• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fuzzy Adaptive Algorithm Based on“Current”Statistical Model for Maneuvering Target Tracking

    2010-07-25 06:20:30WANGXianghua王向華QINZheng覃征YANGHuijie楊慧杰YANGXinyu楊新宇
    Defence Technology 2010年3期

    WANG Xiang-hua(王向華),QIN Zheng(覃征),YANG Hui-jie(楊慧杰),YANG Xin-yu(楊新宇)

    (1.Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China;2.Department of Computer Science and Technology,Xi'an Jiaotong University,Xi'an 710049 Shaanxi,China)

    Introduction

    The building of movement model is a hot and difficult problem in the field of maneuvering target track,and some researchers have done much work deeply and widely.The“current”statistical model and adaptive tracking algorithm[1]presented by Chinese researcher ZHOU Hong-ren is an effective method for tracking a maneuvering target.However,since the“current”statistical model has a design limitation,the adaptive tracking algorithm can achieve good track result for strongly maneuvering target,but can't give an ideal track result for weakly maneuvering target.In order to solve this problem,many researchers have conducted many attempts,the introduction of fuzzy control theory is a feasible approach[2-3].But,a catastrophe exists in the triangular membership function,which can bring the expense of tracking precision.In the paper,the basic characters of“current”statistical model and adaptive Kalman filter algorithm(CSAF)was analyzed,a nonlinear exponent form fuzzy control membership function without catastrophe was designed to correct the problem in the model,and a novel“current”statistical model-based fuzzy adaptive algorithm was presented to improve the tracking precision for weakly maneuvering target.The computer simulation proved the validity of new algorithm.

    1 “Current” Statistical Model and Adaptive Tracking Algorithm

    The basic idea of CSAF is to describe the statistic characteristics of target acceleration via amended Rayleigh distribution.When the“current”acceleration of target is positive,its probability density function is

    whereamaxis the upper limit of target acceleration,amax>0,ais the target random acceleration,μis a constant(μ>0).The mean and variance ofaare given by

    When the“current”acceleration of target is negative,its probability density function is

    whereamax(amax<0)is the lower limit of target acceleration.The mean and variance of random acceleration are given by

    In particular,while the“current”acceleration of target is 0,its probability density function is

    whereδ(·)is Dirac function.

    The discrete time state equation for“current”statistical model of maneuvering target is given by

    whereX(k+1)is system state vector,including position,velocity and acceleration components,Φ(k+1,k)is state transition matrix,U(k)is input matrix,a(k)is the average value of“current”acceleration,W(k)is discrete time white noise,and

    The calculation method aboutΦ(k+1,k),U(k)andQ0is given in detail in Ref.[1].The unnecessary details will not be given here.

    The measurement equation is

    whereH(k)is observation matrix[1,0,0],V(k)is Gauss white noise with mean 0 and varianceR(k).

    The adaptive Kalman filter equations based on state Eq.(8)and measurement Eq.(10)are

    The adaptability of the algorithm is to adjustwith the change of“current”acceleration.Therefore,the state noise covariance matrixQcan be adjusted adaptively.

    When the“current”acceleration is positive,

    When the“current”acceleration is negative,

    However,the“current”statistical model and the adaptive Kalman filter algorithm have the design limitations.In other words,the algorithm can track strong maneuvering target effectively,but the results are bad while tracking weak maneuvering target,because the“current”statistical model can't describe this type of target[4].

    When the “current” acceleration is positive,based on Eq.(1)and random process theory,we can obtain

    When Eq.(5)is substituted into Eq.(19),the range ofμis obtained

    In a similar way,when the“current”acceleration is negative,according to Eq.(4),(5)and(6),we can get

    Then,Eq.(20)and(21)are substituted into Eq.(2)and(5),respectively,we have

    2 Description of FACS Algorithm

    Although some researchers presented some adaptive algorithm[5-6]based on fuzzy membership function,the triangular membership function is commonly used,as shown in Fig.1.This function makes system noise estimation break when the membership grade changes,resulting in a big error.

    Fig.1 Triangular membership function

    In this paper,an exponential nonlinear fuzzy membership function was designed,which don't bring adjusting break,and can be used to track weak maneuvering target effectively.On the assumption that the range of target acceleration is[a-up,aup],two thresholds,athanda-th,are given in our algorithm,andath>aup,a-th<a-up,the expression of fuzzy membership functionMis

    wherek1andk2are constants,of which values are restricted by the following conditions:

    for?a(0≤a≤aup),

    for?a(a-up≤a<0),

    Figure 2 shows the fuzzy membership function and the values ofath,a-th,aupanda-up.

    By combining Eq(24),(25)and(26),we have

    Fig.2 Nonlinear exponential membership function

    In the“current”statistical model,acceleration upper and lower limits change adaptively withM,namely,

    In fact,our FACS algorithm is adaptively to control and adjust the parametersamaxanda-maxin the“current”statistical model through target maneuvering state, namely real-time acceleration, enabling the“current”statistical model to adapt to any movement state of target.And then,the tracking precision can be improved by running a relevant adaptive Kalman filter algorithm.

    3 Simulation and Analysis

    In simulation experiment,F(xiàn)ACS parameters were assigned as follows:ath=100 m/s2,a-th= -100 m/s2,aup=90 m/s2,a-up= -90 m/s2,k1=k2=0.97.The basic“current”statistical model and the adaptive Kalman filter algorithm(CSAF)were used in the comparing experiments,andamax=90 m/s2anda-max= -90 m/s2.

    The quality of state estimation[7]is used to evaluate the experimental results.The quality of state estimation is described by root-mean-square error(RMSE).The expression ofRMSEis

    whereNis the times of Monte Carlo simulation,jrepresents thejth simulation,x(k)and^xj(k)represent the real value and filter estimated value of the target state at timek,respectively.

    3.1 Tracking Experiment of Velocity Maneuvering Target

    In this group of experiments,we proved the validity of FACS algorithm for velocity maneuvering target by tracking a target of variable-velocity linear motion.The simulation lasted 200 s,the sampling periodTwas 1 s.Let it be supposed that the initial position of target was at 10 km,and its initial velocity was 100 m/s.The acceleration was 30 m/s2in 1-50 sampling periods;it was changed to 20 m/s2in 51-100 sampling periods;it continued to be reduced to 10 m/s2in 101-150 sampling periods;and it was reduced to 5 m/s2in 151-200 sampling periods.

    The Monte Carlo simulation results from 100 experiments are given in Fig.3,4 and 5,which show RMSE of position,velocity and acceleration,respectively.

    Fig.3 Comparison of position RMSE

    Fig.4 Comparison of velocity RMSE

    Fig.5 Comparison of acceleration RMSE

    It can be seen from the simulation results that our FACS achieved better precision than the basic“current”statistical model and adaptive Kalman filter algorithm in RMSE of position,velocity and acceleration by adjustingamaxanda-maxadaptively according to target real-time acceleration.In particular,F(xiàn)ACS algorithm has an obvious advantage over the CSAF algorithm for the weak maneuvering target.When the maneuvering acceleration of target is small,the basic“current”statistical model can't describe this maneuvering state because the acceleration upper limit is too large and the lower limit is too small.However,our FACS algorithm can adjust the acceleration upper and lower limits in real-time according the maneuvering state of target,and describe the state of weak maneuvering target effectively.Therefore,its tracking error is much smaller than that of CSAF algorithm.

    FACS algorithm improves tracking performance at the expense of a little increased amount of computation,but can't lead to any significant impact on its real-time application.The simulation programsof CSAF and FACS were run on the same computer,the average values of running time are shown in Table 1.The average time is increased by 7%.

    Table 1 Runtime comparison of two algorithms

    3.2 Experiment of Target Track Maneuvering

    In this group of experiments,F(xiàn)ACS algorithm was used to track a track maneuvering target.The simulation time lasted 150 s,the sampling periodTwas 1 s.Supposed that the initial position was(10 km,0),the initial velocity was(150 m/s,0).In the period of 1 -30 s,the target moved at constant velocity;in the period of 31-150 s,it moved at uniform circular motion with radius 10 km,as shown in Fig.6.

    Fig.6 Moving track of target

    The experimental results were obtained after 100 Monte Carlo simulations.Fig.7 shows the RMSE of position for tracking target.It is obvious that the performance of FACS is better than that of basic“current”statistical model and adaptive tracking algorithm.

    Fig.7 Comparison of position RMSE

    4 Conclusions

    The basic theory and process of the“current”statistical model and adaptive Kalman filter algorithm for maneuvering target tracking were given,and the problems in this model and algorithm were analyzed theoretically.Then,by combining with fuzzy control theory,a smooth nonlinear exponential fuzzy membership function was used to adjust the acceleration upper and lower limits adaptively so that the tracking precision was improved.At last,the validity of FACS was proven through computer simulation experiments.

    [1]ZHOU Hong-ren,JING Zhong-liang,WANG Pei-de.Maneuvering target tracking[M].Beijing:National Defence Industry Press,1991:134-144.(in Chinese)

    [2]HU Cong-wei,CHEN Wu.Adaptive Kalman filtering for vehicle navigation[J].Journal of Global Positioning System,2003,2(1):227-233.

    [3]Al-Dhaher A G H,Mackesy D.Multi-sensor data fusion architecture[C]∥ The 3rd IEEE International Workshop on Haptic,Audio and Visual Environments and Their Applications,USA:IEEE,2004:159 -163.

    [4]DIAO Lian-wang,YANG Jing-yu.An improved description of“current”statistical model for maneuvering target[J].Journal of China Ordnance,2005,26(6):825 -828.(in Chinese)

    [5]Abdolreza D T,Nasser S.Novel adaptive Kalman filtering and fuzzy track fusion approach for real time application[C]∥The 3rd IEEE Conference on Industrial Electronics and Applications,USA:IEEE,2008:120 -125.

    [6]BA Hong-xin,ZHAO Zong-gui,YANG Fei,et al.Fuzzy adaptive tracking algorithm for maneuvering target[J].Journal of System Simulation,2002,16(6):1181 -1183.(in Chinese)

    [7]RONG Li X,ZHI Xiao-rong,ZHANG You-min.Mutiplemodel estimation with variable structure partⅢ:modelgroup switching algorithm[J].IEEE Transactions on Aerospace and Electronic Systems,2003,35(1):225 -241.

    我的亚洲天堂| 中文字幕最新亚洲高清| 叶爱在线成人免费视频播放| 国产一区有黄有色的免费视频| 老司机亚洲免费影院| 啦啦啦视频在线资源免费观看| 日韩大片免费观看网站| 两性夫妻黄色片| 国产精品av久久久久免费| 亚洲精品美女久久av网站| 亚洲欧美日韩另类电影网站| 一区二区三区乱码不卡18| 777米奇影视久久| 亚洲国产av新网站| 国产精品偷伦视频观看了| 久久人妻熟女aⅴ| 国产不卡av网站在线观看| 亚洲av在线观看美女高潮| 曰老女人黄片| 日本av手机在线免费观看| 国产亚洲最大av| 久久久精品国产亚洲av高清涩受| 电影成人av| 欧美黄色片欧美黄色片| 久久精品国产a三级三级三级| 亚洲精品日本国产第一区| 亚洲国产欧美在线一区| 国产精品国产三级专区第一集| 亚洲中文av在线| 久久精品人人爽人人爽视色| 激情视频va一区二区三区| 两个人看的免费小视频| 欧美日韩福利视频一区二区| 欧美xxⅹ黑人| 深夜精品福利| 国产野战对白在线观看| 建设人人有责人人尽责人人享有的| 国产免费视频播放在线视频| 国产欧美日韩综合在线一区二区| 大陆偷拍与自拍| a级片在线免费高清观看视频| 国产日韩欧美视频二区| 最近手机中文字幕大全| netflix在线观看网站| 嫩草影院入口| 精品一区在线观看国产| 精品国产乱码久久久久久小说| 母亲3免费完整高清在线观看| 国产有黄有色有爽视频| 人体艺术视频欧美日本| 久久久久久久久久久免费av| 国产精品国产av在线观看| 男女午夜视频在线观看| av线在线观看网站| 久久久久久久国产电影| 建设人人有责人人尽责人人享有的| 天美传媒精品一区二区| 国产成人欧美在线观看 | 成人手机av| 男女之事视频高清在线观看 | 欧美亚洲日本最大视频资源| 色婷婷久久久亚洲欧美| 两个人看的免费小视频| 最近中文字幕高清免费大全6| 国产精品女同一区二区软件| 捣出白浆h1v1| 韩国高清视频一区二区三区| 最近中文字幕高清免费大全6| 狂野欧美激情性xxxx| 中文欧美无线码| 纵有疾风起免费观看全集完整版| 亚洲第一青青草原| 日本欧美视频一区| 天天躁狠狠躁夜夜躁狠狠躁| 五月天丁香电影| 免费观看性生交大片5| 亚洲情色 制服丝袜| 黑人欧美特级aaaaaa片| 精品第一国产精品| 欧美中文综合在线视频| 波多野结衣一区麻豆| 一级毛片黄色毛片免费观看视频| 成人亚洲精品一区在线观看| 精品酒店卫生间| 国产成人一区二区在线| www.av在线官网国产| 人人妻人人澡人人爽人人夜夜| 99国产精品免费福利视频| 蜜桃在线观看..| 丝瓜视频免费看黄片| 麻豆乱淫一区二区| 国产日韩欧美视频二区| 国产精品一二三区在线看| 老汉色∧v一级毛片| 性色av一级| 老司机靠b影院| 日韩制服丝袜自拍偷拍| 国产精品麻豆人妻色哟哟久久| 一级爰片在线观看| 国产精品蜜桃在线观看| 下体分泌物呈黄色| 热re99久久国产66热| 精品少妇久久久久久888优播| 美女扒开内裤让男人捅视频| 少妇人妻久久综合中文| 中文字幕人妻熟女乱码| 成人毛片60女人毛片免费| 波野结衣二区三区在线| 国产精品二区激情视频| 国产精品久久久人人做人人爽| 黑人巨大精品欧美一区二区蜜桃| 黄色视频在线播放观看不卡| 一二三四在线观看免费中文在| 亚洲精品av麻豆狂野| 一级毛片 在线播放| 亚洲成国产人片在线观看| 女人久久www免费人成看片| 国产一区有黄有色的免费视频| 国产淫语在线视频| 久久亚洲国产成人精品v| 精品一品国产午夜福利视频| 亚洲精品一区蜜桃| 亚洲国产精品国产精品| 少妇精品久久久久久久| av在线老鸭窝| 国产欧美日韩一区二区三区在线| 人人妻,人人澡人人爽秒播 | 久久久久久久久久久久大奶| 欧美激情高清一区二区三区 | 久久久久久久久免费视频了| 免费av中文字幕在线| 国产成人啪精品午夜网站| 久久久久视频综合| 操美女的视频在线观看| 少妇人妻久久综合中文| 亚洲欧洲国产日韩| 日韩不卡一区二区三区视频在线| 十八禁人妻一区二区| 视频在线观看一区二区三区| 亚洲av欧美aⅴ国产| 亚洲av日韩在线播放| 一级毛片黄色毛片免费观看视频| 国产精品av久久久久免费| 欧美日韩综合久久久久久| 制服丝袜香蕉在线| 在线天堂最新版资源| 国产熟女欧美一区二区| 免费高清在线观看视频在线观看| av片东京热男人的天堂| 亚洲国产av新网站| 日本vs欧美在线观看视频| 国产男人的电影天堂91| 精品一区在线观看国产| 国产av国产精品国产| 午夜福利影视在线免费观看| 老司机影院成人| 国产精品一二三区在线看| 男人舔女人的私密视频| 久久久国产欧美日韩av| 久久亚洲国产成人精品v| 老汉色av国产亚洲站长工具| 国产精品久久久av美女十八| av在线老鸭窝| 欧美老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 欧美老熟妇乱子伦牲交| 不卡视频在线观看欧美| 亚洲成色77777| 免费观看av网站的网址| 国产女主播在线喷水免费视频网站| 亚洲av中文av极速乱| 两性夫妻黄色片| 久久这里只有精品19| 操美女的视频在线观看| 黑人猛操日本美女一级片| 综合色丁香网| 搡老乐熟女国产| 亚洲精品国产色婷婷电影| 亚洲国产中文字幕在线视频| 国产精品免费大片| 中文字幕最新亚洲高清| 欧美日韩视频高清一区二区三区二| 校园人妻丝袜中文字幕| 久久国产亚洲av麻豆专区| 99久久综合免费| 日韩 亚洲 欧美在线| 成年av动漫网址| 91成人精品电影| 精品亚洲成a人片在线观看| 亚洲少妇的诱惑av| av线在线观看网站| 蜜桃在线观看..| 天天添夜夜摸| 中文天堂在线官网| 亚洲精品视频女| 成人毛片60女人毛片免费| av在线观看视频网站免费| 日韩一卡2卡3卡4卡2021年| 高清av免费在线| 男男h啪啪无遮挡| 日韩一区二区三区影片| 天天影视国产精品| 国产一卡二卡三卡精品 | 国产精品蜜桃在线观看| 亚洲少妇的诱惑av| 蜜桃在线观看..| 欧美日韩综合久久久久久| 91aial.com中文字幕在线观看| 成人国语在线视频| 熟女少妇亚洲综合色aaa.| 两个人看的免费小视频| 成年人午夜在线观看视频| 国产欧美日韩一区二区三区在线| 亚洲国产看品久久| 亚洲精品一二三| 欧美日韩亚洲综合一区二区三区_| 51午夜福利影视在线观看| 亚洲熟女精品中文字幕| 人人妻人人澡人人看| 国产精品人妻久久久影院| 制服人妻中文乱码| 超碰成人久久| 秋霞在线观看毛片| 无遮挡黄片免费观看| 在线观看免费视频网站a站| 国产在线免费精品| 视频在线观看一区二区三区| 免费观看a级毛片全部| 一本色道久久久久久精品综合| xxx大片免费视频| 午夜日韩欧美国产| 热re99久久精品国产66热6| 国产淫语在线视频| 欧美老熟妇乱子伦牲交| 亚洲国产日韩一区二区| 男女免费视频国产| 大香蕉久久成人网| 熟女少妇亚洲综合色aaa.| 黄色怎么调成土黄色| 女性被躁到高潮视频| 久久久久久人妻| 日韩,欧美,国产一区二区三区| 天天操日日干夜夜撸| 婷婷色综合大香蕉| 亚洲一级一片aⅴ在线观看| 男女高潮啪啪啪动态图| 毛片一级片免费看久久久久| 老司机在亚洲福利影院| 狠狠精品人妻久久久久久综合| 天天影视国产精品| 国产探花极品一区二区| 香蕉丝袜av| 亚洲人成电影观看| av片东京热男人的天堂| av天堂久久9| 99久久综合免费| 亚洲欧美日韩另类电影网站| 亚洲av成人不卡在线观看播放网 | 久久久久精品久久久久真实原创| 国产激情久久老熟女| 在线观看免费高清a一片| 久久久久网色| 亚洲精品国产av蜜桃| 亚洲欧美成人精品一区二区| 国产男女超爽视频在线观看| av在线观看视频网站免费| 人体艺术视频欧美日本| 久久鲁丝午夜福利片| 欧美亚洲 丝袜 人妻 在线| 日本一区二区免费在线视频| 男女边吃奶边做爰视频| 好男人视频免费观看在线| 亚洲欧美激情在线| avwww免费| 肉色欧美久久久久久久蜜桃| 99热国产这里只有精品6| 久久久久精品国产欧美久久久 | 国产爽快片一区二区三区| 老汉色av国产亚洲站长工具| 男女下面插进去视频免费观看| 1024视频免费在线观看| 国产精品亚洲av一区麻豆 | 亚洲欧美成人精品一区二区| 国产女主播在线喷水免费视频网站| 亚洲国产av影院在线观看| 欧美另类一区| 一级毛片我不卡| 晚上一个人看的免费电影| 国产淫语在线视频| 丝袜美腿诱惑在线| 国产国语露脸激情在线看| 中国国产av一级| 9热在线视频观看99| 亚洲精品一区蜜桃| 欧美人与善性xxx| 欧美日韩成人在线一区二区| xxx大片免费视频| 热re99久久国产66热| 国产亚洲一区二区精品| 久久狼人影院| 99国产综合亚洲精品| 国产精品一国产av| 亚洲欧洲日产国产| 午夜福利影视在线免费观看| 欧美日韩亚洲高清精品| 久热这里只有精品99| 最近中文字幕2019免费版| 黄片无遮挡物在线观看| 美女扒开内裤让男人捅视频| 99久久99久久久精品蜜桃| 国产一级毛片在线| 80岁老熟妇乱子伦牲交| 欧美xxⅹ黑人| 一本色道久久久久久精品综合| 午夜91福利影院| 国产在线一区二区三区精| 成人亚洲精品一区在线观看| 又大又黄又爽视频免费| 国产1区2区3区精品| 亚洲精品在线美女| 一区福利在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产极品天堂在线| 国产亚洲欧美精品永久| 亚洲四区av| 精品一区二区三卡| 免费女性裸体啪啪无遮挡网站| 大香蕉久久成人网| 国产亚洲午夜精品一区二区久久| 黄网站色视频无遮挡免费观看| 久久久欧美国产精品| 国产黄频视频在线观看| www.精华液| 激情视频va一区二区三区| 久久精品国产亚洲av涩爱| 1024视频免费在线观看| 久久久久久久久免费视频了| 久久久久久人人人人人| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 一二三四中文在线观看免费高清| 亚洲精品第二区| 亚洲第一av免费看| 国产福利在线免费观看视频| 亚洲免费av在线视频| 国语对白做爰xxxⅹ性视频网站| 免费少妇av软件| 中文字幕人妻丝袜制服| 成人国产av品久久久| 18在线观看网站| av一本久久久久| 一二三四在线观看免费中文在| 国产xxxxx性猛交| 制服丝袜香蕉在线| 中国三级夫妇交换| 午夜日韩欧美国产| 九九爱精品视频在线观看| 黄片小视频在线播放| 一级,二级,三级黄色视频| 亚洲精品国产一区二区精华液| 婷婷色综合www| 亚洲成人免费av在线播放| 丝袜美腿诱惑在线| 亚洲av男天堂| 午夜福利视频精品| 亚洲精品在线美女| 十八禁网站网址无遮挡| 久久久久精品久久久久真实原创| 热re99久久国产66热| 日本91视频免费播放| 欧美日韩综合久久久久久| 欧美日韩福利视频一区二区| av国产精品久久久久影院| 久久久久久久国产电影| 女性生殖器流出的白浆| 日韩伦理黄色片| 日韩欧美精品免费久久| 赤兔流量卡办理| 男人操女人黄网站| 99热全是精品| 亚洲七黄色美女视频| 日韩伦理黄色片| 青春草国产在线视频| 伊人亚洲综合成人网| 精品少妇久久久久久888优播| 欧美 日韩 精品 国产| 男女下面插进去视频免费观看| 我的亚洲天堂| 国产爽快片一区二区三区| 一级爰片在线观看| 亚洲av日韩精品久久久久久密 | 亚洲精品国产区一区二| 精品酒店卫生间| 可以免费在线观看a视频的电影网站 | bbb黄色大片| 一本大道久久a久久精品| 亚洲人成网站在线观看播放| 亚洲一卡2卡3卡4卡5卡精品中文| av电影中文网址| 韩国精品一区二区三区| 亚洲人成77777在线视频| 最近最新中文字幕免费大全7| 欧美日韩国产mv在线观看视频| 国产野战对白在线观看| 国产伦人伦偷精品视频| 多毛熟女@视频| 性色av一级| 精品国产一区二区三区久久久樱花| 色综合欧美亚洲国产小说| 精品国产超薄肉色丝袜足j| 天天添夜夜摸| 男女高潮啪啪啪动态图| 亚洲精品第二区| 99re6热这里在线精品视频| 日韩伦理黄色片| 老司机深夜福利视频在线观看 | 国产男女内射视频| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区久久久樱花| 色综合欧美亚洲国产小说| 九色亚洲精品在线播放| 日本黄色日本黄色录像| 成年女人毛片免费观看观看9 | 亚洲欧美色中文字幕在线| 亚洲av日韩在线播放| 青青草视频在线视频观看| 精品亚洲成a人片在线观看| 丝袜人妻中文字幕| 91老司机精品| 伊人久久国产一区二区| 国产精品久久久久久人妻精品电影 | 免费高清在线观看日韩| 熟女少妇亚洲综合色aaa.| 超碰97精品在线观看| 90打野战视频偷拍视频| 一本—道久久a久久精品蜜桃钙片| 一边摸一边做爽爽视频免费| 久久久国产精品麻豆| 国产精品亚洲av一区麻豆 | 色网站视频免费| 久久久国产一区二区| 精品国产超薄肉色丝袜足j| 90打野战视频偷拍视频| 色综合欧美亚洲国产小说| 日韩中文字幕欧美一区二区 | 亚洲精品美女久久久久99蜜臀 | 国产极品粉嫩免费观看在线| 久久精品国产亚洲av高清一级| 亚洲精品日韩在线中文字幕| 亚洲色图综合在线观看| 久久精品国产a三级三级三级| 天堂中文最新版在线下载| av天堂久久9| av线在线观看网站| 久久久久久久久久久久大奶| 亚洲欧美一区二区三区久久| 国产一卡二卡三卡精品 | 最近中文字幕高清免费大全6| 日韩视频在线欧美| 精品一区二区三区四区五区乱码 | 欧美精品av麻豆av| 十八禁高潮呻吟视频| 1024视频免费在线观看| 在线观看免费高清a一片| 亚洲精品久久成人aⅴ小说| 国产麻豆69| 国产成人欧美| 亚洲av中文av极速乱| 中文字幕精品免费在线观看视频| 91精品三级在线观看| 一边亲一边摸免费视频| 国产深夜福利视频在线观看| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 熟女av电影| 国产一区亚洲一区在线观看| 国产成人欧美| 亚洲国产欧美一区二区综合| 美女福利国产在线| 久久久精品免费免费高清| 中国三级夫妇交换| 18禁动态无遮挡网站| 欧美在线一区亚洲| 国产免费一区二区三区四区乱码| 宅男免费午夜| 亚洲欧洲日产国产| 国产野战对白在线观看| 国产 一区精品| 中文字幕精品免费在线观看视频| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 国产亚洲av高清不卡| 国产男女超爽视频在线观看| 激情五月婷婷亚洲| 国产色婷婷99| 99久久精品国产亚洲精品| 婷婷色av中文字幕| 精品福利永久在线观看| 国产1区2区3区精品| 欧美在线黄色| 日韩不卡一区二区三区视频在线| 一级黄片播放器| 久久人妻熟女aⅴ| 亚洲,一卡二卡三卡| 人妻一区二区av| 国产精品 欧美亚洲| 久久久久国产一级毛片高清牌| 国产 精品1| videosex国产| 欧美久久黑人一区二区| 日本欧美视频一区| 久久精品久久久久久噜噜老黄| 最近的中文字幕免费完整| 丝袜美腿诱惑在线| xxxhd国产人妻xxx| 18禁裸乳无遮挡动漫免费视频| 亚洲精品在线美女| 亚洲av欧美aⅴ国产| 欧美乱码精品一区二区三区| 精品少妇黑人巨大在线播放| 男女边吃奶边做爰视频| 女人被躁到高潮嗷嗷叫费观| 这个男人来自地球电影免费观看 | 18禁国产床啪视频网站| 国产一区二区在线观看av| 免费黄网站久久成人精品| 91aial.com中文字幕在线观看| 亚洲欧美激情在线| 日韩av在线免费看完整版不卡| 最近手机中文字幕大全| 欧美日本中文国产一区发布| 国产片内射在线| 国产精品香港三级国产av潘金莲 | 肉色欧美久久久久久久蜜桃| 精品卡一卡二卡四卡免费| 19禁男女啪啪无遮挡网站| 天堂8中文在线网| 热99久久久久精品小说推荐| 在线观看三级黄色| 老熟女久久久| 波多野结衣一区麻豆| 天堂俺去俺来也www色官网| 亚洲激情五月婷婷啪啪| 亚洲一区中文字幕在线| 亚洲av日韩在线播放| 婷婷色综合www| 欧美最新免费一区二区三区| 高清不卡的av网站| 国产在线视频一区二区| 国产精品女同一区二区软件| 亚洲成人国产一区在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩一区二区三区在线| 久久性视频一级片| 在线免费观看不下载黄p国产| 在线看a的网站| 亚洲精品国产av成人精品| 亚洲av电影在线进入| 精品少妇久久久久久888优播| 欧美老熟妇乱子伦牲交| 丰满乱子伦码专区| 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 亚洲av在线观看美女高潮| 91aial.com中文字幕在线观看| 丝袜脚勾引网站| 国产成人精品久久二区二区91 | 嫩草影视91久久| 国产国语露脸激情在线看| 蜜桃国产av成人99| 国产精品成人在线| 日韩一区二区三区影片| 亚洲国产欧美一区二区综合| 夜夜骑夜夜射夜夜干| 高清视频免费观看一区二区| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 成人手机av| 在现免费观看毛片| 国产av精品麻豆| 天天躁日日躁夜夜躁夜夜| 狠狠婷婷综合久久久久久88av| 国产在视频线精品| 欧美激情高清一区二区三区 | 99国产精品免费福利视频| 精品一区二区三区av网在线观看 | 97在线人人人人妻| 精品久久蜜臀av无| avwww免费| 亚洲国产精品一区三区| 中文字幕人妻丝袜一区二区 | 欧美黑人精品巨大| 大码成人一级视频| 日韩 欧美 亚洲 中文字幕| 18禁裸乳无遮挡动漫免费视频| 午夜影院在线不卡| 一级片'在线观看视频| 日本91视频免费播放| 中文字幕色久视频| 亚洲国产看品久久| 激情五月婷婷亚洲| 人人妻人人爽人人添夜夜欢视频| 国产一区二区 视频在线| 亚洲视频免费观看视频| 黑人欧美特级aaaaaa片| 捣出白浆h1v1| 人人妻人人添人人爽欧美一区卜| 成年人免费黄色播放视频| 卡戴珊不雅视频在线播放| 国产男女超爽视频在线观看| 高清欧美精品videossex| 51午夜福利影视在线观看| 丝袜脚勾引网站| av在线观看视频网站免费| 悠悠久久av|