• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloud Computing(3)

    2010-06-05 03:32:24WangBaiXuLiutong
    ZTE Communications 2010年3期

    Wang Bai Xu Liutong

    (School of Computer Science and Technology,Beijing University of Posts and Telecommunications,Beijing 100876,P.R.China)

    6.4 Open Architecture

    V irtualization is a core technology for enabling cloud resource sharing,and Service-Oriented Architecture(SOA)enables flexibility,scalability,and reusability.By combining these two technologies,researchers have developed an open cloud computing architecture based on the Open System Interconnection(OSI)model,and have used it as the reference model for implementing the cloud computing system,as shown in Figure 6.

    This architecture encompasses cloud ecosystem,cloud infrastructure and its management,service-orientation,core provisioning and subscription,composite cloud offerings,cloud information architecture and management,and cloud quality analytics.In designing the architecture,seven basic principles are adopted:

    (1)Integrated Management for Cloud Ecosystem

    An architecture must support cloud computing ecosystem management.Such an ecosystem includes all services and solutions vendors,partners,and end users that provide or consume shared resources within the cloud computing environment.Collaboration between vendors and their partners is emphasized in the cloud computing value chain.

    (2)Virtualization for Cloud Infrastructure

    Hardware virtualization involves managing hardware equipment in plug-and-play mode;software virtualization involves using software image management or code virtualization technology to enable software sharing.Dynamic code assembly and execution is another software virtualization technology.In an Internet application,some JavaScript code elements can be dynamically retrieved and inserted into an Ajax package to create new functions or features for a web client.

    ▲Figure 6.Cloud computing open architecture.

    (3)Service-Orientation

    Service-orientation is a driving force that gives cloud computing business value in terms of asset reusability,composite applications,and mashup services.Common services can be reused to enable the cloud’s core provisioning and subscription services as wellas to build cloud offerings in Infrastructure as a Service(IaaS),Software as a Service(SaaS),and even Business Process as a Service(BPaaS).

    (4)Extensible Service Provisioning

    This feature is unique to cloud computing systems.Without extensibility,the provisioning part of the cloud architecture can only support a certain type of resource sharing.Free use and paying users can periodically change their roles as service providers or consumers and this change can occur at three levels of service provisioning.

    (5)Configurable Enablement for Cloud Offerings

    The architecture must ensure configurability of the cloud computing platform and services.The modularized ecosystem management,virtualization,service-orientation,and cloud core form a solid foundation to ensure a computing platform that is configurable,combinable and manageable.

    (6)Unified Information Representation and Exchange Framework

    The collaborative feature of cloud computing comprises information representation and message exchange between cloud computing resources.Cloud computing resources include all business entities(e.g.cloud clients,partners,and vendors)and supporting resources such as virtualization related modules,service-orientation related modules,cloud core,and cloud offerings.The cloud information architecture module enables representation of cloud entities in a unified cloud computing entity description framework.Message routing and exchange protocols as well as message transformation capability form the foundation of cloud information architecture.

    (7)Cloud Quality and Governance This module identifies and defines quality indicators for the cloud computing environment and a set of guidelines to govern the design,deployment,operation,and management of cloud offerings.

    In short,the objective of such an architecture is to combine SOA and virtualization technologies in order to exploit the business potential of cloud computing.

    ▲Figure 7.High-levelmarket-oriented cloud architecture.

    6.5 Market-Oriented Cloud

    Cloud computing is a new Internet-based resource sharing mode particularly focused on its business model.How,then,does this feature impact cloud computing?Researchers have proposed a market-oriented cloud architecture,global cloud exchange and market infrastructure for trading services,which have been investigated intensively.

    6.5.1 Market-Oriented Cloud Architecture

    In the article Cloud Computing and Emerging ITPlatform:Vision,Hype,and Reality for Delivering Computing as the 5thUtility,researchers from the Cloud Computing and Distributed Systems(CLOUDS)Laboratory of the University of Melbourne presented a market-oriented architecture.This architecture supports Quality of Service(QoS)negotiation and Service Level Agreement(SLA)-based resource allocation in the context of cloud computing,as shown in Figure 7.

    In this architecture,there are four main entities:

    (1)Users/Brokers

    Users(or brokers acting on their behalf)submit service requests from anywhere in the world to the Cloud Computing Center to be processed.

    (2)SLA Resource Allocator

    The SLAResource Allocator acts as the interface between Cloud service provider and external users/brokers.It requires the interaction of the following mechanisms to support SLA-oriented resource management.

    ?Service Request Examiner and Admission Control

    When a service request is first submitted,the Service Request Examiner and Admission Control mechanism interprets it for QoS requirements before determining whether to accept or reject it.The mechanism also requires updated status information on resource availability from the Virtual Machine(VM)Monitor mechanism and workload processing from the Service Request Monitor mechanism in order to make effective resource allocation decisions.It then assigns the request to a VM and determines resource entitlements for the allocated VM.

    ▲Figure 8.Globalcloud exchange and market infrastructure for trading services.

    ?Pricing

    The Pricing mechanism determines how service requests will be charged based on submission time(peak/off-peak),pricing rates,or resource availability.

    ?Accounting

    The Accounting mechanism meters the actual usage of resources by each request so that the final cost can be calculated and charged to the user.

    ?VM Monitor The VM Monitor mechanism oversees the availability of VMs and their resource entitlements.

    ?Service Request Monitor

    The Service Request Monitor mechanism oversees the execution progress of service requests.

    (3)VMs

    Multiple VMs can be activated or stopped dynamically on a single physical machine to meet accepted service requests.

    (4)Physical Machines

    Multiple computing servers form a resource cluster to meet service demands.

    Commercial market-oriented cloud systems must be able to:

    ?Support customer-driven service management;

    ?Define computational risk management tactics to identify,assess,and manage risks involved in the execution of applications;

    ?Devise appropriate market-based resource management strategies that encompass both customer-driven service management and computationalrisk management in order to sustain SLA-oriented resource allocation;

    ?Incorporate autonomic resource management models that effectively self-manage changes in service requirements in order to satisfy both new service demands and existing service obligations;

    ?Leverage VM technology to dynamically assign resource shares according to service requirements.

    6.5.2 Cloud Service Exchanges and Markets

    Enterprises currently employ cloud services to improve the scalability of their services and to dealwith bursts in resource demand.However,at present,the proprietary interfaces and pricing strategies of service providers prevent consumers from swapping one provider for another.For cloud computing to become mature,services must follow standard interfaces.This would enable services to be commoditized and would pave the way for the creation of a market infrastructure for trading in services.

    In cloud computing markets,service consumers expect their specific QoS requirements to be met with minimal expense,and service providers hope to retain their clients while achieving the highest possible Return on Investment(ROI).To achieve this,mechanisms,tools,and technologies must be developed to represent,convert,and enhance resource value.Figure 8 illustrates a cloud exchange and market system modelbased on real-world exchanges.

    In this model,the market directory allows participants to locate providers or consumers with suitable offers.Auctioneers periodically clear bids and requests received from market participants,and the banking system carries out financial transactions.

    Brokers perform the same function in such a market as they do in real-world markets:they mediate between consumers and providers by purchasing from the provider and sub-leasing to the consumer.Consumers,brokers and providers are bound to their requirements and related compensations through SLAs.An SLA specifies the details of the service to be provided in terms of metrics agreed upon by all parties,and penalties for violating these expectations,respectively.Such markets can bridge disparate clouds,allowing consumers to choose a suitable provider by either executing SLAs in advance or by purchasing capacity on the spot.Providers can set the prices for a resource based on market conditions,user demand,or current level of utilization of the resource.The admission-control mechanism at the provider end is responsible for selecting the auctions to participate in or the brokers to negotiate with.The negotiation process continues until an SLAis formed or the participants decide to break off.Brokers profit from the difference between the cost of leasing the resource,and what they charge consumers to gain a share of the resource.A broker,therefore,must choose both consumers and providers.Consumer demands include deadlines,fidelity of results,turnaround time of applications,and budget limitations.Enterprise consumers can deploy their own limited ITresources into clouds as guarantees for enterprise computing,or they can lease providers’resources to upscale their applications.

    The idea of utility markets for computing resources has been around for a long time.Recent research projects have particularly focused on trading VM-based resource allocation by time slices.In the above model,a resource broker can negotiate with resource providers.Based on enterprise Grid,Melbourne University’s CLOUDSLaboratory implements a market-oriented platform called"Aneka",which is also a NET-based service-oriented resource management platform.Aneka exhibits many of the properties of the cloud computing model.

    6.6 Comparison of Cluster,Grid,and Cloud Computing

    The first part in this series briefly introduced some characteristics of cloud computing that can be directly experienced by users.This part,however,discusses some of the technical characteristics that distinguish cloud computing platforms from cluster and grid computing.

    Although cloud platforms share some common characteristics with clusters and Grids,they have their own unique attributes and capabilities.These include support for virtualization,services with Web Service interfaces that can be dynamically composed,and support for the creation of third-party,value-added services by building on cloud compute,storage,and application services.Table 1 compares the key characteristics of cluster,grid and cloud computing systems.

    7 Cloud Computing Model

    Although enterprises and academic researchers have proposed various cloud system models,most of these do not reveal the computing paradigm for problem solving in a could.To enable communication and collaboration between server clusters within a cloud,Google has introduced Google File System(GFS),Big Table,and Map Reduce technologies—so-called the"three sharp weapons"of cloud computing.With these technologies,Google has formed a cloud with thousands or even millions of computers,creating a powerful data center.

    ▼Table 1.Key characteristics of clusters,grids,and cloud systems

    7.1 GFS File System

    Desktop applications differ from Internet applications in many respects.GFSis a proprietary distributed file system developed by Google Inc.It is designed to allow efficient and reliable access to data by using large clusters of commodity hardware.GFSis optimized for Google’s core data storage and usage needs(primarily the search engine),which can generate enormous amounts of data that needs to be retained.Google’s Internet search computing learns from the functional programming paradigm in which operations do not modify original data but generate new computing data.Therefore,one feature of GFSis that it generates a large number of very large files mainly for reading.These files can be appended but rarely re-written.GFS is also characterized by high data throughput.

    There are two types of GFSnodes:one master node,and a large number of chunkservers.Chunkservers store data files,with each individual file broken up into fixed-sized chunks of 64 megabytes.Each chunk is assigned a unique 64-bit labelto maintain logical mappings of files to constituent chunks.The master node only stores metadata associated with the chunks,such as the tables mapping the 64-bit labels to chunk locations and the files they make up,the locations of the copies of the chunks,what processes are reading or writing to a particular chunk,or taking a"snapshot"of the chunk pursuant to replicating it.This metadata is kept current by the master node as it periodically receives updates from each chunk server.

    Modification permissions are handled by means of time-limited"leases".The master node grants permission for a process to modify a chunk within a given period.The modifying chunkserver,which is always the primary chunk holder,then propagates the changes to chunkservers with backup copies for synchronization.With several redundant copies,reliability and availability are guaranteed.Programs access the chunks by first querying the Master server for the locations of the desired chunks,the Master replies with the locations,and the program then contacts and receives the data from the chunkserver directly.

    Google currently has over 200 GFS clusters,each of which consists of 1,000 to 5,000 servers.Using GFS,Google has proven that clouds built on cheap machines can also deliver reliable computing and storage.

    7.2 BigTable Database System

    Big Table is a compressed,high performance proprietary database system built mainly on GFSand Chubby Lock Service.It is also a distributed system for storing structured data.ABigTable is a sparse,distributed,multi-dimensional sorted map,which can be indexed by a row key,column key,and a timestamp.By allowing a client to dynamically control data layout,storage format,and storage location,Big Table meets application demands for localized access.Tables are optimized for GFS,being split into multiple tablets of about 200 megabytes.The locations in the GFSof tablets are recorded as database entries in multiple special tablets,which are called"META1"tablets.META1 tablets are found by querying the single"META0"tablet.The META0 tablet typically has a machine to itself which is queried by clients by clients for the location of the META1 tablets;and consequently,the location of the actual data.

    Big Table is designed for databases of petabyte scale with data across thousands of servers.It is also designed to accomodate more machines without the need for reconfiguration.

    7.3 Map Reduce Distributed Programming Paradigm

    GFSand Big Table are used by Google for reliable storage of data in a large-scale distributed environment.Google’s Map Reduce is a software framework designed to support parallel computing on large data sets(often greater than 1 terabyte)on a large cluster.It is therefore a computing model specifically designed for cloud computing.

    7.3.1 Software Framework

    The Map Reduce software framework design is inspired by two common programming functions:"Map"and"Reduce".It was developed within Google as a mechanism for processing large amounts of raw data;for example,counting the number of occurrences of each word in a large set of documents.In functional programming,map and reduce are tools for constructing higher-order functions.

    Map applies a given function to a list of elements(element by element)and returns a new list.These new elements are the products of the function applied to each element in the original list.For example,Map f[v1,v2,...,vn]=[f(v1),f(v2),...,f(vn)].In this way,the functions can be computed in parallel.The Map Reduce computing model is suitable for applications requiring high-performance parallel computing.If the same computing is required on a large set of data,the data set can be divided and assigned to different machines for computing.

    Reduce involves combining elements of a list using a computing approach(function).To unfold a binary operation(function)into a n-ary operation(function),the reduce function is used:Reduce f[v1,v2,...,vn]=f(v1,(Reduce f[v2,...,vn])=f(v1,f(v2,(Reduce f[v3,...,vn]))=f(v1,f(v2,f(...f(vn-1,vn)...)).Map Reduce computing model combines the intermediate results obtained from Map operations by Reduce operations until the final result is calculated.

    7.3.2 Execution Procedure

    Map invocations are distributed across multiple machines by automatically partitioning the input data into a set of splits or shards.Reduce invocations are distributed by partitioning the intermediate key space into pieces using a partitioning function.When the user program calls the Map Reduce function,the overall operation flow is illustrated in Figure 9.

    The Map Reduce library in the user program first splits the input files into M pieces.It then starts up many copies of the program on a cluster of machines.

    One of the copies of the program—the master—is special;the rest are workers.The master picks idle workers and assigns each one a map task or a reduce task.

    A worker that is assigned a Map task reads the contents of the corresponding input split.It parses key/value pairs out of the input data and passes each pair to the user-defined map function.The intermediate key/value pairs produced by the Map function are buffered in memory.

    ▲Figure 9.Google MapReduce execution procedure.

    The buffered pairs are periodically written to local disk and partitioned into R regions by the partitioning function.The locations of these buffered pairs on the local disk are passed back to the master,which is responsible for forwarding these locations to the Reduce workers.

    When a Reduce worker is notified by the master about these locations,it uses remote procedure calls to read the buffered data from the local disks of map workers.When a Reduce worker has read all intermediate data for its partition,it sorts it by the intermediate keys so that all occurrences of the same key are grouped together.The Reduce worker iterates over the sorted intermediate data and for each unique intermediate key encountered,it passes the key and the corresponding set of intermediate values to the user’s reduce function.The output of the reduce function is appended to a final output file for this reduce partition.

    When all Map and Reduce tasks have been completed,the master wakes up the user program.At this point,the Map Reduce call in the user program returns back to the user code.Upon completion,the output of the Map Reduce execution is available in the R output files.Typically,users do not need to combine these R output files into one file;they often pass these files as input to another Map Reduce call or use them from another distributed application.

    7.4 Apache Hadoop Distributed System Infrastructure

    Google’s GFS,Big Table,and Map Reduce technologies are open to the public but their implementation is private.Atypical implementation of these technologies in the open source community involves the Apache Hadoop project.Inspired by Google’s Map Reduce and GFS,Hadoop is an open-source Java software framework consisting of functional programming-based concurrent computing model,and a distributed file system.Hadoop’s HBase,similar to Big Table distributed database,supports data-intensive distributed applications to work with thousands of nodes and petabytes of data.

    Hadoop was originally developed to support distribution for the Nutch search engine project.Yahoo has invested a great deal of money into the project and uses Hadoop extensively in areas such as web search and advertising.IBM and Google have launched an initiative to use Hadoop to support university courses in distributed computer programming.All these have been instrumental in promoting and popularizing cloud computing worldwide.

    (To be continued)

    黄色视频在线播放观看不卡| 在线观看免费午夜福利视频| 日日摸夜夜添夜夜爱| 欧美日韩av久久| 男女午夜视频在线观看| 狠狠婷婷综合久久久久久88av| 观看av在线不卡| 欧美久久黑人一区二区| 一二三四在线观看免费中文在| av线在线观看网站| 国产精品一二三区在线看| 老熟女久久久| 免费在线观看视频国产中文字幕亚洲 | 久久女婷五月综合色啪小说| 别揉我奶头~嗯~啊~动态视频 | 久久久久国产一级毛片高清牌| 99久久综合免费| 麻豆乱淫一区二区| xxx大片免费视频| 欧美精品亚洲一区二区| e午夜精品久久久久久久| 最近最新中文字幕大全免费视频 | 日本猛色少妇xxxxx猛交久久| 一区二区三区四区激情视频| 丰满饥渴人妻一区二区三| 久久精品国产a三级三级三级| 一本一本久久a久久精品综合妖精| 黄网站色视频无遮挡免费观看| 观看av在线不卡| 美女国产高潮福利片在线看| 色吧在线观看| 国产一区二区激情短视频 | 欧美人与善性xxx| 妹子高潮喷水视频| 国产成人a∨麻豆精品| 最新的欧美精品一区二区| 中文字幕人妻丝袜一区二区 | 在线观看免费日韩欧美大片| 国产一区二区激情短视频 | 亚洲av福利一区| 在线观看免费日韩欧美大片| 在线天堂最新版资源| 黄片小视频在线播放| 亚洲成人免费av在线播放| 久久人人爽人人片av| 99久久99久久久精品蜜桃| www.精华液| 精品久久久久久电影网| 天天躁夜夜躁狠狠久久av| 女人久久www免费人成看片| avwww免费| 久久人人97超碰香蕉20202| 国产黄色视频一区二区在线观看| 久久精品久久精品一区二区三区| av网站在线播放免费| 人人妻人人澡人人看| 男的添女的下面高潮视频| 看十八女毛片水多多多| 久久精品aⅴ一区二区三区四区| 免费黄网站久久成人精品| 精品少妇一区二区三区视频日本电影 | 国产精品一区二区在线观看99| 另类亚洲欧美激情| 伊人久久大香线蕉亚洲五| 九色亚洲精品在线播放| 亚洲婷婷狠狠爱综合网| 久久久久人妻精品一区果冻| 十分钟在线观看高清视频www| 中文欧美无线码| 亚洲国产精品一区二区三区在线| 久久久久精品人妻al黑| 赤兔流量卡办理| 亚洲欧美色中文字幕在线| 欧美 日韩 精品 国产| 国产精品免费视频内射| 国语对白做爰xxxⅹ性视频网站| 国产精品女同一区二区软件| 又粗又硬又长又爽又黄的视频| 午夜老司机福利片| 大香蕉久久成人网| 美女大奶头黄色视频| 黑丝袜美女国产一区| 欧美激情 高清一区二区三区| 美女中出高潮动态图| 久久精品国产a三级三级三级| 在线免费观看不下载黄p国产| av电影中文网址| 国产av国产精品国产| 一边亲一边摸免费视频| 中国三级夫妇交换| 中文欧美无线码| 国产黄色免费在线视频| 天堂中文最新版在线下载| 国产在线免费精品| 91精品三级在线观看| 1024香蕉在线观看| 美女午夜性视频免费| www.自偷自拍.com| 丝袜在线中文字幕| 麻豆乱淫一区二区| 国产精品久久久久久精品电影小说| 午夜91福利影院| 一区二区三区四区激情视频| 久久午夜综合久久蜜桃| 欧美少妇被猛烈插入视频| 激情五月婷婷亚洲| 国产欧美日韩综合在线一区二区| 婷婷色麻豆天堂久久| 国产精品久久久久久人妻精品电影 | 亚洲三区欧美一区| 一边摸一边抽搐一进一出视频| 亚洲欧美一区二区三区久久| 人人妻人人添人人爽欧美一区卜| 伦理电影免费视频| 国产精品三级大全| 老司机深夜福利视频在线观看 | 高清视频免费观看一区二区| 久热这里只有精品99| 搡老岳熟女国产| 亚洲成人国产一区在线观看 | 无遮挡黄片免费观看| 国产深夜福利视频在线观看| 老司机靠b影院| 性色av一级| 国产亚洲av高清不卡| 国产 精品1| 欧美精品亚洲一区二区| 色婷婷久久久亚洲欧美| av电影中文网址| 亚洲精品国产av成人精品| 精品久久久精品久久久| 欧美日韩国产mv在线观看视频| 王馨瑶露胸无遮挡在线观看| 日日爽夜夜爽网站| 男女国产视频网站| 多毛熟女@视频| 免费av中文字幕在线| 国产精品 欧美亚洲| 大片电影免费在线观看免费| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲免费av在线视频| 又粗又硬又长又爽又黄的视频| 18禁裸乳无遮挡动漫免费视频| 99热网站在线观看| 日本vs欧美在线观看视频| 精品一区二区免费观看| 国产精品秋霞免费鲁丝片| 久久精品久久久久久噜噜老黄| 中文字幕人妻熟女乱码| 国产精品一国产av| 制服诱惑二区| 亚洲一卡2卡3卡4卡5卡精品中文| 香蕉国产在线看| av福利片在线| 久久这里只有精品19| 久久久精品国产亚洲av高清涩受| 菩萨蛮人人尽说江南好唐韦庄| 免费人妻精品一区二区三区视频| 国产精品成人在线| 青草久久国产| 国产一区二区三区av在线| 大香蕉久久成人网| 国产熟女午夜一区二区三区| 99热国产这里只有精品6| 日韩精品有码人妻一区| 国产精品秋霞免费鲁丝片| 日韩伦理黄色片| 亚洲av成人精品一二三区| 桃花免费在线播放| 中国三级夫妇交换| 又粗又硬又长又爽又黄的视频| 大片电影免费在线观看免费| 熟女少妇亚洲综合色aaa.| 成人三级做爰电影| 精品一区在线观看国产| 在线观看国产h片| 精品一区二区三区av网在线观看 | bbb黄色大片| 日本vs欧美在线观看视频| 国产一区亚洲一区在线观看| 午夜激情久久久久久久| 夫妻午夜视频| 精品第一国产精品| 高清不卡的av网站| 好男人视频免费观看在线| 丝袜美足系列| 最近手机中文字幕大全| 色婷婷久久久亚洲欧美| 亚洲欧美日韩另类电影网站| 黄色 视频免费看| 日日啪夜夜爽| 在线观看一区二区三区激情| 久久国产精品男人的天堂亚洲| 亚洲人成网站在线观看播放| 精品人妻熟女毛片av久久网站| 亚洲成色77777| 久久99一区二区三区| 91aial.com中文字幕在线观看| 黑人猛操日本美女一级片| 欧美日韩视频高清一区二区三区二| 激情五月婷婷亚洲| 最近中文字幕高清免费大全6| 91精品伊人久久大香线蕉| 2021少妇久久久久久久久久久| 亚洲欧美中文字幕日韩二区| 韩国高清视频一区二区三区| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区久久| 曰老女人黄片| 亚洲精品在线美女| www.自偷自拍.com| 亚洲国产看品久久| 宅男免费午夜| 国产一区二区激情短视频 | 午夜福利影视在线免费观看| 最近2019中文字幕mv第一页| 欧美 日韩 精品 国产| 制服人妻中文乱码| 午夜免费鲁丝| av电影中文网址| 亚洲精品成人av观看孕妇| 悠悠久久av| 日日啪夜夜爽| 国产精品国产av在线观看| 老汉色av国产亚洲站长工具| 免费观看人在逋| 亚洲av中文av极速乱| 国产 一区精品| 国产成人免费观看mmmm| www.熟女人妻精品国产| 免费观看性生交大片5| 一本久久精品| 少妇 在线观看| 国产深夜福利视频在线观看| 久久婷婷青草| 美女高潮到喷水免费观看| 国产成人精品无人区| 午夜av观看不卡| 少妇的丰满在线观看| 青青草视频在线视频观看| 久久精品国产综合久久久| 亚洲欧美日韩另类电影网站| 日韩制服丝袜自拍偷拍| 午夜福利一区二区在线看| 亚洲av日韩精品久久久久久密 | av在线老鸭窝| 欧美黑人欧美精品刺激| 欧美日韩一区二区视频在线观看视频在线| 久久天躁狠狠躁夜夜2o2o | 99香蕉大伊视频| 国产亚洲欧美精品永久| 国产成人av激情在线播放| 高清欧美精品videossex| 啦啦啦啦在线视频资源| 午夜福利视频在线观看免费| 久久亚洲国产成人精品v| 欧美激情高清一区二区三区 | 曰老女人黄片| 男人舔女人的私密视频| 久久狼人影院| 性高湖久久久久久久久免费观看| 日韩av在线免费看完整版不卡| 日韩制服骚丝袜av| 精品第一国产精品| 2021少妇久久久久久久久久久| 国产精品久久久久久久久免| 国产日韩欧美在线精品| 国产成人精品福利久久| 男女边摸边吃奶| 99热网站在线观看| 91老司机精品| 一边摸一边抽搐一进一出视频| 亚洲精品国产av蜜桃| 考比视频在线观看| 美女脱内裤让男人舔精品视频| 香蕉国产在线看| 免费久久久久久久精品成人欧美视频| 久久韩国三级中文字幕| 一边摸一边做爽爽视频免费| av在线老鸭窝| 黄色视频不卡| 又大又爽又粗| 国产精品亚洲av一区麻豆 | 国产精品国产av在线观看| 99精国产麻豆久久婷婷| 国产精品一国产av| 夫妻午夜视频| 婷婷色综合www| 亚洲精品国产av蜜桃| kizo精华| 午夜福利网站1000一区二区三区| 亚洲欧美成人综合另类久久久| 伦理电影免费视频| 久久精品亚洲熟妇少妇任你| 自线自在国产av| 一本一本久久a久久精品综合妖精| 久久99一区二区三区| 极品人妻少妇av视频| 精品少妇久久久久久888优播| 最近2019中文字幕mv第一页| tube8黄色片| 日韩熟女老妇一区二区性免费视频| 亚洲人成电影观看| 亚洲国产中文字幕在线视频| 99久久99久久久精品蜜桃| 国产成人欧美| 18禁国产床啪视频网站| 欧美精品一区二区大全| 亚洲精品国产一区二区精华液| 免费在线观看视频国产中文字幕亚洲 | 久久久国产欧美日韩av| 日韩熟女老妇一区二区性免费视频| 青草久久国产| 精品一区在线观看国产| 五月天丁香电影| 熟妇人妻不卡中文字幕| 中文字幕人妻丝袜一区二区 | 日本欧美国产在线视频| 十八禁高潮呻吟视频| 亚洲中文av在线| 国产精品一国产av| 欧美国产精品一级二级三级| 国产在视频线精品| 午夜91福利影院| 久久久久久人人人人人| 天天躁夜夜躁狠狠躁躁| 亚洲视频免费观看视频| 免费观看av网站的网址| 亚洲伊人久久精品综合| 色精品久久人妻99蜜桃| av片东京热男人的天堂| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 一本一本久久a久久精品综合妖精| 麻豆av在线久日| 色综合欧美亚洲国产小说| 一本大道久久a久久精品| 日日啪夜夜爽| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 日本av手机在线免费观看| 激情视频va一区二区三区| 亚洲欧美成人精品一区二区| 久久天躁狠狠躁夜夜2o2o | xxx大片免费视频| 美国免费a级毛片| 国产亚洲精品第一综合不卡| 国产高清不卡午夜福利| 精品一区二区三区四区五区乱码 | 免费在线观看黄色视频的| 国产av国产精品国产| 欧美成人精品欧美一级黄| 国产探花极品一区二区| 国产 一区精品| 日本爱情动作片www.在线观看| 免费在线观看完整版高清| 亚洲av中文av极速乱| 国产人伦9x9x在线观看| 最近2019中文字幕mv第一页| 两个人免费观看高清视频| 色精品久久人妻99蜜桃| 伦理电影免费视频| 亚洲欧美日韩另类电影网站| 国产精品国产av在线观看| 这个男人来自地球电影免费观看 | 美女中出高潮动态图| 欧美在线一区亚洲| 国产成人啪精品午夜网站| 午夜激情av网站| 考比视频在线观看| 日韩大码丰满熟妇| 国产视频首页在线观看| 久热爱精品视频在线9| 久久久欧美国产精品| 日韩av在线免费看完整版不卡| 亚洲精品国产色婷婷电影| 一区二区三区激情视频| 在线精品无人区一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 丁香六月欧美| 亚洲av在线观看美女高潮| 人体艺术视频欧美日本| 日韩大片免费观看网站| 免费日韩欧美在线观看| 午夜免费观看性视频| 18在线观看网站| 欧美久久黑人一区二区| 悠悠久久av| 午夜福利免费观看在线| 女人精品久久久久毛片| 亚洲精品国产av成人精品| 欧美97在线视频| 亚洲激情五月婷婷啪啪| 国产一区二区 视频在线| 晚上一个人看的免费电影| 久久久国产精品麻豆| 十分钟在线观看高清视频www| 免费日韩欧美在线观看| 国产av一区二区精品久久| 国产极品天堂在线| 最近中文字幕高清免费大全6| 伊人久久大香线蕉亚洲五| 精品国产露脸久久av麻豆| 狂野欧美激情性xxxx| 亚洲国产精品成人久久小说| 亚洲视频免费观看视频| 日本色播在线视频| 国产免费一区二区三区四区乱码| 少妇精品久久久久久久| 亚洲国产欧美一区二区综合| av天堂久久9| 999精品在线视频| 90打野战视频偷拍视频| 亚洲免费av在线视频| 9热在线视频观看99| 亚洲国产精品999| 最黄视频免费看| 最近手机中文字幕大全| 秋霞伦理黄片| 午夜av观看不卡| 午夜91福利影院| h视频一区二区三区| 亚洲美女黄色视频免费看| 99久久综合免费| 美女中出高潮动态图| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| 亚洲精品视频女| 国产av国产精品国产| 少妇精品久久久久久久| 亚洲一区二区三区欧美精品| av国产精品久久久久影院| 丁香六月天网| 亚洲av中文av极速乱| 久久国产亚洲av麻豆专区| 午夜影院在线不卡| 免费在线观看黄色视频的| 国产精品99久久99久久久不卡 | 一级片'在线观看视频| 在线观看www视频免费| 久久精品人人爽人人爽视色| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆精品久久久久久蜜桃| 啦啦啦 在线观看视频| 亚洲精品乱久久久久久| 韩国av在线不卡| 国产精品一区二区在线观看99| 熟女少妇亚洲综合色aaa.| 蜜桃国产av成人99| 在线天堂最新版资源| 国产视频首页在线观看| 免费黄网站久久成人精品| 永久免费av网站大全| 天堂8中文在线网| 精品国产一区二区久久| 高清不卡的av网站| 精品一区二区三卡| 成人黄色视频免费在线看| 久久精品国产综合久久久| 人妻 亚洲 视频| 亚洲欧洲国产日韩| a级毛片黄视频| 久久鲁丝午夜福利片| xxx大片免费视频| 国产一级毛片在线| 欧美xxⅹ黑人| 看免费av毛片| 精品视频人人做人人爽| 婷婷色综合大香蕉| 美女国产高潮福利片在线看| 看免费成人av毛片| 美女扒开内裤让男人捅视频| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 国产成人免费无遮挡视频| 午夜免费观看性视频| 精品国产一区二区久久| 亚洲精品成人av观看孕妇| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 丝袜喷水一区| 日本色播在线视频| 亚洲欧美中文字幕日韩二区| 女人久久www免费人成看片| 亚洲欧洲日产国产| 亚洲伊人色综图| 青草久久国产| 欧美国产精品va在线观看不卡| 久久鲁丝午夜福利片| 国产成人啪精品午夜网站| 亚洲av在线观看美女高潮| av在线观看视频网站免费| 国语对白做爰xxxⅹ性视频网站| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 如何舔出高潮| 亚洲激情五月婷婷啪啪| 国语对白做爰xxxⅹ性视频网站| 国产精品二区激情视频| 2018国产大陆天天弄谢| 三上悠亚av全集在线观看| 亚洲一区二区三区欧美精品| 一级毛片我不卡| 不卡视频在线观看欧美| svipshipincom国产片| 日本91视频免费播放| 91aial.com中文字幕在线观看| 成年人午夜在线观看视频| 久久女婷五月综合色啪小说| 黑人欧美特级aaaaaa片| 久久狼人影院| 七月丁香在线播放| 晚上一个人看的免费电影| 亚洲激情五月婷婷啪啪| 又黄又粗又硬又大视频| 国产一区二区激情短视频 | av视频免费观看在线观看| 成人国产av品久久久| 精品卡一卡二卡四卡免费| 亚洲男人天堂网一区| www.精华液| 波多野结衣av一区二区av| 在线观看免费午夜福利视频| 日韩一区二区三区影片| 永久免费av网站大全| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久av网站| 国产亚洲最大av| av在线老鸭窝| 日本wwww免费看| 国产一级毛片在线| 又大又爽又粗| 老司机在亚洲福利影院| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 欧美人与善性xxx| 丰满乱子伦码专区| 欧美在线黄色| 日本vs欧美在线观看视频| 亚洲国产成人一精品久久久| 久久精品亚洲av国产电影网| 一二三四在线观看免费中文在| 亚洲七黄色美女视频| 天天躁日日躁夜夜躁夜夜| 五月开心婷婷网| 最近中文字幕高清免费大全6| a级片在线免费高清观看视频| 国产精品三级大全| 日韩视频在线欧美| 亚洲精品乱久久久久久| 99久久人妻综合| 国产国语露脸激情在线看| 欧美亚洲日本最大视频资源| 免费人妻精品一区二区三区视频| 狂野欧美激情性bbbbbb| 大话2 男鬼变身卡| 一级毛片我不卡| 老司机影院毛片| 热re99久久国产66热| 美女高潮到喷水免费观看| 校园人妻丝袜中文字幕| 午夜福利,免费看| 青春草亚洲视频在线观看| 久久毛片免费看一区二区三区| 亚洲国产欧美在线一区| 天天躁狠狠躁夜夜躁狠狠躁| 七月丁香在线播放| 97在线人人人人妻| 少妇人妻久久综合中文| 韩国精品一区二区三区| 视频区图区小说| 天天躁夜夜躁狠狠躁躁| 99热国产这里只有精品6| 中文字幕制服av| 国产成人免费观看mmmm| 亚洲伊人色综图| 99热网站在线观看| 亚洲精品一区蜜桃| 日韩制服骚丝袜av| 久久精品国产a三级三级三级| 日韩精品有码人妻一区| 国产爽快片一区二区三区| 精品国产乱码久久久久久小说| 18禁动态无遮挡网站| 精品国产乱码久久久久久小说| 欧美 日韩 精品 国产| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 哪个播放器可以免费观看大片| 老司机靠b影院| 中文字幕人妻熟女乱码| 三上悠亚av全集在线观看| 视频区图区小说| 亚洲精品一区蜜桃| 桃花免费在线播放| 欧美av亚洲av综合av国产av | 九九爱精品视频在线观看| 久久久精品国产亚洲av高清涩受| 久久精品国产a三级三级三级| 操美女的视频在线观看| 久久久国产欧美日韩av| 精品午夜福利在线看| 国产淫语在线视频| svipshipincom国产片| 蜜桃在线观看..| 人人澡人人妻人| 久久鲁丝午夜福利片| 91精品伊人久久大香线蕉| 成人亚洲欧美一区二区av| 我要看黄色一级片免费的| 成人毛片60女人毛片免费| 国产精品一区二区精品视频观看| 又大又爽又粗| 老汉色∧v一级毛片|