翟鋼軍,李玉剛,康海貴
(大連理工大學建設(shè)工程學部,遼寧大連 116024)
利用式(7)、(8)計算非結(jié)構(gòu)性因素的相對隸屬度,具體結(jié)果見表2和表3。
受化石能源資源日趨枯竭、能源供應(yīng)安全和環(huán)境壓力等的驅(qū)動,近年來世界開始重視利用豐富的海上風能資源,歐盟最早在北海和波羅地海淺海區(qū)域興建了大規(guī)模的風電場,其中樁式結(jié)構(gòu)是最常見的風機基礎(chǔ)結(jié)構(gòu)[1]。海上風機與陸地結(jié)構(gòu)相比它所處的海洋環(huán)境十分復雜和惡劣,是高風險高投入的工程項目,如何降低海上風電成本是當前乃至今后海上風電發(fā)展的主要目標,其中基礎(chǔ)結(jié)構(gòu)被公認為造成海上風電成本較高的主要因素之一,對基礎(chǔ)結(jié)構(gòu)進行優(yōu)化設(shè)計十分必要。海上風機基礎(chǔ)的優(yōu)化設(shè)計,首先應(yīng)是結(jié)構(gòu)形式的優(yōu)選,在一定的海洋環(huán)境、海底地質(zhì)狀況及施工條件下,必定存在一些相對適用的結(jié)構(gòu)形式。
海上風電場基礎(chǔ)結(jié)構(gòu)形式方案的優(yōu)選涉及的指標和考慮的因素很多,其中有些因素是確定性的,而有些因素往往帶有模糊性的特點。傳統(tǒng)的海洋工程基礎(chǔ)結(jié)構(gòu)選型中,決策者多以非此即彼的思想對結(jié)構(gòu)選型進行決策,選出相對適宜的基礎(chǔ)結(jié)構(gòu)形式。但是采用傳統(tǒng)的方法將很難在方案優(yōu)選過程中進行各個因素的定量化分析,對方案進行優(yōu)選是不完善的[2]。文章將影響基礎(chǔ)結(jié)構(gòu)選型的模糊因素,根據(jù)模糊數(shù)學的隸屬度理論[3,4],利用非結(jié)構(gòu)性和結(jié)構(gòu)性決策模糊集分析單元系統(tǒng)理論進行量化,應(yīng)用多目標單元系統(tǒng)模糊優(yōu)選模型,對基礎(chǔ)結(jié)構(gòu)形式方案進行模糊綜合評價和優(yōu)選。
多目標單元系統(tǒng)模糊優(yōu)選的基本原理是利用與評價對象有關(guān)的單因素評判結(jié)果構(gòu)成新的評價矩陣,并利用權(quán)重因子作模糊變換,根據(jù)各對象的相對隸屬度進行優(yōu)化排序,進而從中選出最優(yōu)方案。
1)設(shè)多目標決策系統(tǒng)由n個方案形成決策集D={d1,d2,…,dn},由 m 個目標(或因素)組成對決策集D的評價目標集P={p1,p2,…,pm}。則m個目標對n個方案的優(yōu)劣的評價可以用目標特征值矩陣X(判斷矩陣)來表示:
式(1)中,xij為方案 j目標 i的特征值(i=1,2,…,m;j=1,2,…,n)。
2)根據(jù)相應(yīng)的優(yōu)選模型原則,在目標特征值矩陣X的基礎(chǔ)上變化出目標相對隸屬度矩陣R:
式(2)中,rij表示第j個方案在第i個目標下的相對隸屬度。
3)設(shè)多目標系統(tǒng)中m個目標的權(quán)重不同,權(quán)向量為:
4)設(shè)方案j對優(yōu)等決策的相對隸屬度以表示,則多目標單元系統(tǒng)模糊優(yōu)選模型為:
式(4)中,p為距離參數(shù),p=1時為海明距離,p=2時為歐氏距離。根據(jù)以上步驟所求得的目標相對隸屬度和目標權(quán)重,按照上式計算出所有方案的相對隸屬度uj,uj最大的方案即為滿意決策。
在方案選型評價的模糊優(yōu)選中,確定各因素對決策集的隸屬函數(shù)與隸屬度是確定模糊關(guān)系矩陣的關(guān)鍵。
設(shè)m個目標集P={p1,p2,…,pm}中包含有 q個非結(jié)構(gòu)性因素(或定性目標),即 C={c1,c2,…,cq}(q≤m)。現(xiàn)研究方案集D中的方案dk與dl(就因素ci而言)進行“優(yōu)越性”的二元比較,得決策集的優(yōu)越性二元對比矩陣
按照優(yōu)先關(guān)系和排序一致性原則將優(yōu)越性二元對比iE矩陣的各行相加,得到一個表示i目標下各決策元素的優(yōu)越性特征值的列向量xij。
非結(jié)構(gòu)性因素(或定性目標)就“優(yōu)越性”而言為越大越優(yōu),則非結(jié)構(gòu)性因素的相對隸屬度為:
對于m個目標集 P={p1,p2,…,pm}中除了 q個非結(jié)構(gòu)性因素(或定性目標)外的m-q個結(jié)構(gòu)性因素(或定量目標),根據(jù)計算或估算可以得到其具體或大約的目標特征值xij,但是由于不同的評估目標在數(shù)量級上是各不相同,必須將其進行規(guī)范化,根據(jù)定量目標的性質(zhì)可按效益型、成本型和適中型目標確定目標的相對優(yōu)屬度:
通常,確定各因素的權(quán)重是比較困難的。為了 解決這一問題,采用類似于確定因素相對隸屬度的非結(jié)構(gòu)性模糊決策法來確定權(quán)重,其基本原理與確定影響因素隸屬度一致。目標集P中的元素pk與pl就“重要性”作二元比較,得到目標集中各因素對“重要性”的二元對比矩陣β,作歸一化處理得目標i的權(quán)重 ωi。
式(9)中,βij僅在 0,0.5,1.0 中取值。
某海上風電場,水深在5~15 m,海床面以下30~50 m深度內(nèi)地基土以砂質(zhì)粉土及粉質(zhì)黏土為主,海流平均流速3.45 m/s,平均波高 2.25 m,波周期 6.8 s,波速 9.0 m/s,選定的風力發(fā)電機組為3 MW,風機荷載資料由廠家提供(見表1)。根據(jù)區(qū)域環(huán)境條件和場地的工程地質(zhì)條件,并參考歐洲國家現(xiàn)有海上風機基礎(chǔ)結(jié)構(gòu)形式、國內(nèi)外海上石油平臺、海上燈塔的設(shè)計經(jīng)驗,提出4種基礎(chǔ)形式進行結(jié)構(gòu)方案設(shè)計:單根鋼管樁基礎(chǔ),三腳架組合式鋼管樁基礎(chǔ),四腳架組合式鋼管樁基礎(chǔ),高樁承臺群樁基礎(chǔ)。
表1 風力發(fā)電機組荷載匯總表Table 1 Summary of w ind turbine loads
以上4種風機基礎(chǔ)結(jié)構(gòu)形式方案組成本文考慮的方案集,即 D={d1,d2,…,dn}={單樁(方案 1),三樁(方案2),四樁(方案3),高樁承臺(方案4)},其立體視圖如圖1所示。
圖1 4種風機基礎(chǔ)形式設(shè)計方案的立體視圖Fig.1 Three dimensional view of 4 kinds of fan base design
從結(jié)構(gòu)功能、經(jīng)濟性能、施工可行性等方面考慮,影響基礎(chǔ)結(jié)構(gòu)選型的因素很多,包括非結(jié)構(gòu)性因素,如“結(jié)構(gòu)對環(huán)境的影響程度”等和結(jié)構(gòu)性因素,如“施工費用”等,在此建立4種方案所對應(yīng)的優(yōu)選半結(jié)構(gòu)性因素集:P={p1,p2,…,pm}={技術(shù)難度,抗沖力荷載能力,環(huán)境影響,施工工期,檢修維護難易,施工難度,施工費用,制造成本,維護費用}。同時為了避免因因素較多導致某些因素權(quán)數(shù)較小,出現(xiàn)大量“淹沒”情況,對此模型根據(jù)各因素的影響程度進行分類。因素 p1,p2,p3,p4,p5這 5 個因素的影響程度較小,將其作為一層進行一級模糊優(yōu)選。因素p6,p7,p8,p9這4個因素對結(jié)構(gòu)形式選型的影響程度大,作為第二層進行二級模糊優(yōu)選[5,6]。在計算中,考慮各層之間的相關(guān)性即耦合作用,將一級模糊優(yōu)選的結(jié)果代入二級模糊優(yōu)選,既使次要因素的權(quán)數(shù)有效降低,又能突出主要因素的影響,分析過程如下:
利用式(7)、(8)計算非結(jié)構(gòu)性因素的相對隸屬度,具體結(jié)果見表2和表3。
利用式(9)計算因素的權(quán)重,具體結(jié)果見表2和表3。
有了模糊目標集和權(quán)重集后,應(yīng)用多目標單元系統(tǒng)模糊優(yōu)選模型即式(9),取海明距離p=1時,得決策相對隸屬度向量u1,取歐式距離p=2時,得決策相對隸屬度向量為u2,結(jié)果見表2和表3。
表2 一級模糊優(yōu)選結(jié)果Table 2 First-step fuzzy optim ization results
表3 二級模糊優(yōu)選結(jié)果Table 3 Second-step fuzzy optim ization results
從模糊優(yōu)選結(jié)果可以看出,方案2(u2=0.993 8)、方案 3(u2=0.968 3)明顯優(yōu)于其他設(shè)計方案,其中方案2優(yōu)于方案3。需要強調(diào)的是,在以上計算中,因素的層次劃分及因素權(quán)重的確定是在確定海上風力發(fā)電場基礎(chǔ)結(jié)構(gòu)形式方案時采用的,隨著工程進入施工期、運營期,層次的劃分及權(quán)重也將隨之改變,因為在開發(fā)初期投資是最重要的,但隨著進入施工期、運營期其因素的重要性也將發(fā)生改變。但不管處于何種時期,應(yīng)用此方法都可得到比較理想的優(yōu)選結(jié)果。
基礎(chǔ)結(jié)構(gòu)的選型優(yōu)化是一個涉及多層次、多因素的復雜規(guī)劃問題,在結(jié)構(gòu)性因素中如果僅考慮重量目標是片面的。下面根據(jù)基礎(chǔ)的實際情況引入強度可靠度、結(jié)構(gòu)剛度以及結(jié)構(gòu)抗震性能總共4個目標,對上述4種方案的基礎(chǔ)形式進行模糊多目標選型優(yōu)化。
圖2 ANSYS模型Fig.2 ANSYSmodel
1)重量計算。在優(yōu)化設(shè)計中得到的基礎(chǔ)結(jié)構(gòu)重量,是以6倍樁徑考慮的,基礎(chǔ)結(jié)構(gòu)有限元分析模型如圖2所示,利用文獻[7]粒子群優(yōu)化模型,對方案1、方案2、方案3、方案4四種結(jié)構(gòu)形式進行統(tǒng)一的優(yōu)化設(shè)計,從而得到在相同條件下結(jié)構(gòu)性因素的相關(guān)數(shù)據(jù)。最后,以此為依據(jù)進行模糊選型優(yōu)化,其中,方案4中承臺為鋼筋混凝土承臺,將鋼筋混凝土承臺按照鋼筋混凝土1 500元/m3與Q345型鋼板10 000元/t折合成用鋼量。以上工作作為初步設(shè)計的一部分,由于分析過程中,沒有考慮樁與土之間的相互作用即土壤的非線性影響,并且采用簡化計算模型,因此其優(yōu)化設(shè)計結(jié)果將作為后續(xù)工作的初步設(shè)計尺寸或參考尺寸。
2)剛度計算。剛度在模糊優(yōu)選中是一個重要指標,此次選型優(yōu)化計算中剛度指標的選取是在正常工作條件下(而不是單位載荷作用下)基礎(chǔ)法蘭面處節(jié)點水平位移值δ,其值見表4。
表4 選型優(yōu)化結(jié)果Table 4 Lectotype optim ization results
3)結(jié)構(gòu)抗震性能。在高聳結(jié)構(gòu)中,地震是主要荷載形式之一,水平作用是主要的,但還需要考慮豎向作用。在有限元分析中,地震荷載以加速度的形式作用于結(jié)構(gòu),隨時間而變化,采用ANSYS軟件中的瞬態(tài)分析來模擬計算地震對基礎(chǔ)結(jié)構(gòu)的作用。分析計算過程中,4種方案采用同一地震加速度數(shù)據(jù)。計算結(jié)果見表4。
4)強度可靠度計算。采用文獻[7]推薦的基于支持向量機分類技術(shù)的可靠度方法,其計算結(jié)果見表4。
結(jié)果及分析
1)結(jié)構(gòu)性目標模糊化。一般來說,結(jié)構(gòu)性因素之間一般不具有可比性,進行優(yōu)選時必須將目標函數(shù)模糊化。在本模糊選型優(yōu)化中,按下列方法確定其相對隸屬度:
重量:重量目標采用相對越小越優(yōu)模型公式將重量模糊化求得其相對隸屬度,表達式為
式(11)中,ri1為重量的相對優(yōu)屬度;Wmin為4種方案中的最小重量;Wi為第i種方案的重量。計算結(jié)果見表4。
可靠度:可靠度目標采用絕對越大越優(yōu)模型公式,將可靠度目標模糊化求得其相對隸屬度,表達式為
式(12)中,ri2為可靠度的相對優(yōu)屬度,Rfsi為第i種方案的可靠度,RL為工程上允許的可靠度的下限值,為0.995。計算結(jié)果見表4。
剛度:剛度目標也采用相對越小越優(yōu)模型公式
式(13)中,ri3為剛度的相對優(yōu)屬度;δmin為四種方案中的最小剛度;δi為第i種方案的剛度。計算結(jié)果見表4。
抗震性能:抗震性能目標也采用相對越小越優(yōu)模型公式
式(14)中,ri4為剛度的相對優(yōu)屬度;ˉωmin為四種方案中的最小剛度;ˉωi為第i種方案的剛度。計算結(jié)果見表4。
2)確定目標權(quán)重。確定目標的權(quán)重仍然采用模糊優(yōu)先關(guān)系和互補原則,與非結(jié)構(gòu)性因素權(quán)重的確定相同,結(jié)果如下:重要性排序為重量、可靠度、剛度、抗震性能。
3)確定決策相對隸屬度向量u。應(yīng)用多目標單元系統(tǒng)模糊優(yōu)選模型,取海明距離p=1時,得決策相對隸屬度向量u1,取歐式距離p=2時,得決策相對隸屬度向量為u2,結(jié)果見表4。
從表4可看出,關(guān)于上述指標的模糊優(yōu)選,不管取海明距離p=1還是歐式距離p=2,四樁結(jié)構(gòu)形式都是最優(yōu)的。同時可以看出,關(guān)于上述指標的模糊優(yōu)選,各方案的優(yōu)選結(jié)果相差不大,結(jié)構(gòu)的可靠度指標、剛度指標及抗震性能指標對結(jié)構(gòu)的選型優(yōu)化有一定的影響,但主要還是取決于用鋼量的多少。
設(shè)整個系統(tǒng)分解為H層,最高層為H。若最低層(第1層)有若干個并列的單元系統(tǒng),每個單元系統(tǒng)均有多個目標特征值輸入,根據(jù)多目標單元系統(tǒng)模糊優(yōu)選模型對每個單元系統(tǒng)計算輸出──方案相對優(yōu)屬度向量:
它組成第2層中某個單元系統(tǒng)的第i個輸入,如圖3所示。
圖3 3層模糊優(yōu)選系統(tǒng)圖Fig.3 3 - layer fuzzy optim ization system
設(shè)第2層并列單元系統(tǒng)的權(quán)向量為ωj=(ω1j,ω2j,…,ωmj) ,且則多目標單元系統(tǒng)模糊優(yōu)選模型可用于第2層中單元系統(tǒng)的計算。如此從第1層向第H層進行計算,直至最高層。由于最高層中只有一個單元系統(tǒng),可得最高層單元系統(tǒng)的輸出──方案的相對優(yōu)屬度向量。
據(jù)此可優(yōu)選多層次多目標系統(tǒng)滿意方案,現(xiàn)將所考慮的系統(tǒng)分解為非結(jié)構(gòu)性因素子系統(tǒng)、結(jié)構(gòu)性因素子系統(tǒng)。各子系統(tǒng)的輸入指標作為系統(tǒng)的輸入層,具體包含前幾節(jié)中所述的因素。系統(tǒng)模型結(jié)構(gòu)如圖4所示。
圖4 基礎(chǔ)結(jié)構(gòu)系統(tǒng)模型結(jié)構(gòu)圖Fig.4 Infrastructure system model structure diagram
根據(jù)以上所述以及前幾節(jié)的計算,可得第2層的選型優(yōu)化結(jié)果(見表5)。
表5 選型優(yōu)化結(jié)果Table 5 Lectotype optim ization results
從表5可看出,不管取海明距離p=1還是歐式距離p=2,模糊優(yōu)選結(jié)果為三樁結(jié)構(gòu)形式稍稍優(yōu)于四樁結(jié)構(gòu)形式,明顯優(yōu)于單樁及多樁結(jié)構(gòu)形式。因此,在后續(xù)工作中應(yīng)將重點放于三樁和四樁結(jié)構(gòu)形式上。
利用模糊數(shù)學理論解決了海上風機樁基基礎(chǔ)選型的問題,通過分析得到以下結(jié)論:
影響基礎(chǔ)結(jié)構(gòu)選型優(yōu)化的因素多為非結(jié)構(gòu)性因素,在確定其相對隸屬度時受主觀因素的影響較大,用非結(jié)構(gòu)性模糊決策集分析單元系統(tǒng)理論確定其相對隸屬度和權(quán)重,可以有效地降低確定相對隸屬度和權(quán)重的人為影響。
將因素分層綜合考慮了影響結(jié)構(gòu)選型的各種非結(jié)構(gòu)性和結(jié)構(gòu)性因素,通過計算可知,用此優(yōu)選模型進行基礎(chǔ)結(jié)構(gòu)選型優(yōu)化可得到比較理想的優(yōu)選結(jié)果。
在確定性的海洋環(huán)境條件下,考慮多種不確定性影響因素,通過對海上風電場4種基礎(chǔ)結(jié)構(gòu)形式的模糊優(yōu)選研究,可以給出確定性的結(jié)論:三樁結(jié)構(gòu)與四樁結(jié)構(gòu)形式明顯優(yōu)于單樁及多樁結(jié)構(gòu)形式。
[1] Simon-Philippe Breton.Geir Moe,Status,plans and technologies for offshore wind turbines in Europe and North America[J].Renewable Energy,2009,34(3):646 -654.
[2] 翟剛軍.海洋固定平臺模糊優(yōu)化與模糊可靠性研究[D].大連:大連理工大學,2001.
[3] 陳守煜.工程模糊集理論與應(yīng)用[M].北京:國防工業(yè)出版社,1998.
[4] Zadeh L A.Fuzzy sets as a basis for a theory of possibility[J].Fuzzy Sets and System,1999,100:9 -34.
[5] 翟鋼軍,封 盛,康海貴,等.海洋平臺設(shè)計選型的多級模糊優(yōu)化及非結(jié)構(gòu)性模糊決策分析[J].中國造船,2002,43(1):23-29.
[6] 康海貴,翟鋼軍,李玉成.多級工程模糊優(yōu)選在海上平臺設(shè)計選型中應(yīng)用[J].大連理工大學學報,2001,41(3):368 -371.
[7] 李玉剛.樁式海上風機基礎(chǔ)可靠度分析及優(yōu)化方法研究[D].大連:大連理工大學,2009.