看| 久久久久九九精品影院| 日日夜夜操网爽| 1000部很黄的大片| 国产一区二区激情短视频| 欧美日韩福利视频一区二区| 国产免费男女视频| 久久久成人免费电影| 97热精品久久久久久| 国产综合懂色| 日本免费一区二区三区高清不卡| 91在线精品国自产拍蜜月| 极品教师在线视频| 757午夜福利合集在线观看| 少妇被粗大猛烈的视频| 99riav亚洲国产免费| 男女那种视频在线观看| 国产午夜福利久久久久久| 黄片小视频在线播放| 久久久久九九精品影院| 国产av麻豆久久久久久久| 一进一出抽搐gif免费好疼| 亚洲熟妇中文字幕五十中出| 99久久精品国产亚洲精品| 9191精品国产免费久久| 日韩中字成人| 给我免费播放毛片高清在线观看| 国产色婷婷99| av在线观看视频网站免费| 俄罗斯特黄特色一大片| 久久久国产成人精品二区| 欧美精品啪啪一区二区三区| 亚洲av美国av| 国产视频内射| 亚洲色图av天堂| 久久久久久久久大av| 亚洲欧美清纯卡通| 91狼人影院| 精华霜和精华液先用哪个| 天天躁日日操中文字幕| 成人欧美大片| 亚洲美女视频黄频| a在线观看视频网站| 啦啦啦韩国在线观看视频| 国产三级中文精品| 日本免费a在线| 中出人妻视频一区二区| 99视频精品全部免费 在线| 久久中文看片网| 国产欧美日韩一区二区精品| 欧美激情久久久久久爽电影| 长腿黑丝高跟| 久久99热6这里只有精品| 亚洲最大成人中文| 欧美黄色片欧美黄色片| 99热6这里只有精品| 国产熟女xx| 亚洲精品成人久久久久久| 久久6这里有精品| 精品99又大又爽又粗少妇毛片 | 欧美在线黄色| 毛片女人毛片| 欧美日韩瑟瑟在线播放| АⅤ资源中文在线天堂| 如何舔出高潮| 每晚都被弄得嗷嗷叫到高潮| 女人十人毛片免费观看3o分钟| 亚洲国产精品久久男人天堂| 99久久久亚洲精品蜜臀av| 欧美日韩中文字幕国产精品一区二区三区| 男人狂女人下面高潮的视频| 熟女电影av网| 中文字幕熟女人妻在线| 精品久久久久久久久久久久久| 午夜福利在线观看免费完整高清在 | 黄色丝袜av网址大全| 全区人妻精品视频| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播| 国产高潮美女av| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品乱码久久久v下载方式| 国产午夜福利久久久久久| 欧美性猛交黑人性爽| 蜜桃亚洲精品一区二区三区| 免费在线观看影片大全网站| 最近中文字幕高清免费大全6 | 亚洲中文日韩欧美视频| 日本 av在线| 桃红色精品国产亚洲av| 搡老熟女国产l中国老女人| av欧美777| 亚洲五月婷婷丁香| 好看av亚洲va欧美ⅴa在| 搡女人真爽免费视频火全软件 | 国产av不卡久久| 夜夜夜夜夜久久久久| 国产毛片a区久久久久| 91麻豆精品激情在线观看国产| 亚洲欧美日韩高清专用| 国产毛片a区久久久久| 亚州av有码| 内地一区二区视频在线| 欧美一区二区精品小视频在线| 一级毛片久久久久久久久女| 久久久久精品国产欧美久久久| 国产精品综合久久久久久久免费| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区免费欧美| 人人妻人人澡欧美一区二区| 男插女下体视频免费在线播放| 在线国产一区二区在线| 国产一区二区在线观看日韩| 日韩有码中文字幕| 午夜免费男女啪啪视频观看 | 好看av亚洲va欧美ⅴa在| 久久精品国产亚洲av涩爱 | 欧美午夜高清在线| 亚洲国产欧美人成| 观看美女的网站| 很黄的视频免费| av专区在线播放| 国产精品综合久久久久久久免费| 日韩欧美一区二区三区在线观看| 极品教师在线免费播放| 一本一本综合久久| 国内精品久久久久久久电影| 国产精品亚洲美女久久久| 国内精品美女久久久久久| 亚洲av美国av| 99国产精品一区二区蜜桃av| 黄色丝袜av网址大全| 国产精品国产高清国产av| 深夜a级毛片| 亚洲无线在线观看| 毛片女人毛片| av黄色大香蕉| 亚洲av五月六月丁香网| 久久久久久久久大av| 日本 欧美在线| 极品教师在线视频| 免费人成在线观看视频色| 欧美日韩综合久久久久久 | 婷婷精品国产亚洲av| 色吧在线观看| 91久久精品国产一区二区成人| 18禁黄网站禁片午夜丰满| 欧美绝顶高潮抽搐喷水| 亚洲一区二区三区色噜噜| 91麻豆精品激情在线观看国产| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 亚洲av二区三区四区| 3wmmmm亚洲av在线观看| 我要搜黄色片| 精品无人区乱码1区二区| 一本综合久久免费| 亚洲精品一区av在线观看| 嫩草影院新地址| 成年免费大片在线观看| 搡老熟女国产l中国老女人| 亚洲成人中文字幕在线播放| 一区二区三区四区激情视频 | 久久精品国产亚洲av天美| 在线播放无遮挡| 精品不卡国产一区二区三区| 午夜福利18| 最近最新免费中文字幕在线| 蜜桃久久精品国产亚洲av| 国产精品1区2区在线观看.| 国产真实伦视频高清在线观看 | 亚洲精品影视一区二区三区av| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩精品一区二区| 91字幕亚洲| 久久久精品欧美日韩精品| 18禁黄网站禁片午夜丰满| 熟妇人妻久久中文字幕3abv| 91av网一区二区| 亚洲av第一区精品v没综合| 亚洲久久久久久中文字幕| 亚洲色图av天堂| 国产精品,欧美在线| 非洲黑人性xxxx精品又粗又长| 搞女人的毛片| 成人国产一区最新在线观看| 美女xxoo啪啪120秒动态图 | 国产免费一级a男人的天堂| 国产三级黄色录像| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添av毛片 | 日韩欧美一区二区三区在线观看| 99国产精品一区二区蜜桃av| 淫妇啪啪啪对白视频| 日本五十路高清| 欧美又色又爽又黄视频| 久久香蕉精品热| 亚洲内射少妇av| 亚洲欧美精品综合久久99| 亚洲成人久久性| 一夜夜www| 免费在线观看日本一区| 99热只有精品国产| 国产精品永久免费网站| 国产一区二区在线观看日韩| 成人鲁丝片一二三区免费| 精品人妻偷拍中文字幕| 真人一进一出gif抽搐免费| 黄色一级大片看看| 美女xxoo啪啪120秒动态图 | 亚洲av免费在线观看| 成人亚洲精品av一区二区| 亚洲精品在线观看二区| 久久久色成人| 精品不卡国产一区二区三区| 69人妻影院| 中文字幕高清在线视频| 成年女人永久免费观看视频| 怎么达到女性高潮| 亚洲精品色激情综合| 欧美极品一区二区三区四区| 色在线成人网| 精品无人区乱码1区二区| 亚洲一区二区三区色噜噜| 男女视频在线观看网站免费| 欧美乱色亚洲激情| 欧美日韩乱码在线| 欧美日本视频| 噜噜噜噜噜久久久久久91| 又黄又爽又刺激的免费视频.| 亚洲国产精品999在线| 美女 人体艺术 gogo| 一区二区三区激情视频| 亚洲黑人精品在线| 国产免费男女视频| 欧美日韩乱码在线| 国产精品99久久久久久久久| 偷拍熟女少妇极品色| 亚洲av中文字字幕乱码综合| 有码 亚洲区| 国产精品一区二区免费欧美| 丰满人妻一区二区三区视频av| 欧美另类亚洲清纯唯美| 一级a爱片免费观看的视频| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久电影| 日韩欧美精品免费久久 | 久久久久九九精品影院| 亚洲人成网站在线播放欧美日韩| 性插视频无遮挡在线免费观看| 国产熟女xx| 成人特级av手机在线观看| 亚洲三级黄色毛片| 一二三四社区在线视频社区8| 亚洲第一电影网av| 国产欧美日韩一区二区三| 校园春色视频在线观看| 97人妻精品一区二区三区麻豆| 亚洲国产色片| ponron亚洲| 精品欧美国产一区二区三| 日韩精品中文字幕看吧| 亚洲av第一区精品v没综合| 91九色精品人成在线观看| 亚洲无线在线观看| 日韩欧美在线乱码| 我要看日韩黄色一级片| 在线播放无遮挡| 国产亚洲欧美在线一区二区| 国产探花在线观看一区二区| 亚洲熟妇熟女久久| 免费一级毛片在线播放高清视频| 亚洲av成人av| 可以在线观看毛片的网站| 国产精品一区二区三区四区久久| 久久国产精品人妻蜜桃| 亚洲激情在线av| 中文字幕免费在线视频6| 丁香欧美五月| 女人被狂操c到高潮| 99国产极品粉嫩在线观看| 精品人妻熟女av久视频| 亚洲 国产 在线| 亚洲最大成人手机在线| 欧美三级亚洲精品| 性色avwww在线观看| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 亚洲色图av天堂| 欧美在线一区亚洲| 伦理电影大哥的女人| 极品教师在线免费播放| 熟妇人妻久久中文字幕3abv| 嫩草影院新地址| 亚洲国产精品合色在线| 色播亚洲综合网| 少妇高潮的动态图| 色精品久久人妻99蜜桃| 欧美区成人在线视频| 97热精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 国内精品一区二区在线观看| 一区二区三区四区激情视频 | 男人和女人高潮做爰伦理| 国产午夜福利久久久久久| 久久久色成人| 日本免费一区二区三区高清不卡| 国产成人av教育| 精品人妻偷拍中文字幕| 日本撒尿小便嘘嘘汇集6| av在线观看视频网站免费| 亚洲成a人片在线一区二区| 国产三级中文精品| 99热这里只有是精品在线观看 | 国产精品永久免费网站| 国产91精品成人一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 搡女人真爽免费视频火全软件 | 99riav亚洲国产免费| 午夜两性在线视频| 最近在线观看免费完整版| 国产一级毛片七仙女欲春2| 欧美乱妇无乱码| 亚洲第一区二区三区不卡| 久久午夜亚洲精品久久| 日韩免费av在线播放| 国产真实乱freesex| 国产爱豆传媒在线观看| 国内精品久久久久久久电影| 国产真实伦视频高清在线观看 | 老熟妇乱子伦视频在线观看| 欧美成人一区二区免费高清观看| 亚洲 欧美 日韩 在线 免费| 日韩 亚洲 欧美在线| 91午夜精品亚洲一区二区三区 | 国产免费男女视频| 亚洲精品影视一区二区三区av| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区精品| 国产男靠女视频免费网站| 成人鲁丝片一二三区免费| 一a级毛片在线观看| 高清在线国产一区| 亚洲熟妇熟女久久| 一本综合久久免费| 亚洲精华国产精华精| 亚洲 欧美 日韩 在线 免费| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 亚洲精品456在线播放app | 日本 欧美在线| 成人特级黄色片久久久久久久| 亚洲成av人片免费观看| 国内少妇人妻偷人精品xxx网站| 国产成人av教育| 亚洲成人精品中文字幕电影| 亚洲男人的天堂狠狠| 色吧在线观看| 小蜜桃在线观看免费完整版高清| 国产高清有码在线观看视频| 全区人妻精品视频| 欧美xxxx性猛交bbbb| 国产男靠女视频免费网站| 成熟少妇高潮喷水视频| 久久久久国产精品人妻aⅴ院| 我要搜黄色片| 欧美日韩综合久久久久久 | 久久久久九九精品影院| 9191精品国产免费久久| 亚洲成av人片在线播放无| 一进一出好大好爽视频| 国产v大片淫在线免费观看| 久久欧美精品欧美久久欧美| 麻豆成人午夜福利视频| 女同久久另类99精品国产91| 丝袜美腿在线中文| 国内精品一区二区在线观看| 日本a在线网址| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久午夜电影| 久久久久久久亚洲中文字幕 | avwww免费| 一级作爱视频免费观看| 久久久久久久亚洲中文字幕 | 免费av不卡在线播放| 国产白丝娇喘喷水9色精品| 一a级毛片在线观看| xxxwww97欧美| 欧美区成人在线视频| 午夜亚洲福利在线播放| 色尼玛亚洲综合影院| 亚洲自拍偷在线| 熟女人妻精品中文字幕| 激情在线观看视频在线高清| 我要搜黄色片| 看免费av毛片| 99热只有精品国产| 国产精品伦人一区二区| 久久精品人妻少妇| 国产成人影院久久av| 国产乱人伦免费视频| 哪里可以看免费的av片| 国产精品永久免费网站| 国产一区二区在线观看日韩| 国产精品美女特级片免费视频播放器| 在线天堂最新版资源| 男女之事视频高清在线观看| 18+在线观看网站| 免费高清视频大片| 亚洲天堂国产精品一区在线| 亚洲精品在线观看二区| 国产精品美女特级片免费视频播放器| 不卡一级毛片| 国产成人欧美在线观看| 亚洲,欧美精品.| 国产成人a区在线观看| 18禁在线播放成人免费| 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产| 小蜜桃在线观看免费完整版高清| 一个人免费在线观看电影| 欧美激情久久久久久爽电影| 亚洲国产色片| av国产免费在线观看| 国产久久久一区二区三区| 欧美精品国产亚洲| 日韩欧美在线乱码| 日本免费a在线| 日本黄色视频三级网站网址| 亚洲五月婷婷丁香| 12—13女人毛片做爰片一| 国产精品亚洲av一区麻豆| 欧美三级亚洲精品| 99热这里只有是精品在线观看 | 18美女黄网站色大片免费观看| 亚洲一区二区三区色噜噜| 国产成人欧美在线观看| 国产不卡一卡二| 国产精品电影一区二区三区| 丝袜美腿在线中文| 天天一区二区日本电影三级| 精品一区二区三区视频在线| eeuss影院久久| 欧美极品一区二区三区四区| 麻豆国产97在线/欧美| 激情在线观看视频在线高清| 欧美成人一区二区免费高清观看| 午夜福利在线在线| 丰满人妻熟妇乱又伦精品不卡| 成人三级黄色视频| 国内精品久久久久精免费| 51午夜福利影视在线观看| 久久久久久久久中文| 男女之事视频高清在线观看| 国产精品一区二区性色av| 如何舔出高潮| www.色视频.com| 国产在线男女| 色播亚洲综合网| 国产视频一区二区在线看| 夜夜夜夜夜久久久久| 99热只有精品国产| 精品99又大又爽又粗少妇毛片 | 午夜a级毛片| 天堂网av新在线| 欧美成人性av电影在线观看| 在线国产一区二区在线| 十八禁人妻一区二区| 国产午夜精品久久久久久一区二区三区 | 免费看光身美女| 俺也久久电影网| 亚洲一区二区三区色噜噜| 精品日产1卡2卡| 国产av不卡久久| 中文字幕av在线有码专区| 久久久久国内视频| 亚洲自拍偷在线| 亚洲人成伊人成综合网2020| 国产不卡一卡二| 少妇的逼水好多| 九色成人免费人妻av| 国产伦在线观看视频一区| 国产精品嫩草影院av在线观看 | 99久久久亚洲精品蜜臀av| 久久久色成人| 久久精品夜夜夜夜夜久久蜜豆| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 久久久久国产精品人妻aⅴ院| 国产成人aa在线观看| 无遮挡黄片免费观看| 欧美高清性xxxxhd video| 亚洲av日韩精品久久久久久密| 99久久精品一区二区三区| 一个人观看的视频www高清免费观看| 男人舔奶头视频| 国产成人欧美在线观看| 亚洲精品粉嫩美女一区| 三级男女做爰猛烈吃奶摸视频| 麻豆av噜噜一区二区三区| 国产高清激情床上av| 在线国产一区二区在线| 毛片女人毛片| 人妻夜夜爽99麻豆av| 亚洲美女搞黄在线观看 | 婷婷亚洲欧美| 少妇人妻精品综合一区二区 | 国产精品精品国产色婷婷| 久久久久久久久久成人| 亚洲人成电影免费在线| 亚洲激情在线av| 丰满人妻熟妇乱又伦精品不卡| 嫩草影院精品99| 精品国产亚洲在线| 亚洲av不卡在线观看| 亚洲激情在线av| 天天一区二区日本电影三级| 无人区码免费观看不卡| 又粗又爽又猛毛片免费看| 天堂影院成人在线观看| 狠狠狠狠99中文字幕| 波野结衣二区三区在线| 国产成人欧美在线观看| 色综合站精品国产| 精品国内亚洲2022精品成人| 最近中文字幕高清免费大全6 | 成人国产一区最新在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品一区二区三区视频在线|