• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    染料敏化太陽能電池用聚偏氟乙烯 /丙烯酸酯互穿網(wǎng)絡(luò)基凝膠聚合物電解質(zhì)的制備與性能表征

    2010-05-05 22:55:48
    關(guān)鍵詞:南京航空航天大學(xué)敏化材料科學(xué)

    楊 艷 陶 杰 金 鑫 秦 琦

    (南京航空航天大學(xué)材料科學(xué)與技術(shù)學(xué)院,南京,210016,中國)

    INTRODUCTION

    Dye-sensitized solar cells (DSSCs) are becoming a promising alternative to classical photovoltaic devices based on inorganic semiconductor technology because of their possible low production cost and the expected high energy conversion efficiency[1].DSSCs with liquid electrolyte have reached the efficiency of as high as 11.04%[2].However,the disadvantages of easy evaporation and solvent leakage reduce the long stability of DSSCs.

    To solve these problems,alternative robust sealing methods,replacementofthe volatile solvents with ionic liquid[3-4], organic and inorganic hole-transport materials[5-6], nanocomposites[7-8], solid, and quasi-solid state polymer electrolytes[9-10]have been attempted.Gel polymer electrolytes(GPEs)are constructed by trapping liquid electrolytes,which usually contain organic solvents(PC,EC or CAN)and inorganic salts,such as LiI,NaIand KI.GPEs possess low vapor pressure,excellent contacting and filling properties between nanostructured electrode and counter electrode, higher ionic conductivity compared with theconventional polymer electrolytes and excellent thermal stability. Therefore, GPEs have attracted intensive attentions and found their wide application in DSSCs[11-16].

    It is known that poly(vinylidene fluoride)(PVDF)is photochemically stable even in the presence of TiO2and Pt nanoparticles and acrylate has good solvent retention.In 2001,Rajendran,et al[17]reported an electrochemical investigation on poly (methylmethacrylate)(PMM A )/PVDF blend-based polymer electrolytes for the applications in lithium batteries. The higher conductivities were observed in the polymer membranes result from the lowerdegree ofcrystallinity. Ourteam investigates the performance of DSSCs employing a quasi-solid polymerelectrolytes based on PVDF-PMM A blend polymer[18].

    Interpenetrating polymer network(IPN)is a special kind of polymer blend.It can be defined as a combination of two polymers in network form,one of which is synthesized and/or cross-linked in the immediate presence of the other.It can be distinguished from blend polymer in two ways:(1)IPN swells,but does not dissolve in solvents;(2)Creep and flow are suppressed in IPN.IPN may be made from polymer(1),which can hold liquid electrolyte and exhibit high ionic conductivity, and polymer (2), which is mechanically and electrochemically stable to electrodes.T C Wei,et al[19]prepared a crosslinking film of PVDF-HFP/PEG/PEGDM A electrolyte with excellent mechanical strength even at 10 μ m thickness.DSSC equipped with thispolymerelectrolyte showsa conversion efficiency over 4% under 100 mW/cm2illumination.To our knowledge,there are not too many reports about polymer electrolyte based on PVDF/acrylate blend or IPN applied in DSSCs.

    In this paper,a micro-phase separation type GPE based on IPNs of cross-linked acrylate is synthesized.This is a special kind of polymer electrolyte,which lies between the chemically cross-linking gelled polymer electrolyte and the porous polymer electrolyte.They can swell with more liquid electrolyte solution than the ordinary porous solid-state electrolyte because ofthe strong interaction of electrolyte solution and one of the interpenetrating components[20]. In the paper,polymer membrane is prepared with more pores by the phase inversion process and their swelling and diffusion characteristics are studied by changing polymer composition or different cross-linking monomers. Moreover, the differences between blend polymer network(BPN)and IPN are studied, thus providing helpful reference in selecting and designing of polymer electrolyte for DSSCs.

    1 EXPERIMENT

    1.1 Preparation of GPE

    1.1.1 BPNs PVDF/PMMA(I)

    The dry porous polymer membrane composed of PVDF(SOLEF 1015)and PMMA(Mw=200 000)is synthesized by the phase inversion process.The dried polymer powders of PVDF and PMM A are dissolved in N, N-dimethylformamide (DM F). An amountof propanetriol as nonsolvent is then added under continuous stirring at 60°C for 12 h to form homogeneous hybrid. The resulting viscous mixture spread on a glass substrate is heated to 80°C for 24 h to remove solvent and nonsolvent.

    1.1.2 IPNsPVDF/PMMA(Ⅱ )or PVDF/PEGDMA(Ⅲ)

    The dried polymer powders of PVDF and propanetriol are dissolved in DMF.The acrylate monmers, methylmethacrylate (MMA) or ethylene glycol dimethacrylate (EGDM A,Aldrich),are then added into the gel solution undercontinuousstirring at50°C to form homogeneous hybrid.Finally,a small amount of initiator,2,2′-azobisisobutyronitrile(AIBN)is added in the solution. The resulting viscous mixture spreading on a glass substrate is heated to 80°C for 24 h to ensure polymerization of acrylate monmers and to complete phase inversion process.

    In these films preparation,the weight ratios ofPVDF/acrylate polymer mixtures are 8/2,7/3,6/4,and 5/5,respectively.The thickness of the polymer electrolyte membranes is approximately 100 μ m. The formed film is washed in ethanol to extract residual propanetriol. Finally, the dried polymer membranes are soaked in liquid electrolyte(0.5 mol/L NaI,0.05 mol/L I2,0.1 moL/L 4-tertbutylpyrdine in the binary organic solvent mixture propylene carbonate and ethylene carbonate with 4∶6(in weight))for 12 h to obtain the desired GPEs.

    1.2 Preparation of TiO2photoanode

    Self-aligned highly ordered TiO2nanotube arrays are fabricated by potentiostatic anodic oxidation in a two-electrode electrochemical cell[21]. The separation distance between the electrodes is 4 cm.The voltage applied between Ti-foil anode and Pt cathode is 20 V at the room temperature. The used electrolyte is ethylene glycol solution with an addition of H2O(1% in volume)and NH4F(0.25% in weight). All solutions are prepared from reagent grade chemicals.Prior to anodization,all the Ti-foil samples are cleaned with acetone and ethanol,chemically polished to a mirror image by the polishing solution,and then rinsed with distilled water and dried in nitrogen stream.Only one face of the Ti-foil is exposed to the electrolyte during anodization by tape-masking the other face.TiO2nanotube arrays having lengths up to 20μ m are grown in vertical direction to the underlying Tifoil with an exposed area of 0.25 cm2.

    The as-prepared nanotube Ti-foil is thoroughly washed with distilled water.Then they are crystallized into anatase phase after annealing at 450°C for 3 h in oxygen atmosphere because as-anodized TiO2nanotubes are amorphous phase.

    1.3 Assembly of DSSCs

    The TiO2film is immerged in a 0.5 mmol ethanol solution of cis-[(dcbH2)2Ru(SCN)2](N719;Solalonix)for 24 h to absorb the dye adequately,and the other impurities are washed up with anhydrous ethanol and dried in moisturefree air.After that,a dye-sensitized TiO2film is prepared.

    A quasi-solid-state DSSC is assembled by sandwiching a slice ofGPE between a dye sensitized TiO2electrode and a platinum counter electrode(purchased from DYSEOL).The two electrodes are clipped together with clamps.For comparison, DSSC with conventional liquid electrolyte is also assembled.The active area of the cell is 0.25 cm2.

    1.4 Measurement

    The IR absorption spectra are taken using an attenuated totalreflection Fourier transform infrared(FFIR)spectrometer(PerkinElmer1760)over the range from 600 cm-1to 4 000 cm-1.The morphology of polymer membrane is characterized by scanning electron micrograph(Quanta 200,FEI).

    The electrolyte uptake is calculated by

    where Wiand W0are the weights of the wet and dry membranes,respectively.

    The porosity of membranes is measured by immersing the membranes into n-butanol for 1 h.The porosity is calculated using the following equation[22]

    where Mpis the weight of membrane,Mbthe weight of absorbed n-butanol,dpthe density of the membrane and dbthe density of n-butanol,respectively.

    The symmetric cell is built to characterize electrochemical properties of electrolyte with a similar design as DSSC by sandwiching the GPE sample between two Pt electrodes (Pt/electrolyte/Pt).The electrolyte resistance Rbis measured using CHI660 electrochemical workstation in the frequency range from 10-2to 105Hz with amplitude of5 mV. The ionic conductivity of the GPE is calculated with

    where d is the thickness of electrolyte and S the area of electrolyte.

    To investigate the diffusion coefficients of I3-in the electrolyte,steady-state voltammograms of GPE is performed.The system is polarized from 0 V to 1 V at a rate of 10 mV/s.The apparent diffusion coefficients of triiodide(D)can be calculated according to the equation[23]

    where Ilimis the limiting current density,n the electron number per molecule,d the thickness of gel electrolyte,F the Faraday constant and C the bulk concentration of electroactive species.

    Photocurrent-voltage characteristics of DSSCs are obtained by a Keithley model 2400 digital source meter using an Oriel 91192 solar simulatorequipped with AM 1.5 filterand intensity of 100 mW/cm2.The fill factor and the conversion efficiency(Z)of the cell are calculated by the following equations[24]

    where Iscis the short-circuit current density;Voc the open-circuit voltage;Pinis the incident light power;Impand Vmpare the current density and voltage in the photocurrent-voltage curves,respectively,at the point of maximum power output.

    2 RESULTS AND DISCUSSION

    2.1 FTIR spectroscopy

    The chemical compositions for the prepared polymer membranes are analyzed using FTIR spectroscopy (see Fig.1). The characteristic peaks of PVDF at 838,877,1 074,1 172,1 232 and 1 406 cm-1are observed for all the samples.The samples show that sharp lines at 1 725,1 148 cm-1correspond to C= O and C-O-C stretching vibration bands of acrylate polymer[25].No peaks observed at 1 640 cm-1indicate that the C= C bond in uncross-linked acrylate monmer disappeares via cross-linking when the membrane is prepared[26].FTIR spectra confirm that both PVDF and PMMA or PEGDMA are presented in the polymer membrane.

    Fig.1 FTIR spectra of polymer membranes

    2.2 Morphology

    Fig.2 shows typical SEM images of the polymer membranes with different systems.All membranes display a surface with a homogeneous porosity.The interior of the membrane has a uniform porous structure as well as the exterior.This indicates that the cellular pores are all open with extensive pore-pore interconnections.

    Fig.2 SEM images of dry polymer membranes

    For the PVDF-PMMA blend system,there are many small nodular entities protruding out of the pore wall,which are more likely to be PMM A particles separating from the polymer host[27].The size and the amount of the nodular textures increase with the increase ofthe amount of PMMA.It can infer that solid-solid demixing has occurred in addition to liquid-liquid demixing or crystallization phase separation process[28].On the contrary,no obvious nodular textures are found in both PVDF-PMM A and PVDFPEGDMA IPN membranesowing to better compatibility between PVDF and interpenetration acryate polymer.The size and the amount of the pores decrease with the increase of the amount of acryate polymer for the IPN system.It can be explained that more cross-links result in denser network structure.

    2.3 Porosity and electrolyte uptake

    The electrolyte uptake is found to depend on the porosity of the polymer membranes in the paper.According to Saito,et al[29],the porosity,one ofthe importantparameters ofporous polymer membranes,can dominate the conduction properties ofthe carriers. Thus,n-butanol absorption technique isused to measure the porosity of the polymer membranes.In Fig.3,the maximum of the porosity is observed when the weight ratio of PVDF/acrylate polymer is 7/3 for all systems.These results indicate that the size of the macrovoids can be controlled by adjusting the acrylate polymer content.Compared with PVDF/PMMA BPN and PVDF/PEGDM A IPN,PVDF/PMMA IPN gives a distinct decrease in porosity. PVDF/PMMA IPN shows denser network structure than other two systems because MM A has higher reactivity and results in highly ordered and regular patterned networks.The highest porosity of 45.7% is measured in PVDF/PEGDMA IPN,which is attributed to a very low and smooth crosslinked network structure of the membrane.

    The tendency of the electrolyte uptake is similar to that of porosity(see Fig.4).GPEs with 30%(in weight)PEGDMA and 70%(in weight) PVDF hasthe maximum electrolyte uptake 261.1%. According to Saito and coworkers[30],there are two distinct steps for liquid electrolyte uptake in PVDF-based porousgel polymer membranes. Firstly, the liquid electrolyte occupiessome pore spaces ofthe membrane. Then, those electrolytes in pores penetrate and swell the polymer chains to form the gel.

    Fig.3 Porosity of polymer membranes

    Fig.4 Electrolyte uptake of polymer membranes

    2.4 Ionic conductivity and triiodide diffusion coefficients of GPEs

    EIS is used to characterize the electrochemicalbehaviorofGPE. The ionic conductivity ofGPEs(e)and the triiodide apparent diffusion coefficient(D)of PVDF/PMM BPN,PVDF/PMM A IPN and PVDF/PEGDM A IPN are summarized,respectively in Tables 1-3.The presence of acrylate polymer can influence the conductivity in different ways. The crystallinity of the membrane is reduced with increasing of acrylate content[28],which improves the conductivity of GPEs. Meanwhile, the porosity of the membrane decreases with increasing acrylate content,leading to the drop of the conductivity of GPEs. As a result,GPE shows the highesteand D when the weight ratio ofPVDF/acrylate polymeris 7/3 and then decreases.The greatest values eand D obtained in PVDF/PEGDM A IPN are 3.02×10-4S·cm-1and 1.10×10-6cm2·s-1.

    Table1 σand D of PVDF/PMMA BPN GPEs

    Table2 σandD of PVDF/PMMA IPN GPEs

    Table3 σand D of PVDF/PEGDMA IPN GPEs

    2.5 Photovoltaic performance

    The photocurrentperformance forDSSC with different electrolytes(A to D)are tested.The photocurrent-voltage curves are shown in Fig.5 and cell parameters corresponding to these DSSCs are summarized in Table 4. It is regrettable that the conversion efficiencies of the cells are unsatisfactory.Further improvements on device performance should be achievable through optimization of electrode preparation and the cell assembling,etc.

    These results indicate that IPN worsens the cell performance to a certain extent for its denser network structure,compared with BPN composed of the same constituent in the same proportions.Selecting EGDM A as crosslinker optimizes the photovoltaic performance.This can be explained on the basis of porosity formation in the network structure of the gel and excellent compatibility with PVDF.The result accords with e and D variation law.DSSC employing PVDF/PEGDM A IPN GPE yields an open-circuit voltage of 0.674 V,short-circuit current of 8.476 m A·cm-2and the conversion efficiency of 2.710%,which is above 60% efficiency of DSSC employing liquid electrolyte,under 100 mW/cm2illumination.

    Fig.5 Photocurrent-voltage curves of DSSCs fabricated of variousGPEsunder100 mW/cm2illumination

    Table 4 Photovoltaic performance of DSSC

    In Table 4,the quasi-solid polymer electrolyte used in Cell A is m(PVDF/PMMA BPN)=7∶3,in Cell B is m(PVDF/PMM A IPN)=7∶3,and in Cell C is m(PVDF/PEGDM A IPN)=7∶3.The liquid electrolyte in Cell D is used as a reference.

    3 CONCLUSION

    GPEs of PVDF/PMM A and PVDF/PEGDM A IPN are prepared.The IR absorption spectra reveal that PMM A or PEGDA is involved in the formation of IPN structure with PVDF.Morphologies indicate that PVDF is compatible with interpenetrating acrylate polymer. The higher porosity and electrolyte uptake are observed in the membranes prepared at lower crosslinker concentration.GPEs based on PVDF/PMMA IPN show lower ionic conductivity and triiodide apparent diffusion coefficient for their denser network structure,compared with PVDF/PMMA BPN.Substituting EGDM A for M AA into crosslinker significantly improves the porosity and the electrochemicalbehaviorof GPE.DSSC employingPVDF/PEGDMA IPN GPE yields an open-circuit voltage of 0.674 V,short-circuit current of 8.476 mA·cm-2and the conversion efficiency of 2.710%,which is above 60% efficiency of DSSC employing liquid electrolyte under 100 mW/cm2illumination.These are preliminary results without optimization. The optimization of many parameters for the electrode preparation and the cell assembling will be studied. The further improvement of the photovoltaic performance is expected in the near future.

    [1] Gr ? tzel M.Photoelectrochemical cells[J].Nature,2001,414:338-344.

    [2] Nazeeruddin M K,PechyP,Renouard T,et al.Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells[J].J Amer Chem Soc,2001,123(8):1613-1624.

    [3] Xue B,Wang H,Hu Y,et al.Highly efficient dyesensitized solar cells using a composite electrolyte[J].C R Chim,2006,9:627-630.

    [4] Zafer C,Ocakoglu K,Ozsoy C,et al.Dicationic bis-imidazolium molten salts for efficient dye sensitized solarcells:synthesis and photovoltaic properties[J].Electrochim Acta,2009,54(24):5709-5714.

    [5] Bandara J, Weerasinghe H. Solid-state dyesensitized solarcell with p-type NiO as a hole collector[J].Sol Energy Mater Sol Cells,2005,85(3):385-390.

    [6] Xia J,Masaki N,Lira-Cantu M,et al.Influence of doped anions on poly(3,4-ethylenedioxythiophene)as hole conductors for iodine-free solid-state dyesensitized solar cells[J].J Am Chem Soc,2008,130(4):1258-1263.

    [7] Huo Z P, Dai S Y, Wang K J, et al.Nanocomposite gel electrolyte with large enhanced charge transportproperties of an I3-/I-redox couple for quasi-solid-state dye-sensitized solar cells[J].Solar Energy Materials&Solar Cells,2007,91(20):1959-1965.

    [8] Huang K C,Vittal R,Ho K C.Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells[J].Sol Energy Mater Sol Cells,2010,94(4):675-679.

    [9] Kim Y,Sung Y E,Xia J B,et al.Solid-state dyesensitized TiO2solar cells using poly (3, 4-ethylenedioxythiophene)as substitutes of iodine/iodide electrolytes and noble metal catalysts on FTO counter electrodes[J].Journal of Photochemistry and Photobiology A: Chemistry,2008,193(2/3):77-80.

    [10]Li B,Lin J M,Li S Q,et al.Quasi-solid state dye sensitized solar cell-based on novel gel polymer electrolyte with poly(methyl methacrylate-coacrylonitrile)[J].Materials Review,2008,22(9):106-108.

    [11]Suryanarayanan V,Lee K M,Hoc W H,et al.A comparative study of gel polymer electrolytes based on PV DF-HFP and liquid electrolytes,containing imidazolinium ionic liquids of different carbon chain lengths in DSSCs[J].Sol Energy Mater Sol Cells,2007,91(15/16):1467-1471.

    [12]Lan Z,Wu J,Lin J, et al. Influence of ionic additives NaI/I2on the properties of polymer gel electrolyte and performance of quasi-solid-state dyesensitized solar cells[J].Electrochim Acta,2008,53(5):2296-2301.

    [13]Bandaraa T,Dissanayakea M,Albinssonb I,et al.Dye-sensitized, nano-porous TiO2solarcell with poly(acrylonitrile):MgI2plasticized electrolyte[J].Journal of Power Sources,2010,195(11):3730-3734.

    [14]Benedetti J E,Goncalves A D,Formiga A L B, et al.A polymer gel electrolyte composed of a poly(ethylene oxide)copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells[J]. J Power Sources,2010,195(4):1246-1255.

    [15]Chen P Y,Lee C P,Vittal R,et al.A quasi solidstate dye-sensitized solar cell containing binary ionic liquid and polyaniline-loaded carbon black [J].Journal of Power Sources,2010,195(12):3933-3938.

    [16]Huo Z,Zhang C,Fanga X,et al.Low molecular mass organogelator based gel electrolyte gelated by a quaternary ammonium halide salt forquasi-solidstate dye-sensitized solar cells[J].J Power Sources,2010,195(13):4384-4390.

    [17]Rajendran S, Kannan R, Mahendran O. An electrochemical investigation on PM M/PV DF blendbased polymer electrolytes[J].Materials Letters,2001,49(3/4):172-179.

    [18]Yang Y,Tao J,Ma L.Study on properties of quasi solid polymer electrolyte based on PVDF-PM M A blend for dye-sensitized solar cells[J].Materials Science Forum,2009,610/613:347-352.

    [19]Wei T C,Wan C C,Wang Y Y.Preparation and characterization of a micro-porous polymer electrolyte with cross-linking network structure for dye-sensitized solar cell[J].Sol Energy Mater Sol Cells,2007,91(20):1892-1897.

    [20]Murata K,Izuchi S,Yoshihisa Y.An overview of theresearch and developmentofsolid polymer electrolyte batteries[J].Electrochim Acta,2000,45(8/9):1501-1508.

    [21]Tao H J,Tao Jie,Wang T,et al.Fabrication of selforganized TiO2nanotubes by anodic oxidation and their photocatalysis[J].Trans Nonferrous Met Soc China,2005,15(3):462-466.

    [22]Chunga N K,Kwonb Y D,Kim D.Thermal,mechanical,swelling,and electrochemical properties of poly(vinylidene fluoride)-co-hexafluoropropylene/poly (ethylene glycol) hybrid-type polymer electrolytes[J].J Power Sources,2003,124(1):148-154.

    [23]Kontos A G,Fardis M,Prodromidis M I,et al.Morphology, ionic diffusion and applicability of novel polymer gel electrolytes with LiI/I2[J].Phys Chem Chem Phys,2006,8(6):767-776.

    [24] Gratzel M. Perspectives for dye-sensitized nanocrystalline solar cells[J].Prog Photovolt Res Appl,2000,8(1):171-185.

    [25] Rajendran S,Mahendran O, Mahalingam T.Thermal and ionic conductivity studies of plasticized PM MA/PV DF blend polymer electrolytes[J].Eur Polym J,2002,38(1):49-55.

    [26]Hou X,Siow K S.Novel interpenetrating polymer network electrolytes[J].Polymer,2001,42(9):4181-4188.

    [27]Ruaan R C,Chou H L,Tsai H A,et al.Factors affecting the nodule sizeofasymmetric PM M A membranes[J].J Membr Sci,2001,190(2):135-145.

    [28]Lin D J,Chang C L,Lee C K,et al.Preparation and characterization of microporous PVDF/PM M A composite membranes by phase inversion in water/DM SO solutions[J].Eur Polym J,2006,42(10):2407-2418.

    [29]Saito Y,Stephan A M,Kataoka H.Ionic conduction mechanisms oflithium gelpolymerelectrolytes investigated by the conductivity and diffusion coefficient[J].Solid State Ionics,2003,160(1/2):149-153.

    [30]Saito Y,Kataoka H,Quartarone E,et al.Carrier migration mechanism of physically cross-linked polymer gel electrolytes based on PV DF membranes[J].J Phys Chem B,2002,106(29):7200-7204.

    猜你喜歡
    南京航空航天大學(xué)敏化材料科學(xué)
    中海油化工與新材料科學(xué)研究院
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)機(jī)電學(xué)院
    材料科學(xué)與工程學(xué)科
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    南京航空航天大學(xué)
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實(shí)驗(yàn)室
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    国产久久久一区二区三区| 日本午夜av视频| 亚洲乱码一区二区免费版| 免费黄色在线免费观看| 久久综合国产亚洲精品| 美女脱内裤让男人舔精品视频| 级片在线观看| 久久99热这里只频精品6学生 | 亚洲精华国产精华液的使用体验| 麻豆一二三区av精品| 午夜爱爱视频在线播放| 九色成人免费人妻av| 亚洲欧美精品专区久久| 国产成人一区二区在线| 狠狠狠狠99中文字幕| 婷婷色综合大香蕉| 在线观看66精品国产| 色视频www国产| 99久久无色码亚洲精品果冻| 噜噜噜噜噜久久久久久91| 99视频精品全部免费 在线| 成人二区视频| 18禁在线无遮挡免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| 久久6这里有精品| av免费在线看不卡| 亚洲综合色惰| 国产av不卡久久| 观看美女的网站| 国产伦精品一区二区三区视频9| 色网站视频免费| 久久久久久久亚洲中文字幕| 午夜激情福利司机影院| 岛国在线免费视频观看| 国产精品久久久久久精品电影| 日韩av不卡免费在线播放| 亚洲av二区三区四区| 久久精品熟女亚洲av麻豆精品 | 久久久午夜欧美精品| 国产精品国产高清国产av| 国产高清三级在线| 人妻系列 视频| 一级二级三级毛片免费看| 精品久久久久久久久亚洲| 亚洲最大成人中文| 国产色爽女视频免费观看| 青春草国产在线视频| 亚洲婷婷狠狠爱综合网| 男女边吃奶边做爰视频| 精品国产三级普通话版| 久久欧美精品欧美久久欧美| 精品不卡国产一区二区三区| 精品久久久久久久人妻蜜臀av| 国产av一区在线观看免费| 桃色一区二区三区在线观看| 亚洲欧美中文字幕日韩二区| 欧美激情在线99| 国产私拍福利视频在线观看| 久久欧美精品欧美久久欧美| 美女脱内裤让男人舔精品视频| 久久亚洲国产成人精品v| 中文字幕精品亚洲无线码一区| 免费大片18禁| 成人国产麻豆网| 久久久亚洲精品成人影院| 亚洲经典国产精华液单| 欧美变态另类bdsm刘玥| 欧美成人午夜免费资源| 亚洲人与动物交配视频| 亚洲婷婷狠狠爱综合网| 天天躁夜夜躁狠狠久久av| 欧美极品一区二区三区四区| 非洲黑人性xxxx精品又粗又长| 美女cb高潮喷水在线观看| 少妇裸体淫交视频免费看高清| 国产高清视频在线观看网站| 国产真实伦视频高清在线观看| 日本黄色视频三级网站网址| 国产午夜精品论理片| videos熟女内射| 久久久久性生活片| 久久精品久久久久久久性| 日韩av在线大香蕉| videossex国产| 69人妻影院| 亚洲精品色激情综合| 少妇被粗大猛烈的视频| 男的添女的下面高潮视频| h日本视频在线播放| 国产成人午夜福利电影在线观看| 国产亚洲av片在线观看秒播厂 | 国产真实伦视频高清在线观看| ponron亚洲| 天天一区二区日本电影三级| 成人一区二区视频在线观看| 国产av一区在线观看免费| 国产美女午夜福利| 卡戴珊不雅视频在线播放| 日韩欧美三级三区| 神马国产精品三级电影在线观看| 国内精品一区二区在线观看| 成人一区二区视频在线观看| 桃色一区二区三区在线观看| 最近视频中文字幕2019在线8| 我的女老师完整版在线观看| 麻豆久久精品国产亚洲av| 亚洲国产成人一精品久久久| 麻豆久久精品国产亚洲av| videos熟女内射| 欧美极品一区二区三区四区| 桃色一区二区三区在线观看| 成人av在线播放网站| 亚洲av免费高清在线观看| 久久久久久大精品| 综合色av麻豆| 精品久久国产蜜桃| 婷婷六月久久综合丁香| 亚洲自拍偷在线| 老司机影院毛片| 欧美激情久久久久久爽电影| 国产 一区 欧美 日韩| 亚洲欧美清纯卡通| 亚洲国产欧洲综合997久久,| 成人三级黄色视频| 不卡视频在线观看欧美| 国产精品伦人一区二区| 中文乱码字字幕精品一区二区三区 | 身体一侧抽搐| 麻豆精品久久久久久蜜桃| 69av精品久久久久久| 视频中文字幕在线观看| 最近视频中文字幕2019在线8| 国产精品一区二区三区四区久久| 久久久久久伊人网av| 亚洲乱码一区二区免费版| 国产免费福利视频在线观看| 天天躁夜夜躁狠狠久久av| 国产免费一级a男人的天堂| 成年版毛片免费区| 日日摸夜夜添夜夜添av毛片| 国产综合懂色| 精品久久久久久久久久久久久| 久久人人爽人人片av| 天天躁日日操中文字幕| 国国产精品蜜臀av免费| 高清毛片免费看| 大香蕉97超碰在线| 日韩成人av中文字幕在线观看| 日日干狠狠操夜夜爽| 午夜福利在线观看吧| 狠狠狠狠99中文字幕| 卡戴珊不雅视频在线播放| 观看美女的网站| 亚洲国产精品国产精品| 国产成人精品婷婷| 深夜a级毛片| 日本黄色视频三级网站网址| 十八禁国产超污无遮挡网站| 久久久色成人| 日日摸夜夜添夜夜爱| 亚洲国产精品sss在线观看| 麻豆久久精品国产亚洲av| 中国美白少妇内射xxxbb| 久久人妻av系列| 成人二区视频| 视频中文字幕在线观看| 日韩三级伦理在线观看| 欧美日韩在线观看h| 老司机影院毛片| 精品久久久久久成人av| 日韩高清综合在线| 中文字幕熟女人妻在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧洲国产日韩| 日本午夜av视频| 亚洲成av人片在线播放无| 国产精品蜜桃在线观看| 成人性生交大片免费视频hd| 亚洲精品国产av成人精品| 国产精品人妻久久久影院| 成人二区视频| 久久热精品热| 亚洲不卡免费看| 18禁动态无遮挡网站| av在线天堂中文字幕| www日本黄色视频网| 伦理电影大哥的女人| 亚洲欧美精品综合久久99| 国产在视频线精品| 欧美精品国产亚洲| 亚洲av中文av极速乱| www.av在线官网国产| 国产伦精品一区二区三区四那| 麻豆av噜噜一区二区三区| 男人和女人高潮做爰伦理| 狂野欧美激情性xxxx在线观看| 美女黄网站色视频| 亚洲欧洲国产日韩| 男人舔女人下体高潮全视频| 亚洲中文字幕一区二区三区有码在线看| a级一级毛片免费在线观看| 丝袜喷水一区| 国产大屁股一区二区在线视频| 国产精品一区www在线观看| 校园人妻丝袜中文字幕| 两个人视频免费观看高清| 亚洲最大成人手机在线| 久99久视频精品免费| 欧美丝袜亚洲另类| 国产亚洲最大av| 国产视频首页在线观看| 长腿黑丝高跟| 草草在线视频免费看| 国产成年人精品一区二区| 日本免费a在线| 青春草亚洲视频在线观看| 成人特级av手机在线观看| 村上凉子中文字幕在线| 欧美zozozo另类| 麻豆一二三区av精品| 成人美女网站在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 国产成人午夜福利电影在线观看| 亚洲av日韩在线播放| 国产精品福利在线免费观看| 国产爱豆传媒在线观看| 伊人久久精品亚洲午夜| 国产精品一区二区在线观看99 | 少妇丰满av| 99热网站在线观看| 国产男人的电影天堂91| 国产黄片视频在线免费观看| 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添av毛片| 国产伦一二天堂av在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 中文字幕熟女人妻在线| 欧美xxxx黑人xx丫x性爽| 水蜜桃什么品种好| 老师上课跳d突然被开到最大视频| 啦啦啦啦在线视频资源| 别揉我奶头 嗯啊视频| 99热精品在线国产| 中文资源天堂在线| 亚洲中文字幕日韩| 精华霜和精华液先用哪个| 亚洲精品成人久久久久久| 91精品伊人久久大香线蕉| 能在线免费看毛片的网站| 中文字幕精品亚洲无线码一区| 亚洲av不卡在线观看| 国产精品麻豆人妻色哟哟久久 | 一级黄片播放器| 能在线免费观看的黄片| 波多野结衣巨乳人妻| 国产免费一级a男人的天堂| 天堂√8在线中文| 欧美丝袜亚洲另类| 中文字幕亚洲精品专区| 国产成人a区在线观看| 久久6这里有精品| 99久久中文字幕三级久久日本| www.av在线官网国产| 国产免费一级a男人的天堂| 国产 一区精品| 精品久久国产蜜桃| 国产熟女欧美一区二区| 日韩欧美 国产精品| 日韩一本色道免费dvd| 国产在视频线在精品| videos熟女内射| 久久久久久久久久成人| 久久热精品热| 九色成人免费人妻av| 亚洲va在线va天堂va国产| 日韩av在线免费看完整版不卡| 亚洲欧美成人综合另类久久久 | 中文字幕熟女人妻在线| 亚洲精品国产av成人精品| 女的被弄到高潮叫床怎么办| 免费观看精品视频网站| 亚洲av二区三区四区| 黄色日韩在线| 大话2 男鬼变身卡| av在线老鸭窝| 亚洲色图av天堂| 国产极品天堂在线| 我的女老师完整版在线观看| 最近中文字幕高清免费大全6| 最近的中文字幕免费完整| 极品教师在线视频| 成人一区二区视频在线观看| 少妇高潮的动态图| 国产精品国产三级专区第一集| 国产伦精品一区二区三区视频9| 欧美一区二区国产精品久久精品| 免费观看人在逋| 老司机影院成人| 国产亚洲av片在线观看秒播厂 | 国产亚洲精品久久久com| 国产精品永久免费网站| 欧美日本视频| 精品不卡国产一区二区三区| 欧美日韩在线观看h| 91久久精品国产一区二区三区| 春色校园在线视频观看| 如何舔出高潮| 久久亚洲国产成人精品v| 国内精品美女久久久久久| 国产伦精品一区二区三区视频9| 欧美性感艳星| 六月丁香七月| 成年av动漫网址| 两性午夜刺激爽爽歪歪视频在线观看| 日韩精品青青久久久久久| 九色成人免费人妻av| 国产亚洲av嫩草精品影院| 成人性生交大片免费视频hd| 干丝袜人妻中文字幕| 国产精品野战在线观看| 最近中文字幕2019免费版| 免费观看a级毛片全部| 九色成人免费人妻av| 99久久无色码亚洲精品果冻| 桃色一区二区三区在线观看| 赤兔流量卡办理| 国产免费一级a男人的天堂| 久久久亚洲精品成人影院| 亚洲18禁久久av| 最近手机中文字幕大全| 一卡2卡三卡四卡精品乱码亚洲| 亚洲在久久综合| 日本五十路高清| 精品久久久久久电影网 | 一卡2卡三卡四卡精品乱码亚洲| 日韩一区二区视频免费看| 美女脱内裤让男人舔精品视频| 亚洲第一区二区三区不卡| 亚洲欧美日韩无卡精品| 久久久久久久午夜电影| 午夜爱爱视频在线播放| 日韩 亚洲 欧美在线| 久久精品国产亚洲网站| 国产中年淑女户外野战色| 国产大屁股一区二区在线视频| 国语自产精品视频在线第100页| 日本黄色视频三级网站网址| 免费播放大片免费观看视频在线观看 | 99久久精品热视频| 精品国产三级普通话版| 26uuu在线亚洲综合色| 一本久久精品| 别揉我奶头 嗯啊视频| 亚洲欧美成人精品一区二区| 夜夜看夜夜爽夜夜摸| 久久这里只有精品中国| 两个人视频免费观看高清| 免费看av在线观看网站| 久久久欧美国产精品| 男女啪啪激烈高潮av片| 久久久精品94久久精品| 国产淫片久久久久久久久| 极品教师在线视频| 亚洲在线观看片| 欧美日韩在线观看h| 国产精品女同一区二区软件| 啦啦啦啦在线视频资源| 久久久久国产网址| 国产极品天堂在线| 久久久成人免费电影| 亚洲av中文av极速乱| 久久久久久久久久黄片| 久久精品久久久久久久性| 欧美日韩一区二区视频在线观看视频在线 | 国产成人精品婷婷| 国产真实乱freesex| 午夜福利网站1000一区二区三区| videossex国产| 尾随美女入室| 国产精品一区二区三区四区久久| 亚洲四区av| 亚洲在线自拍视频| av.在线天堂| 青春草亚洲视频在线观看| 在线播放国产精品三级| 人妻夜夜爽99麻豆av| 国产一区二区在线av高清观看| 久久人人爽人人片av| 亚洲内射少妇av| 亚州av有码| 一级毛片我不卡| 99热这里只有精品一区| 成人高潮视频无遮挡免费网站| 99视频精品全部免费 在线| 2022亚洲国产成人精品| 国产黄a三级三级三级人| 色播亚洲综合网| 国产精品永久免费网站| 国产在线男女| 午夜福利成人在线免费观看| 日韩国内少妇激情av| .国产精品久久| 亚洲国产精品专区欧美| 国产淫片久久久久久久久| 国产高清三级在线| 国内精品美女久久久久久| 日韩欧美三级三区| 春色校园在线视频观看| 精品人妻一区二区三区麻豆| 精品国产露脸久久av麻豆 | 亚州av有码| 熟女人妻精品中文字幕| 赤兔流量卡办理| 欧美日本亚洲视频在线播放| 日韩强制内射视频| 秋霞在线观看毛片| 欧美日本视频| 亚洲成人中文字幕在线播放| 麻豆成人午夜福利视频| 搞女人的毛片| 欧美bdsm另类| 久久综合国产亚洲精品| 最近的中文字幕免费完整| 国产高清有码在线观看视频| 欧美一区二区亚洲| 国产精品久久久久久av不卡| 久久草成人影院| 日本熟妇午夜| 午夜福利网站1000一区二区三区| 国产精品人妻久久久影院| 国产黄a三级三级三级人| 国产精品久久久久久精品电影小说 | 蜜臀久久99精品久久宅男| 少妇裸体淫交视频免费看高清| 精品99又大又爽又粗少妇毛片| 老司机影院毛片| 免费观看a级毛片全部| 精品久久久久久久久av| 国产中年淑女户外野战色| 69av精品久久久久久| 天天一区二区日本电影三级| 97在线视频观看| 99热这里只有是精品50| 99热网站在线观看| 青春草视频在线免费观看| 久久久久久久久大av| 久久人妻av系列| 国产午夜福利久久久久久| 欧美成人a在线观看| 久久精品国产亚洲av涩爱| 成人漫画全彩无遮挡| 啦啦啦韩国在线观看视频| 国产亚洲精品av在线| 国产精品av视频在线免费观看| 国产伦精品一区二区三区视频9| 2021天堂中文幕一二区在线观| 日韩av在线大香蕉| 夜夜爽夜夜爽视频| 久久久午夜欧美精品| 久久6这里有精品| 日本一本二区三区精品| 国产免费一级a男人的天堂| 在线观看美女被高潮喷水网站| 精品99又大又爽又粗少妇毛片| 日本黄色视频三级网站网址| 丝袜美腿在线中文| .国产精品久久| 色播亚洲综合网| 日韩国内少妇激情av| 久久人人爽人人爽人人片va| 欧美97在线视频| 国产私拍福利视频在线观看| 亚洲美女搞黄在线观看| 蜜臀久久99精品久久宅男| 亚洲国产成人一精品久久久| 人人妻人人澡欧美一区二区| 成人性生交大片免费视频hd| 精品一区二区三区人妻视频| 午夜福利视频1000在线观看| 在线观看66精品国产| 亚洲av成人av| 尾随美女入室| 一级二级三级毛片免费看| 精品久久久久久久久亚洲| 欧美xxxx黑人xx丫x性爽| 国产伦一二天堂av在线观看| 在线免费观看的www视频| 亚洲精品国产成人久久av| 国产综合懂色| 成人毛片a级毛片在线播放| 啦啦啦啦在线视频资源| 久久国产乱子免费精品| 99在线视频只有这里精品首页| 国产三级在线视频| 久久久久性生活片| 寂寞人妻少妇视频99o| 国产精品美女特级片免费视频播放器| 亚洲av日韩在线播放| 国产精品熟女久久久久浪| 欧美又色又爽又黄视频| 午夜激情福利司机影院| 最新中文字幕久久久久| 成年av动漫网址| 少妇丰满av| 韩国av在线不卡| av播播在线观看一区| 一区二区三区乱码不卡18| 精品人妻偷拍中文字幕| 亚洲综合精品二区| 亚洲精品久久久久久婷婷小说 | 色综合亚洲欧美另类图片| 色视频www国产| 国产一区二区三区av在线| 级片在线观看| 淫秽高清视频在线观看| 一个人看的www免费观看视频| av女优亚洲男人天堂| 免费观看a级毛片全部| av在线老鸭窝| 日本免费a在线| 国产精品1区2区在线观看.| 国产成人aa在线观看| 久久国产乱子免费精品| 国产免费又黄又爽又色| 欧美一区二区亚洲| 久久精品91蜜桃| 韩国高清视频一区二区三区| 国产精品,欧美在线| 91精品一卡2卡3卡4卡| 一边摸一边抽搐一进一小说| 日韩av不卡免费在线播放| 老司机福利观看| 长腿黑丝高跟| 色综合色国产| 熟女人妻精品中文字幕| 草草在线视频免费看| 99热精品在线国产| 卡戴珊不雅视频在线播放| 亚洲精品aⅴ在线观看| 色视频www国产| 色吧在线观看| 久久久久免费精品人妻一区二区| 一本久久精品| 精品人妻视频免费看| 老女人水多毛片| 国产高清国产精品国产三级 | 2021天堂中文幕一二区在线观| 久久久久性生活片| 久久久久精品久久久久真实原创| 日本三级黄在线观看| 久久亚洲精品不卡| 麻豆一二三区av精品| 亚洲最大成人av| 免费看av在线观看网站| av又黄又爽大尺度在线免费看 | 久久99热6这里只有精品| 日本熟妇午夜| 只有这里有精品99| 97热精品久久久久久| 成人av在线播放网站| 精品国内亚洲2022精品成人| 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 人人妻人人看人人澡| 久久99热这里只有精品18| 成人漫画全彩无遮挡| 99久久成人亚洲精品观看| 神马国产精品三级电影在线观看| 18禁在线无遮挡免费观看视频| 亚洲国产日韩欧美精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 欧美丝袜亚洲另类| 秋霞伦理黄片| 久久亚洲精品不卡| 99热6这里只有精品| 免费无遮挡裸体视频| 日本猛色少妇xxxxx猛交久久| 国产中年淑女户外野战色| 97超碰精品成人国产| 九九久久精品国产亚洲av麻豆| 国产不卡一卡二| 好男人视频免费观看在线| 天堂av国产一区二区熟女人妻| 免费av毛片视频| 国产精品蜜桃在线观看| 国产爱豆传媒在线观看| 日韩成人av中文字幕在线观看| 可以在线观看毛片的网站| 舔av片在线| 国产成人a区在线观看| 男女国产视频网站| 午夜老司机福利剧场| 97超碰精品成人国产| 国产精品一区二区三区四区久久| 内地一区二区视频在线| 国产真实伦视频高清在线观看| 亚洲精品影视一区二区三区av| 18+在线观看网站| 亚洲av熟女| 久久久精品大字幕| 少妇人妻一区二区三区视频| 水蜜桃什么品种好| 国产高潮美女av| 免费大片18禁| av福利片在线观看| 日本av手机在线免费观看| 亚洲精华国产精华液的使用体验| 天堂√8在线中文| 亚洲,欧美,日韩| 国产视频首页在线观看| 又爽又黄a免费视频| 成人特级av手机在线观看| av专区在线播放| 国产成人免费观看mmmm|