• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mutated Genes in Pancreatic Cancer

    2010-04-03 12:26:12SongbingHeDechunLi
    Chinese Journal of Cancer Research 2010年2期

    Song-bing He, De-chun Li

    Department of General Surgery, the First Affiliated Hospital, Soochow University, Suzhou 215006, China

    Mutated Genes in Pancreatic Cancer

    Song-bing He, De-chun Li*

    Department of General Surgery, the First Affiliated Hospital, Soochow University, Suzhou 215006, China

    Pancreatic cancer continues to be a deadly malignancy with still high mortality and poor survival. Little progress has been made on the treatment of advanced pancreatic cancer despite the significant advances in understanding, diagnosis, and access to conventional and novel treatments. Molecular pathology of the lesion is the key of our understanding of the mechanisms underlying the development of this cancer and will probably help us in earlier diagnosis and better therapeutic results. New treatment strategies and a more careful evaluation of innovative therapies are clearly needed for this disease. In view of many findings pancreatic cancer should be regarded as a systemic disease, and over the last several years, investigators have gained a better understanding of the molecular biology and events that lead to the development of malignancies. We here review the novel developments in the systemic exploring for commonly mutated genes in pancreatic cancer.

    Pancreatic cancer; Epithelial growth factor; Matrix metalloproteinases; Oncogenes

    INTRODUCTION

    Pancreatic cancer (PC) is one of the most lethal cancers worldwide, as indicated by its mortality incidence ratio of 98%[1]. The prognosis for pancreatic cancer is extremely poor, and the high mortality can be attributed to the ambiguous symptoms, a distinct lack of early diagnostic methods and a lack of effective therapy[2]. Surgery remains the only curative treatment option for this disease but 80% of pancreatic cancer patients have unresectable or metastatic disease[3,4]. Moreover, adjuvant chemotherapy or radiotherapy was assessed in several trials in order to improve patients’ prognosis[5,6]. Thus, most patients receive palliative treatment with the aim of an improved quality of life.

    In view of many findings pancreatic cancer should be regarded as a systemic disease, and over the past few decades, knowledge of the genetic defectsinvolved in tumor formation and growth has increased rapidly. There is an imperative need of analyzing and understanding the primitive lesions that lead to invasive pancreatic cancer. Identification of cancer escape mechanisms and critical cell survival pathways has launched the development of novel antitumor agents. This review will focus on the recent developments in the systemic exploring for commonly mutated genes in pancreatic cancer.

    K-ras

    K-ras activation is known to contribute to cancer cell survival in a number of different tumor types and experimental systems. In mouse models of cancer, somatic activation of oncogenic K-ras is necessary for the early onset of tumors, and its continuous production is necessary for the maintenance of tumor viability[7]. Molecular genetic analysis has identified that activating K-ras mutations, as the earliest and most common genetic mutations in pancreas cell transformation and tumor progression, are found not only in 70% to 95% of pancreatic carcinoma tissues but also in pancreatic juice, fine-needle aspirations ofthe pancreas, duodenal fluid, and blood and stool of pancreatic cancer patients[8,9]. Recent study demonstrated that the introduction of a promoterless full-length K-ras cDNA could efficiently suppress endogenous K-ras gene expression in human pancreatic cancer cells. This inhibition was achieved when the adequate levels of the responsible effectors were reached. Knockdown of K-ras expression in pancreatic cancer cells resulted in slower cell proliferation and lower tumorigencity in mice[10]. Moreover, K-ras mutations have been reported as a negative prognostic factor after surgery and adjuvant chemoradiation in pancreatic cancer[11,12].

    p53

    In human cancers, the most frequent mutant gene is p53, which has a central position in cell cycle regulation through its role in inactivating a variety of genes and interrupting cell proliferation at G1/S checkpoint. p53 mutations cause loss of the above functions and are central in carcinogenesis leading to uncontrolled cell growth and proliferation, increased cellular survival and chromosomal instability. It has been reported that p53 mutations are found in up to 76% in pancreatic cancer[13,14]. Usually, mutations of p53 are not specific but rather sporadic and are resulting in the production of a mutant p53 protein which lives longer than the wild type(normal) p53 protein. Furthermore, p53 mutations may lead to resistance to chemotherapy treatments due to impaired p53-induced apoptosis[15]. There is emerging evidence that the oncogenic potential of human and/or murine double minute-2 protein(hdm2)stems not only from its ability to counteract tumor suppressor p53 but also from its less understood p53-independent functions. Sui X et al concluded from their results that hdm2 is expressed in pancreatic cancer cells as a result of activated Ras signaling, and that it regulates cellular proliferation and the expression of three novel target genes by p53-independent mechanisms[16]. However, whether these mutations have also a prognostic significance remains unclear. Few researchers have suggested a shorter overall survival in pancreatic cancer patients carrying p53 mutation compared to p53(-) patients[13,17].

    p16

    Mutation and loss of p16 activity results in absence of the inhibitory effects at the level of cyclin D-CDK4 interaction, thereby promoting cell cycle progression. Genetic alterations of this locus through gene mutation, deletion, or promoter hypermethylation are found in 80% to 95% of sporadic pancreatic cancers[18]. Genetic analyses have shown that p16 alterations are very common in pancreatic adenocarcinomas but these alterations are not necessarily seen in cultured cell lines. Moreover, loss of p16 expression could be correlated with less differentiated tumors, shorter overall survival, and the presence of metastatic disease[19,20]. The polymorphic genotypes of the p16 gene were associated with significantly shorter time to tumor progression and poorer response to therapy in pancreatic cancer[21]. Functional inactivation of the tumour suppressor p16 marks a key event in pancreatic carcinogenesis. Conversely, reconstitution of the biological action of p16 provides an attractive therapeutic approach. Schulz P et al addressed the consequences of p16 re-expression in MiaPaca-2 pancreatic cancer cells in vivo in the orthotopic tissue context. They found p16 capable of reducing primary tumor growth. In addition, p16 restitution resulted in a marked reduction of tumor angiogenesis, largely accounted for by a p16-dependent inhibition of lymphangio-genesis[21].

    DPC4/SMAD4

    Another tumor suppressor gene which is involved in pancreatic cancer pathogenesis is the DPC4 gene also known as SMAD4. In normal cells the product of this gene plays a role in TGF-β mediated signal transduction, gene transcription and growth arrest[22]. Inactivation of DPC4 facilitates uncontrolled cellular growth and proliferation. It is found that about 50% of pancreatic cancers present mutant genes[24]. Loss of the DPC4 expression is a rather late event in the pathogenesis of pancreatic cancer, as this gene was expressed normally in PanIN1 and 2 and only in 30% of cases with PanIN3[23,24]. Cao D et al utilized the Gene Logic Inc. BioExpress? platform and Affymetrix U133 GeneChip? set to determine the changes in gene expression associated with SMAD4 gene inactivation in a series of well-characterized pancreatic cancer cell lines to define the downstream effects associated with SMAD4 gene inactivation, which offers insight into the role played by SMAD4 in pancreatic cancer, as well as providing potential novel targets for the development of molecular therapeutics in pancreatic cancer[25]. Pancreatic cancers are represented by distinct genetic subtypes with significantly different patterns of failure. Determinations of DPC4 status at initial diagnosis may be of value in stratifying patients into treatment regimens related to local control versus systemic therapy[26]. Whether the DPC4 status has a prognostic value remains controversial, as in a few studies positive DPC4 status was associated with better outcome and survival post resection[25,27],but in other studies DPC4 expression was associated with worse outcome after surgery or adjuvant chemotherapy[23,28].

    HER-1/EGFR

    Changes in the expression of a range of proteins involved in the control of the cell cycle, proliferation, apoptosis, and invasiveness, such as human epidermal growth factor receptor (HER-1/EGFR) play a critical role in the development of pancreatic cancer[29]. In pancreatic cancer, amplification of the EGFR gene has been demonstrated by many researchers but the incidence rate ranges from 16% to 65%[30]. The coexpression of HER-1/EGFR has been shown to stimulate tumor cell proliferation, and elevated HER-1/EGFR levels are linked to poor disease outcomes and lower sensitivity to chemotherapy[31]. The signal activated by EGFR, penetrating into cell nucleus, accelerates protooncogene phosphorylation, and it is therefore assumed that a serious prognosis of pancreatic cancer is also due to high expression of EGFR and its gene polymorphism[32]. Increased EGFR gene copy number and elevated EGF levels are present in a significant proportion of pancreatic cancer patients, and this may reflect increased EGFR pathway dependence with improved sensitivity to EGFR-targeted therapy[33,34].Agents that target the HER-1/EGFR pathway are at the forefront of development, and a significant number of ongoing trials continue to explore the potential of these therapies for this disease[35].

    COX-2

    Cyclooxygenase(COX)-2 is inducible by cytokines and intracellular signals produced at sites of inflammation, it can also be induced in various normal tissues by the hormones of ovulation and pregnancy, growth factors, oncogenes and tumor promoters. Experimental data regarding COX-2 biology have also accumulated in pancreatic cancer[36]. Preclinical studies testing the COX-2 expression in pancreatic cancer cells in comparison to PanINs, chronic pancreatitis specimens and normal pancreatic cells, demonstrated overexpression of COX-2 in adenocarcinomas in contrast to non-malignant tissues; additionally, in adenocarcinomas overexpressing COX-2 versus nonexpressing ones there was a positive association with severity and poor outcome[37,38]. A recent study identified that the COX-2 expression is significantly correlated with the tumor size in pancreatic cancer, which offers a new insight into the regulation of growth and development of metastases in pancreatic cancer[39]. A correlation between COX-2 and p53 expression levels in carcinomas was revealed, and an accumulation of p53 was associated with COX-2 overexpression in premalignant and malignant ductal lesions, which offers opportunities for targeted therapy and chemoprevention of pancreatic cancer using COX-2 inhibitors,especially in lesions with functional p53[40].

    NF-κB

    Nuclear factor-kappa B (NF-κB) is a family of cytoplasmic molecules, in normal conditions, which is in inactive status by binding to proteins IkBa and p100. As in many other cancers, NF-κB is activated in pancreatic cancer cells, playing central role in its pathogenesis, progression, invasion and metastasis[41,42]. It has been reported that NF-κB overexpression is common in pancreatic cancer. During the last few years a new molecular pathway, the hedgehog (hh) signalling, has been found to play a role in pancreatic carcinogenesis. Inhibition of Shh by cyclopamine (a naturally occurring steroidal alkaloid) resulted in apoptosis induction and blockage of pancreatic cancer cell lines proliferation, bothin vivoandin vitro[43]. It is postulated that Shh overexpression is regulated by activation of NF-κB and consequently inhibition of NF-κB results in down-regulation of Shh[44]. Another recent study demonstrated that pancreatic cancer cells resistant to gemcitabine exhibit a high basal NF-κB activity[45].

    MMPs

    Matrix metalloproteinases (MMPs) are a collection of proteases normally used for tissue remodeling that have been found to be upregulated in the setting of many tumors, including pancreatic cancer. MMP-2 and MMP-9 are likely the most implicated in cancer invasion and metastases among many MMPs[46]. As showed in a study by Schneiderhan W et al, pancreatic stellate cells (PSC) represent a significant source of MMP-2 in pancreatic cancer, which is known to promote tumor progression. Moreover, cancer cells release basigin (BSG) to stimulate MMP-2 in PSC, indicating that cross-talk of cancer cells and mesenchymal cells might further increase MMP-2 production in the desmoplasia[47]. Moreover, MMP-2 expression correlates with advanced stages of disease and poor prognosis[48]. TNF-related apoptosis-inducing ligand (TRAIL) can stimulate the expression of MMP-9 in pancreatic cancer cell lines resulting in the enhancement of invasion involving the signaling pathways of caspases, MEK1/2, PKC and NF-κB[49]. Along withoverexpression of specific MMPs in advanced cancer, there is production of the tissue inhibitor of the metalloproteinases (TIMP) which aims to counteract the untoward effects of MMPs in pathological situations[48]. The described pathways outline the perplexity of the molecular pathways and their cross talk especially in highly uncontrolled conditions as in malignancies. It seems MMPs play a role as an“angiogenic switch”, to facilitate the expression of proangiogenic factors such as VEGF and bFGF in order to overcome the negative signals of angiogenic inhibitors such as trombospondins, angiostatins, and INFs[50]. Due to these properties, the inhibition of MMPs represents the scientific rationale for the development of chemotherapeutic agents against pancreatic cancer[51].

    In conclusion, with the comprehensive understanding of its biology, a number of molecularly targeted agents have evolved, which specifically interfere with major pathways involved in pancreatic cancer pathogenesis. Targeted therapy is a promising strategy for pancreatic cancer, where current strategies have failed to significantly improve survival. Furthermore, a biologic and molecular staging of pancreatic cancer may lead us to earlier diagnoses, efficient counseling, and better therapeutic approaches. The ultimate goal would be a tailoredmade treatment for maximal therapeutic results.

    REFERENCES

    [1] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008[J]. CA Cancer J Clin 2008; 58∶ 71–96.

    [2] Li D, Xie K, Wolff R, et al. Pancreatic cancer[J]. Lancet 2004; 363∶ 1049-57.

    [3] Alexakis N, Halloran C, Raraty M, et al. Current standards of surgery for pancreatic cancer[J]. Br J Surg 2004; 91∶ 1410-27.

    [4] Wray CJ, Ahmad SA, Matthews JB, et al. Surgery for pancreatic cancer∶ recent controversies and current practice[J]. Gastroenterology 2005; 128∶ 1626-41.

    [5] Oettle H, Post S, Neuhaus P, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer∶ a randomized controlled trial[J]. JAMA 2007; 297∶ 267-77.

    [6] Neoptolemos JP, Stocken DD, Friess H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer[J]. N Engl J Med 2004; 350∶ 1200-10.

    [7] Pasca di Magliano M, Sekine S, Ermilov A, et al. Hedgehog/Ras interactions regulate early stages of pancreatic cancer[J]. Genes Dev 2006; 20∶ 3161-73.

    [8] van Heek T, Rader AE, Offerhaus GJ, et al. K-ras, p53, and DPC4 (MAD4) alterations in fine-needle aspirates of the pancreas∶ a molecular panel correlates with and supplements cytologic diagnosis[J]. Am J Clin Pathol 2002; 117∶ 755-65.

    [9] Rozenblum E, Schutte M, Goggins M, et al. Tumorsuppressive pathways in pancreatic carcinoma[J]. Cancer Res 1997; 57∶ 1731-4.

    [10] Ren XY, Liang ZY, Shi XH, et al. A homologous promoterless K-ras CDNA targeting endogenous K-ras expression inhibits human pancreatic cancer cell growthin vitroandin vivo[J]. Cancer Biol Ther 2008; 7∶ 1641-7.

    [11] Brunner TB, Cengel KA, Hahn SM, et al. Pancreatic cancer cell radiation survival and prenyltransferase inhibition∶ the role of K-Ras[J]. Cancer Res 2005; 65∶8433-41.

    [12] Kawesha A, Ghaneh P, Andren Sandberg A, et al. K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adeno- carcinoma[J]. Int J Cancer 2000; 89∶ 469-74.

    [13] Dong M, Ma G, Tu W, et al. Clinicopathological significance of p53 and mdm2 protein expression in human pancreatic cancer[J]. World J Gastroenterol 2005; 11∶ 2162-5.

    [14] Casneuf VF, Fonteyne P, Van Damme N, et al. Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival[J]. Cancer Invest 2008; 26∶ 852-9.

    [15] Sun Y. p53 and its downstream proteins as molecular targets of cancer[J]. Mol Carcinog 2006; 45∶ 409-15.

    [16] Sui X, Shin S, Zhang R, et al. Hdm2 is regulated by K-Ras and mediates p53-independent functions in pancreatic cancer cells[J]. Oncogene 2009; 28∶709-20.

    [17] Dong M, Dong Q, Zhang H, et al. Expression of Gadd45a and p53 proteins in human pancreatic cancer∶ potential effects on clinical outcomes[J]. J Surg Oncol 2007; 95∶ 332-6.

    [18] Schutte M, Hruban RH, Geradts J, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas[J]. Cancer Res 1997; 57∶3126-30.

    [19] Hu YX, Watanabe H, Ohtsubo K, et al. Frequent loss of p16 expression and its correlation with clinicopathological parameters in pancreatic carcinoma[J]. Clin Cancer Res 1997; 3∶ 1473-7.

    [20] Chen J, Li D, Killary AM, et al. Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation[J]. Ann Surg Oncol 2009; 16∶ 431-9.

    [21] Schulz P, Scholz A, Rexin A, et al. Inducible re-expression of p16 in an orthotopic mouse model ofpancreatic cancer inhibits lymphangiogenesis and lymphatic metastasis[J]. Br J Cancer 2008; 99∶ 110-7.

    [22] Blobe GC, Schiemann WP, Lodish HF, et al. Role of transforming growth factor beta in human disease[J]. N Engl J Med 2000; 342∶ 1350-8.

    [23] Wilentz RE, Iacobuzio Donahue CA, Argani P, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia∶ evidence that DPC4 inactivation occurs late in neoplastic progression[J]. Cancer Res 2000; 60∶ 2002-6.

    [24] Tascilar M, Skinner HG, Rosty C, et al. The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma[J]. Clin Cancer Res 2001; 7∶ 4115-21.

    [25] Cao D, Ashfaq R, Goggins MG, et al. Differential expression of multiple genes in association with MADH4/DPC4/SMAD4 inactivation in pancreatic cancer[J]. Int J Clin Exp Pathol 2008; 1∶ 510-7.

    [26] Iacobuzio-Donahue CA, Fu B, Yachida S, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer[J]. J Clin Oncol 2009; 27∶ 1806-13.

    [27] Blackford A, Serrano OK, Wolfgang CL, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer[J]. Clin Cancer Res 2009; 15∶ 4674-9.

    [28] Khorana AA, Hu YC, Ryan CK, et al. Vascular endothelial growth factor and DPC4 predict adjuvant therapy outcomes in resected pancreatic cancer[J]. J Gastrointest Surg 2005; 9∶ 903-11.

    [29] Talar-Wojnarowska R, Malecka-Panas E. Molecular pathogenesis of pancreatic adenocarci- noma∶potential clinical implications[J]. Med Sci Monit 2006; 12∶ 186-93.

    [30] Tsiambas E, Karameris A, Dervenis C, et al. HER2/neu expression and gene alterations in pancreatic ductal adenocarcinoma∶ a comparative immunohistochemistry and chromogenicin situhybridization study based on tissue microarrays and computerized image analysis[J]. JOP 2006; 7∶ 283-94.

    [31] Xiong HQ, Abbruzzese JL. Epidermal growth factor receptor-targeted therapy for pancreatic cancer[J]. Semin Oncol 2002; 29(5 suppl 14)∶ 31-7.

    [32] Muslimov GF. Role of epidermal growth factor gene in the development of pancreatic cancer and efficiency of inhibitors of this gene in the treatment of pancreatic carcinoma [J]. Bull Exp Biol Med 2008; 145∶ 535-8.

    [33] Tzeng CW, Frolov A, Frolova N, et al. EGFR genomic gain and aberrant pathway signaling in pancreatic cancer patients[J]. J Surg Res 2007; 143∶20-6.

    [34] Azzariti A, Porcelli L, Gatti G, et al. Synergic antiproliferative and antiangiogenic effects of EGFR and mTOR inhibitors on pancreatic cancer cells[J]. Biochem Pharmacol 2008; 75∶ 1035-44.

    [35] Burris H 3rd, Rocha-Lima C. New therapeutic directions for advanced pancreatic cancer∶ targeting the epidermal growth factor and vascular endothelial growth factor pathways[J]. Oncologist 2008; 13∶ 289-98.

    [36] Chu J, Lloyd FL, Trifan OC, et al. Potential involvement of the cyclooxygenase-2 pathway in the regulation of tumor-associated angiogenesis and growth in pancreatic cancer[J]. Mol Cancer Ther 2003; 2∶ 1-7.

    [37] Juuti A, Louhimo J, Nordling S, et al. Cyclooxygenase-2 expression correlates with poor prognosis in pancreatic cancer[J]. J Clin Pathol 2006; 59∶ 382-6.

    [38] Albazaz R, Verbeke CS, Rahman SH, et al. Cyclooxygenase-2 expression associated with severity of PanIN lesions∶ a possible link between chronic pancreatitis and pancreatic cancer[J]. Pancreatology 2005; 5∶ 361-9.

    [39] Matsumoto G, Muta M, Tsuruta K, et al. Tumor size significantly correlates with postoperative liver metastases and COX-2 expression in patients with resectable pancreatic cancer[J]. Pancreatology 2007; 7∶ 167-73.

    [40] Hermanova M, Trna J, Nenutil R, et al. Expression of COX-2 is associated with accumulation of p53 in pancreatic cancer∶ analysis of COX-2 and p53 expression in premalignant and malignant ductal pancreatic lesions[J]. Eur J Gastroenterol Hepatol 2008; 20∶ 732-9.

    [41] Wang Z, Banerjee S, Li Y, et al. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells[J]. Cancer Res 2006; 66∶ 2778-84.

    [42] Holcomb B, Yip Schneider M, Schmidt CM, et al. The role of nuclear factor kappaB in pancreatic cancer and the clinical applications of targeted therapy[J]. Pancreas 2008; 36∶ 225-35.

    [43] Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis[J]. Nature 2003; 425∶ 851-6.

    [44] Nakashima H, Nakamura M, Yamaguchi H, et al. Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer[J]. Cancer Res 2006; 66∶ 7041-9.

    [45] Sclabas GM, Fujioka S, Schmidt C, et al. NF-kappaB in pancreatic cancer[J]. Int J Gastrointest Cancer 2003; 33∶ 15-26.

    [46] Gong YL, Xu GM, Huang WD, et al. Expression of matrix metalloproteinases and the tissue inhibitors of metalloproteinases and their local invasiveness and metastasis in Chinese human pancreatic cancer [J]. J Surg Oncol 2000; 73∶ 95-9.

    [47] Schneiderhan W, Diaz F, Fundel M, et al. Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay[J]. J Cell Sci 2007; 120∶ 512-9.

    [48] Juuti A, Lundin J, Nordling S, et al. Epithelial MMP-2 expression correlates with worse prognosis in pancreatic cancer[J]. Oncology 2006; 71∶ 61-8.

    [49] Zhou DH, Trauzold A, R?der C, et al. The potential molecular mechanism of overexpression of uPA, IL-8, MMP-7 and MMP-9 induced by TRAIL in pancreatic cancer cell[J]. Hepatobiliary Pancreat Dis Int 2008; 7∶ 201-9.

    [50] Rundhaug JE. Matrix metalloproteinases, angiogenesis, and cancer∶ commentary re∶ A. C. Lockhart et al, Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor[J]. Clin Cancer Res 2003; 9∶ 551-4.

    [51] McCawley LJ, Matrisian LM. Matrix metalloproteinases∶ they're not just for matrix anymore[J]! Curr Opin Cell Biol 2001; 13∶ 534-40.

    R735.9 Document code: A Article ID: 1000-9604(2010)02-0093-06

    10.1007/s11670-010-0093-9

    2009?12?08; Accepted 2010?02?23

    This work was supported by the Scientific Research Foundation of Ministry of Public Health of China (No. WKJ20042011).

    *Corresponding author.

    E-mail∶ hesongbing2@yahoo.com.cn

    ? Chinese Anti-Cancer Association and Springer-Verlag Berlin Heidelberg 2010

    国产成人精品无人区| 亚洲人成电影免费在线| 国产免费av片在线观看野外av| 在线 av 中文字幕| 亚洲精品国产一区二区精华液| 日韩中文字幕视频在线看片| 操美女的视频在线观看| 嫁个100分男人电影在线观看| 亚洲精品自拍成人| 亚洲国产毛片av蜜桃av| 九色亚洲精品在线播放| 久久久久精品国产欧美久久久| 精品一区二区三区av网在线观看 | 一级片免费观看大全| 极品教师在线免费播放| 亚洲av电影在线进入| 成在线人永久免费视频| 国产野战对白在线观看| 欧美国产精品va在线观看不卡| 无限看片的www在线观看| 咕卡用的链子| 亚洲精品国产一区二区精华液| 大片电影免费在线观看免费| 最新在线观看一区二区三区| 色婷婷av一区二区三区视频| 超色免费av| 亚洲av第一区精品v没综合| 中文字幕人妻丝袜制服| 99精国产麻豆久久婷婷| 大陆偷拍与自拍| 久久国产精品大桥未久av| 国产免费现黄频在线看| 亚洲九九香蕉| 国内毛片毛片毛片毛片毛片| 国产有黄有色有爽视频| 久久国产精品大桥未久av| 俄罗斯特黄特色一大片| 国产亚洲欧美在线一区二区| 日本黄色日本黄色录像| 欧美日本中文国产一区发布| 岛国毛片在线播放| 在线天堂中文资源库| 国产精品麻豆人妻色哟哟久久| 日本五十路高清| 国产一区二区三区视频了| 999久久久精品免费观看国产| 亚洲熟女毛片儿| 一区二区三区激情视频| 一区二区三区激情视频| 麻豆乱淫一区二区| 国产精品1区2区在线观看. | 国产成人一区二区三区免费视频网站| 欧美成狂野欧美在线观看| 欧美精品一区二区免费开放| 国产黄频视频在线观看| 这个男人来自地球电影免费观看| 一级片免费观看大全| 一级片免费观看大全| 最近最新中文字幕大全免费视频| 国产精品自产拍在线观看55亚洲 | 久久久精品区二区三区| 亚洲精品成人av观看孕妇| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一区中文字幕在线| 我要看黄色一级片免费的| 香蕉久久夜色| 午夜日韩欧美国产| 亚洲精品av麻豆狂野| 啦啦啦视频在线资源免费观看| 精品国内亚洲2022精品成人 | 国产有黄有色有爽视频| 国产有黄有色有爽视频| 交换朋友夫妻互换小说| 夜夜爽天天搞| 亚洲av国产av综合av卡| av福利片在线| 首页视频小说图片口味搜索| 午夜激情久久久久久久| 国产高清videossex| 黄片播放在线免费| 国产日韩一区二区三区精品不卡| 色视频在线一区二区三区| 日日夜夜操网爽| 久久国产亚洲av麻豆专区| 一区二区三区国产精品乱码| 亚洲 欧美一区二区三区| 黄色毛片三级朝国网站| 99九九在线精品视频| 丰满人妻熟妇乱又伦精品不卡| 深夜精品福利| 别揉我奶头~嗯~啊~动态视频| 大片电影免费在线观看免费| 女同久久另类99精品国产91| 成人黄色视频免费在线看| 久久99一区二区三区| 1024视频免费在线观看| 亚洲天堂av无毛| 一本色道久久久久久精品综合| 久久久久精品国产欧美久久久| 窝窝影院91人妻| 免费av中文字幕在线| 久久久精品94久久精品| 69精品国产乱码久久久| 国产精品亚洲av一区麻豆| 精品午夜福利视频在线观看一区 | 国产亚洲精品一区二区www | 老司机深夜福利视频在线观看| 美女国产高潮福利片在线看| 亚洲欧美激情在线| 精品国产亚洲在线| 十八禁高潮呻吟视频| 日韩精品免费视频一区二区三区| 人人妻人人爽人人添夜夜欢视频| 亚洲熟妇熟女久久| 欧美激情高清一区二区三区| 久久久久久久精品吃奶| 国产精品 国内视频| 中文字幕最新亚洲高清| 日日夜夜操网爽| 老司机深夜福利视频在线观看| 不卡一级毛片| 久久人人97超碰香蕉20202| 99re在线观看精品视频| 日韩欧美三级三区| 男女之事视频高清在线观看| 日韩人妻精品一区2区三区| 两性夫妻黄色片| 日本撒尿小便嘘嘘汇集6| 伦理电影免费视频| 精品高清国产在线一区| 亚洲精品成人av观看孕妇| avwww免费| 久久中文字幕人妻熟女| 首页视频小说图片口味搜索| 亚洲成人免费电影在线观看| 叶爱在线成人免费视频播放| 丰满人妻熟妇乱又伦精品不卡| 久久久久久免费高清国产稀缺| 日韩三级视频一区二区三区| 亚洲精品国产一区二区精华液| 亚洲三区欧美一区| 91av网站免费观看| 亚洲情色 制服丝袜| 男人舔女人的私密视频| 高清黄色对白视频在线免费看| 国产高清videossex| 老汉色∧v一级毛片| 亚洲人成77777在线视频| 精品午夜福利视频在线观看一区 | 国产精品自产拍在线观看55亚洲 | 老司机亚洲免费影院| 在线永久观看黄色视频| 成年人黄色毛片网站| 成人精品一区二区免费| 午夜福利欧美成人| 18禁黄网站禁片午夜丰满| 国产精品久久久久成人av| h视频一区二区三区| 久久性视频一级片| 无限看片的www在线观看| 欧美变态另类bdsm刘玥| 极品人妻少妇av视频| 久久精品亚洲熟妇少妇任你| 捣出白浆h1v1| 久久久久久亚洲精品国产蜜桃av| 精品国产超薄肉色丝袜足j| 成人亚洲精品一区在线观看| 国产精品 欧美亚洲| 999久久久精品免费观看国产| 久久久国产精品麻豆| av又黄又爽大尺度在线免费看| 亚洲精品成人av观看孕妇| 大香蕉久久网| 国产激情久久老熟女| 精品国产亚洲在线| 肉色欧美久久久久久久蜜桃| 怎么达到女性高潮| 日韩精品免费视频一区二区三区| 国产精品秋霞免费鲁丝片| 国产精品久久久久成人av| 国产一卡二卡三卡精品| 老司机午夜福利在线观看视频 | 免费观看av网站的网址| 丰满迷人的少妇在线观看| 韩国精品一区二区三区| 黄片大片在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 美女主播在线视频| 午夜激情av网站| 黄色视频不卡| 正在播放国产对白刺激| 女人高潮潮喷娇喘18禁视频| 欧美日韩视频精品一区| 777久久人妻少妇嫩草av网站| 十八禁网站网址无遮挡| 免费av中文字幕在线| 18禁观看日本| 日韩人妻精品一区2区三区| 啦啦啦在线免费观看视频4| 搡老岳熟女国产| 香蕉国产在线看| 夜夜骑夜夜射夜夜干| 宅男免费午夜| 午夜激情久久久久久久| 亚洲全国av大片| 亚洲av欧美aⅴ国产| 精品国内亚洲2022精品成人 | 午夜福利一区二区在线看| 操出白浆在线播放| 日韩一区二区三区影片| 俄罗斯特黄特色一大片| 久久热在线av| 亚洲精品久久成人aⅴ小说| 久久久国产成人免费| 欧美国产精品va在线观看不卡| 99re6热这里在线精品视频| 久久精品国产99精品国产亚洲性色 | 亚洲美女黄片视频| 亚洲色图 男人天堂 中文字幕| av不卡在线播放| 99国产精品免费福利视频| 国产97色在线日韩免费| 狠狠精品人妻久久久久久综合| 精品福利永久在线观看| 王馨瑶露胸无遮挡在线观看| a级片在线免费高清观看视频| 极品人妻少妇av视频| 国产亚洲av高清不卡| 国产一区二区三区在线臀色熟女 | 99久久精品国产亚洲精品| 亚洲欧美日韩另类电影网站| 黄频高清免费视频| 亚洲欧洲精品一区二区精品久久久| 少妇粗大呻吟视频| 麻豆av在线久日| netflix在线观看网站| 他把我摸到了高潮在线观看 | 99久久人妻综合| 丝袜人妻中文字幕| av不卡在线播放| 亚洲精品美女久久久久99蜜臀| 精品国产一区二区久久| 九色亚洲精品在线播放| 男女免费视频国产| 丁香六月欧美| 欧美黄色片欧美黄色片| 美女扒开内裤让男人捅视频| 老熟妇仑乱视频hdxx| av网站免费在线观看视频| av国产精品久久久久影院| 日韩 欧美 亚洲 中文字幕| 精品熟女少妇八av免费久了| 一区二区三区激情视频| 色精品久久人妻99蜜桃| 老司机亚洲免费影院| 岛国毛片在线播放| 色播在线永久视频| a级片在线免费高清观看视频| 久久久久视频综合| 十八禁高潮呻吟视频| 欧美成狂野欧美在线观看| 曰老女人黄片| 免费观看av网站的网址| 午夜91福利影院| 国产精品二区激情视频| 自拍欧美九色日韩亚洲蝌蚪91| 三上悠亚av全集在线观看| 电影成人av| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜一区二区| 亚洲精品国产色婷婷电影| 无遮挡黄片免费观看| 精品国产乱码久久久久久小说| 少妇 在线观看| 日韩欧美免费精品| 色综合婷婷激情| 亚洲av美国av| 久久午夜综合久久蜜桃| 国产高清激情床上av| 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 欧美成狂野欧美在线观看| 国产精品久久久久久精品电影小说| 国产一区二区三区在线臀色熟女 | 亚洲精品乱久久久久久| 精品人妻1区二区| 成年人黄色毛片网站| 97人妻天天添夜夜摸| 丝袜美腿诱惑在线| 男男h啪啪无遮挡| a级片在线免费高清观看视频| 午夜激情久久久久久久| 男女午夜视频在线观看| 精品一区二区三区四区五区乱码| 纯流量卡能插随身wifi吗| 99riav亚洲国产免费| 欧美激情久久久久久爽电影 | 免费在线观看视频国产中文字幕亚洲| 色94色欧美一区二区| 黄片播放在线免费| 日韩欧美三级三区| 在线播放国产精品三级| 一区二区日韩欧美中文字幕| 成人国产av品久久久| 亚洲天堂av无毛| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 久久国产亚洲av麻豆专区| 欧美黑人欧美精品刺激| 91大片在线观看| 欧美黑人精品巨大| 成年女人毛片免费观看观看9 | 精品亚洲乱码少妇综合久久| 黄色片一级片一级黄色片| 黑人巨大精品欧美一区二区mp4| 亚洲欧美一区二区三区黑人| 两性午夜刺激爽爽歪歪视频在线观看 | 国产99久久九九免费精品| av视频免费观看在线观看| 久久久久视频综合| 天天影视国产精品| 中文字幕色久视频| 国产精品麻豆人妻色哟哟久久| 菩萨蛮人人尽说江南好唐韦庄| 飞空精品影院首页| 久久香蕉激情| 三上悠亚av全集在线观看| tocl精华| 妹子高潮喷水视频| 日本av免费视频播放| 黑人巨大精品欧美一区二区mp4| 精品福利永久在线观看| 欧美日韩精品网址| 亚洲国产欧美一区二区综合| 国产精品98久久久久久宅男小说| 色精品久久人妻99蜜桃| 麻豆成人av在线观看| 国产精品久久久久久人妻精品电影 | 中文字幕人妻丝袜一区二区| 色视频在线一区二区三区| 1024香蕉在线观看| 国产精品一区二区在线不卡| a级片在线免费高清观看视频| 成人18禁在线播放| av欧美777| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| av片东京热男人的天堂| 精品亚洲成a人片在线观看| 99久久国产精品久久久| 丝瓜视频免费看黄片| 精品国产乱码久久久久久小说| 国产精品久久久久久精品古装| 欧美亚洲 丝袜 人妻 在线| 一二三四在线观看免费中文在| 纵有疾风起免费观看全集完整版| 水蜜桃什么品种好| 又大又爽又粗| 丰满饥渴人妻一区二区三| 十八禁人妻一区二区| 变态另类成人亚洲欧美熟女 | 黄网站色视频无遮挡免费观看| 免费看十八禁软件| 一区二区三区激情视频| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线| 一进一出抽搐动态| 99久久人妻综合| 国产麻豆69| 18禁观看日本| 日本vs欧美在线观看视频| 亚洲精品在线观看二区| 国产精品亚洲av一区麻豆| 国产亚洲精品第一综合不卡| 久久久久国产一级毛片高清牌| tube8黄色片| 国产单亲对白刺激| 日韩精品免费视频一区二区三区| 男女高潮啪啪啪动态图| 18禁国产床啪视频网站| 亚洲欧美日韩高清在线视频 | 中文字幕高清在线视频| videosex国产| 咕卡用的链子| 免费观看av网站的网址| 欧美激情久久久久久爽电影 | 老司机亚洲免费影院| 国产免费福利视频在线观看| 午夜激情av网站| 亚洲精华国产精华精| 少妇 在线观看| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 国产国语露脸激情在线看| 久久人人97超碰香蕉20202| 99久久国产精品久久久| 欧美+亚洲+日韩+国产| 69精品国产乱码久久久| 乱人伦中国视频| 精品一区二区三区四区五区乱码| 涩涩av久久男人的天堂| 91麻豆av在线| 国产精品久久久人人做人人爽| 国产高清videossex| 欧美老熟妇乱子伦牲交| 亚洲 欧美一区二区三区| 国产一区二区激情短视频| 男男h啪啪无遮挡| 成在线人永久免费视频| 女性被躁到高潮视频| 国产成人精品久久二区二区91| 不卡av一区二区三区| 亚洲人成77777在线视频| 一本久久精品| av网站免费在线观看视频| 少妇 在线观看| 免费人妻精品一区二区三区视频| 久久久久久免费高清国产稀缺| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产极品粉嫩在线观看| 久久精品国产亚洲av高清一级| 一边摸一边抽搐一进一出视频| 男女边摸边吃奶| 变态另类成人亚洲欧美熟女 | 午夜91福利影院| 十八禁网站网址无遮挡| 久久 成人 亚洲| 美女高潮喷水抽搐中文字幕| 丰满人妻熟妇乱又伦精品不卡| 黑人巨大精品欧美一区二区mp4| 一级,二级,三级黄色视频| 日韩中文字幕欧美一区二区| 亚洲天堂av无毛| 自线自在国产av| 国产97色在线日韩免费| 欧美黑人精品巨大| 黄色a级毛片大全视频| 日韩三级视频一区二区三区| 色播在线永久视频| 亚洲一码二码三码区别大吗| 久久久久网色| 欧美亚洲 丝袜 人妻 在线| 国产成人欧美| 操美女的视频在线观看| 亚洲精品久久成人aⅴ小说| 欧美大码av| 欧美日本中文国产一区发布| 国产精品电影一区二区三区 | 老司机午夜十八禁免费视频| 精品国产一区二区三区四区第35| 99香蕉大伊视频| 不卡一级毛片| 18在线观看网站| 下体分泌物呈黄色| 日本a在线网址| 黄色视频在线播放观看不卡| 香蕉国产在线看| 国产深夜福利视频在线观看| 午夜激情久久久久久久| 亚洲,欧美精品.| 日日摸夜夜添夜夜添小说| 丝袜美腿诱惑在线| 在线观看66精品国产| 男人操女人黄网站| 极品少妇高潮喷水抽搐| 色尼玛亚洲综合影院| 99精品欧美一区二区三区四区| 精品高清国产在线一区| 纵有疾风起免费观看全集完整版| 妹子高潮喷水视频| 日本vs欧美在线观看视频| 精品一区二区三卡| 国产一区二区 视频在线| 女人久久www免费人成看片| av电影中文网址| av超薄肉色丝袜交足视频| 另类精品久久| 亚洲免费av在线视频| h视频一区二区三区| 91老司机精品| 国产av精品麻豆| 一边摸一边抽搐一进一出视频| 在线观看免费日韩欧美大片| 日韩制服丝袜自拍偷拍| 中文字幕色久视频| 欧美变态另类bdsm刘玥| 国产成人av激情在线播放| 90打野战视频偷拍视频| 超碰成人久久| 欧美精品人与动牲交sv欧美| 成年人午夜在线观看视频| 亚洲精品自拍成人| 免费在线观看影片大全网站| aaaaa片日本免费| 搡老岳熟女国产| 欧美国产精品一级二级三级| 亚洲男人天堂网一区| 精品高清国产在线一区| 一夜夜www| 黄色视频在线播放观看不卡| 久久九九热精品免费| 丝瓜视频免费看黄片| 精品午夜福利视频在线观看一区 | 香蕉国产在线看| 好男人电影高清在线观看| 日韩大片免费观看网站| 午夜福利乱码中文字幕| 亚洲情色 制服丝袜| 女人久久www免费人成看片| 女人爽到高潮嗷嗷叫在线视频| 99国产精品一区二区蜜桃av | 自线自在国产av| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频网站a站| 久久国产精品人妻蜜桃| 国产精品.久久久| av电影中文网址| 啪啪无遮挡十八禁网站| 欧美 日韩 精品 国产| 99热网站在线观看| 精品视频人人做人人爽| 黄片播放在线免费| 一个人免费在线观看的高清视频| 在线 av 中文字幕| 国产精品偷伦视频观看了| 纯流量卡能插随身wifi吗| 欧美黄色淫秽网站| 日韩精品免费视频一区二区三区| xxxhd国产人妻xxx| 香蕉丝袜av| 黄色成人免费大全| 制服诱惑二区| 午夜福利视频在线观看免费| 欧美大码av| 国产亚洲欧美在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av国产av综合av卡| 18禁观看日本| 精品午夜福利视频在线观看一区 | 久久性视频一级片| 久久人人97超碰香蕉20202| 亚洲第一欧美日韩一区二区三区 | 欧美乱妇无乱码| www.自偷自拍.com| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区三| 看免费av毛片| 免费观看人在逋| 黑人巨大精品欧美一区二区mp4| 亚洲人成电影免费在线| 午夜福利欧美成人| 精品一区二区三区av网在线观看 | 日本一区二区免费在线视频| 国产日韩欧美在线精品| 最近最新中文字幕大全电影3 | 成人国产av品久久久| 中文字幕最新亚洲高清| 国产精品av久久久久免费| 在线观看免费视频日本深夜| 色婷婷av一区二区三区视频| 亚洲第一青青草原| 无限看片的www在线观看| 嫁个100分男人电影在线观看| 在线观看人妻少妇| 丰满迷人的少妇在线观看| 免费观看人在逋| 不卡一级毛片| 高清av免费在线| 成人免费观看视频高清| 亚洲欧美日韩另类电影网站| 桃花免费在线播放| 亚洲av美国av| www日本在线高清视频| 亚洲人成电影免费在线| 人妻 亚洲 视频| 黑人操中国人逼视频| 免费人妻精品一区二区三区视频| 亚洲国产毛片av蜜桃av| 亚洲 欧美一区二区三区| av网站免费在线观看视频| av线在线观看网站| 精品第一国产精品| 亚洲精品中文字幕一二三四区 | 一本色道久久久久久精品综合| 精品少妇黑人巨大在线播放| 激情在线观看视频在线高清 | 99精品在免费线老司机午夜| 亚洲国产欧美一区二区综合| 精品人妻1区二区| 亚洲情色 制服丝袜| 满18在线观看网站| 自线自在国产av| 久久影院123| 国产免费福利视频在线观看| 18禁观看日本| av天堂久久9| 51午夜福利影视在线观看| 午夜精品国产一区二区电影| 久久久久精品国产欧美久久久| 丝袜美腿诱惑在线| 12—13女人毛片做爰片一| 国产精品 欧美亚洲| 国产精品av久久久久免费| 久久婷婷成人综合色麻豆| 夫妻午夜视频| 欧美日韩亚洲综合一区二区三区_| 丝袜在线中文字幕| 免费av中文字幕在线| 丝袜美腿诱惑在线| 悠悠久久av| av一本久久久久| 男女之事视频高清在线观看| 久久久久久久国产电影| 制服人妻中文乱码| 国产男女超爽视频在线观看|